xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision d235708c0e449ba31dbd7fb0356155d3c8d17480)
1 /*
2  * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/cpus/cpu_ops.h>
23 #include <lib/cpus/errata.h>
24 #include <lib/el3_runtime/context_mgmt.h>
25 #include <lib/el3_runtime/cpu_data.h>
26 #include <lib/el3_runtime/pubsub_events.h>
27 #include <lib/extensions/amu.h>
28 #include <lib/extensions/brbe.h>
29 #include <lib/extensions/debug_v8p9.h>
30 #include <lib/extensions/fgt2.h>
31 #include <lib/extensions/fpmr.h>
32 #include <lib/extensions/mpam.h>
33 #include <lib/extensions/pmuv3.h>
34 #include <lib/extensions/sme.h>
35 #include <lib/extensions/spe.h>
36 #include <lib/extensions/sve.h>
37 #include <lib/extensions/sysreg128.h>
38 #include <lib/extensions/sys_reg_trace.h>
39 #include <lib/extensions/tcr2.h>
40 #include <lib/extensions/trbe.h>
41 #include <lib/extensions/trf.h>
42 #include <lib/utils.h>
43 
44 #if ENABLE_FEAT_TWED
45 /* Make sure delay value fits within the range(0-15) */
46 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
47 #endif /* ENABLE_FEAT_TWED */
48 
49 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
50 static bool has_secure_perworld_init;
51 
52 static void manage_extensions_nonsecure(cpu_context_t *ctx);
53 static void manage_extensions_secure(cpu_context_t *ctx);
54 static void manage_extensions_secure_per_world(void);
55 
56 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
57 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
58 {
59 	u_register_t sctlr_elx, actlr_elx;
60 
61 	/*
62 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
63 	 * execution state setting all fields rather than relying on the hw.
64 	 * Some fields have architecturally UNKNOWN reset values and these are
65 	 * set to zero.
66 	 *
67 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
68 	 *
69 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
70 	 * required by PSCI specification)
71 	 */
72 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
73 	if (GET_RW(ep->spsr) == MODE_RW_64) {
74 		sctlr_elx |= SCTLR_EL1_RES1;
75 	} else {
76 		/*
77 		 * If the target execution state is AArch32 then the following
78 		 * fields need to be set.
79 		 *
80 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
81 		 *  instructions are not trapped to EL1.
82 		 *
83 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
84 		 *  instructions are not trapped to EL1.
85 		 *
86 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
87 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
88 		 */
89 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
90 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
91 	}
92 
93 	/*
94 	 * If workaround of errata 764081 for Cortex-A75 is used then set
95 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
96 	 */
97 	if (errata_a75_764081_applies()) {
98 		sctlr_elx |= SCTLR_IESB_BIT;
99 	}
100 
101 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
102 	write_ctx_sctlr_el1_reg_errata(ctx, sctlr_elx);
103 
104 	/*
105 	 * Base the context ACTLR_EL1 on the current value, as it is
106 	 * implementation defined. The context restore process will write
107 	 * the value from the context to the actual register and can cause
108 	 * problems for processor cores that don't expect certain bits to
109 	 * be zero.
110 	 */
111 	actlr_elx = read_actlr_el1();
112 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx);
113 }
114 #endif /* (IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)) */
115 
116 /******************************************************************************
117  * This function performs initializations that are specific to SECURE state
118  * and updates the cpu context specified by 'ctx'.
119  *****************************************************************************/
120 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
121 {
122 	u_register_t scr_el3;
123 	el3_state_t *state;
124 
125 	state = get_el3state_ctx(ctx);
126 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
127 
128 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
129 	/*
130 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
131 	 * indicated by the interrupt routing model for BL31.
132 	 */
133 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
134 #endif
135 
136 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
137 	if (is_feat_mte2_supported()) {
138 		scr_el3 |= SCR_ATA_BIT;
139 	}
140 
141 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
142 
143 	/*
144 	 * Initialize EL1 context registers unless SPMC is running
145 	 * at S-EL2.
146 	 */
147 #if (!SPMD_SPM_AT_SEL2)
148 	setup_el1_context(ctx, ep);
149 #endif
150 
151 	manage_extensions_secure(ctx);
152 
153 	/**
154 	 * manage_extensions_secure_per_world api has to be executed once,
155 	 * as the registers getting initialised, maintain constant value across
156 	 * all the cpus for the secure world.
157 	 * Henceforth, this check ensures that the registers are initialised once
158 	 * and avoids re-initialization from multiple cores.
159 	 */
160 	if (!has_secure_perworld_init) {
161 		manage_extensions_secure_per_world();
162 	}
163 }
164 
165 #if ENABLE_RME
166 /******************************************************************************
167  * This function performs initializations that are specific to REALM state
168  * and updates the cpu context specified by 'ctx'.
169  *****************************************************************************/
170 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
171 {
172 	u_register_t scr_el3;
173 	el3_state_t *state;
174 
175 	state = get_el3state_ctx(ctx);
176 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
177 
178 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
179 
180 	/* CSV2 version 2 and above */
181 	if (is_feat_csv2_2_supported()) {
182 		/* Enable access to the SCXTNUM_ELx registers. */
183 		scr_el3 |= SCR_EnSCXT_BIT;
184 	}
185 
186 	if (is_feat_sctlr2_supported()) {
187 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
188 		 * SCTLR2_ELx registers.
189 		 */
190 		scr_el3 |= SCR_SCTLR2En_BIT;
191 	}
192 
193 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
194 }
195 #endif /* ENABLE_RME */
196 
197 /******************************************************************************
198  * This function performs initializations that are specific to NON-SECURE state
199  * and updates the cpu context specified by 'ctx'.
200  *****************************************************************************/
201 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
202 {
203 	u_register_t scr_el3;
204 	el3_state_t *state;
205 
206 	state = get_el3state_ctx(ctx);
207 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
208 
209 	/* SCR_NS: Set the NS bit */
210 	scr_el3 |= SCR_NS_BIT;
211 
212 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
213 	if (is_feat_mte2_supported()) {
214 		scr_el3 |= SCR_ATA_BIT;
215 	}
216 
217 #if !CTX_INCLUDE_PAUTH_REGS
218 	/*
219 	 * Pointer Authentication feature, if present, is always enabled by default
220 	 * for Non secure lower exception levels. We do not have an explicit
221 	 * flag to set it.
222 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
223 	 * exception levels of secure and realm worlds.
224 	 *
225 	 * To prevent the leakage between the worlds during world switch,
226 	 * we enable it only for the non-secure world.
227 	 *
228 	 * If the Secure/realm world wants to use pointer authentication,
229 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
230 	 * it will be enabled globally for all the contexts.
231 	 *
232 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
233 	 *  other than EL3
234 	 *
235 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
236 	 *  than EL3
237 	 */
238 	if (is_armv8_3_pauth_present()) {
239 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
240 	}
241 #endif /* CTX_INCLUDE_PAUTH_REGS */
242 
243 #if HANDLE_EA_EL3_FIRST_NS
244 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
245 	scr_el3 |= SCR_EA_BIT;
246 #endif
247 
248 #if RAS_TRAP_NS_ERR_REC_ACCESS
249 	/*
250 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
251 	 * and RAS ERX registers from EL1 and EL2(from any security state)
252 	 * are trapped to EL3.
253 	 * Set here to trap only for NS EL1/EL2
254 	 */
255 	scr_el3 |= SCR_TERR_BIT;
256 #endif
257 
258 	/* CSV2 version 2 and above */
259 	if (is_feat_csv2_2_supported()) {
260 		/* Enable access to the SCXTNUM_ELx registers. */
261 		scr_el3 |= SCR_EnSCXT_BIT;
262 	}
263 
264 #ifdef IMAGE_BL31
265 	/*
266 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
267 	 *  indicated by the interrupt routing model for BL31.
268 	 */
269 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
270 #endif
271 
272 	if (is_feat_the_supported()) {
273 		/* Set the RCWMASKEn bit in SCR_EL3 to enable access to
274 		 * RCWMASK_EL1 and RCWSMASK_EL1 registers.
275 		 */
276 		scr_el3 |= SCR_RCWMASKEn_BIT;
277 	}
278 
279 	if (is_feat_sctlr2_supported()) {
280 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
281 		 * SCTLR2_ELx registers.
282 		 */
283 		scr_el3 |= SCR_SCTLR2En_BIT;
284 	}
285 
286 	if (is_feat_d128_supported()) {
287 		/* Set the D128En bit in SCR_EL3 to enable access to 128-bit
288 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
289 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
290 		 */
291 		scr_el3 |= SCR_D128En_BIT;
292 	}
293 
294 	if (is_feat_fpmr_supported()) {
295 		/* Set the EnFPM bit in SCR_EL3 to enable access to FPMR
296 		 * register.
297 		 */
298 		scr_el3 |= SCR_EnFPM_BIT;
299 	}
300 
301 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
302 
303 	/* Initialize EL2 context registers */
304 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
305 
306 	/*
307 	 * Initialize SCTLR_EL2 context register with reset value.
308 	 */
309 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
310 
311 	if (is_feat_hcx_supported()) {
312 		/*
313 		 * Initialize register HCRX_EL2 with its init value.
314 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
315 		 * chance that this can lead to unexpected behavior in lower
316 		 * ELs that have not been updated since the introduction of
317 		 * this feature if not properly initialized, especially when
318 		 * it comes to those bits that enable/disable traps.
319 		 */
320 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
321 			HCRX_EL2_INIT_VAL);
322 	}
323 
324 	if (is_feat_fgt_supported()) {
325 		/*
326 		 * Initialize HFG*_EL2 registers with a default value so legacy
327 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
328 		 * of initialization for this feature.
329 		 */
330 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
331 			HFGITR_EL2_INIT_VAL);
332 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
333 			HFGRTR_EL2_INIT_VAL);
334 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
335 			HFGWTR_EL2_INIT_VAL);
336 	}
337 #else
338 	/* Initialize EL1 context registers */
339 	setup_el1_context(ctx, ep);
340 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
341 
342 	manage_extensions_nonsecure(ctx);
343 }
344 
345 /*******************************************************************************
346  * The following function performs initialization of the cpu_context 'ctx'
347  * for first use that is common to all security states, and sets the
348  * initial entrypoint state as specified by the entry_point_info structure.
349  *
350  * The EE and ST attributes are used to configure the endianness and secure
351  * timer availability for the new execution context.
352  ******************************************************************************/
353 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
354 {
355 	u_register_t scr_el3;
356 	u_register_t mdcr_el3;
357 	el3_state_t *state;
358 	gp_regs_t *gp_regs;
359 
360 	state = get_el3state_ctx(ctx);
361 
362 	/* Clear any residual register values from the context */
363 	zeromem(ctx, sizeof(*ctx));
364 
365 	/*
366 	 * The lower-EL context is zeroed so that no stale values leak to a world.
367 	 * It is assumed that an all-zero lower-EL context is good enough for it
368 	 * to boot correctly. However, there are very few registers where this
369 	 * is not true and some values need to be recreated.
370 	 */
371 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
372 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
373 
374 	/*
375 	 * These bits are set in the gicv3 driver. Losing them (especially the
376 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
377 	 */
378 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
379 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
380 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
381 
382 	/*
383 	 * The actlr_el2 register can be initialized in platform's reset handler
384 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
385 	 */
386 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
387 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
388 
389 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
390 	scr_el3 = SCR_RESET_VAL;
391 
392 	/*
393 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
394 	 *  EL2, EL1 and EL0 are not trapped to EL3.
395 	 *
396 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
397 	 *  EL2, EL1 and EL0 are not trapped to EL3.
398 	 *
399 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
400 	 *  both Security states and both Execution states.
401 	 *
402 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
403 	 *  Non-secure memory.
404 	 */
405 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
406 
407 	scr_el3 |= SCR_SIF_BIT;
408 
409 	/*
410 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
411 	 *  Exception level as specified by SPSR.
412 	 */
413 	if (GET_RW(ep->spsr) == MODE_RW_64) {
414 		scr_el3 |= SCR_RW_BIT;
415 	}
416 
417 	/*
418 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
419 	 * Secure timer registers to EL3, from AArch64 state only, if specified
420 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
421 	 * bit always behaves as 1 (i.e. secure physical timer register access
422 	 * is not trapped)
423 	 */
424 	if (EP_GET_ST(ep->h.attr) != 0U) {
425 		scr_el3 |= SCR_ST_BIT;
426 	}
427 
428 	/*
429 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
430 	 * SCR_EL3.HXEn.
431 	 */
432 	if (is_feat_hcx_supported()) {
433 		scr_el3 |= SCR_HXEn_BIT;
434 	}
435 
436 	/*
437 	 * If FEAT_LS64_ACCDATA is enabled, enable access to ACCDATA_EL1 by
438 	 * setting SCR_EL3.ADEn and allow the ST64BV0 instruction by setting
439 	 * SCR_EL3.EnAS0.
440 	 */
441 	if (is_feat_ls64_accdata_supported()) {
442 		scr_el3 |= SCR_ADEn_BIT | SCR_EnAS0_BIT;
443 	}
444 
445 	/*
446 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
447 	 * registers are trapped to EL3.
448 	 */
449 	if (is_feat_rng_trap_supported()) {
450 		scr_el3 |= SCR_TRNDR_BIT;
451 	}
452 
453 #if FAULT_INJECTION_SUPPORT
454 	/* Enable fault injection from lower ELs */
455 	scr_el3 |= SCR_FIEN_BIT;
456 #endif
457 
458 #if CTX_INCLUDE_PAUTH_REGS
459 	/*
460 	 * Enable Pointer Authentication globally for all the worlds.
461 	 *
462 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
463 	 *  other than EL3
464 	 *
465 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
466 	 *  than EL3
467 	 */
468 	if (is_armv8_3_pauth_present()) {
469 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
470 	}
471 #endif /* CTX_INCLUDE_PAUTH_REGS */
472 
473 	/*
474 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
475 	 */
476 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
477 		scr_el3 |= SCR_TCR2EN_BIT;
478 	}
479 
480 	/*
481 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
482 	 * registers for AArch64 if present.
483 	 */
484 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
485 		scr_el3 |= SCR_PIEN_BIT;
486 	}
487 
488 	/*
489 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
490 	 */
491 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
492 		scr_el3 |= SCR_GCSEn_BIT;
493 	}
494 
495 	/*
496 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
497 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
498 	 * next mode is Hyp.
499 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
500 	 * same conditions as HVC instructions and when the processor supports
501 	 * ARMv8.6-FGT.
502 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
503 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
504 	 * and when the processor supports ECV.
505 	 */
506 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
507 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
508 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
509 		scr_el3 |= SCR_HCE_BIT;
510 
511 		if (is_feat_fgt_supported()) {
512 			scr_el3 |= SCR_FGTEN_BIT;
513 		}
514 
515 		if (is_feat_ecv_supported()) {
516 			scr_el3 |= SCR_ECVEN_BIT;
517 		}
518 	}
519 
520 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
521 	if (is_feat_twed_supported()) {
522 		/* Set delay in SCR_EL3 */
523 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
524 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
525 				<< SCR_TWEDEL_SHIFT);
526 
527 		/* Enable WFE delay */
528 		scr_el3 |= SCR_TWEDEn_BIT;
529 	}
530 
531 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
532 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
533 	if (is_feat_sel2_supported()) {
534 		scr_el3 |= SCR_EEL2_BIT;
535 	}
536 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
537 
538 	/*
539 	 * Populate EL3 state so that we've the right context
540 	 * before doing ERET
541 	 */
542 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
543 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
544 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
545 
546 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
547 	mdcr_el3 = MDCR_EL3_RESET_VAL;
548 
549 	/* ---------------------------------------------------------------------
550 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
551 	 * Some fields are architecturally UNKNOWN on reset.
552 	 *
553 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
554 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
555 	 *  disabled from all ELs in Secure state.
556 	 *
557 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
558 	 *  privileged debug from S-EL1.
559 	 *
560 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
561 	 *  access to the powerdown debug registers do not trap to EL3.
562 	 *
563 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
564 	 *  debug registers, other than those registers that are controlled by
565 	 *  MDCR_EL3.TDOSA.
566 	 */
567 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
568 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
569 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
570 
571 #if IMAGE_BL31
572 	/* Enable FEAT_TRF for Non-Secure and prohibit for Secure state. */
573 	if (is_feat_trf_supported()) {
574 		trf_enable(ctx);
575 	}
576 
577 	pmuv3_enable(ctx);
578 #endif /* IMAGE_BL31 */
579 
580 	/*
581 	 * Store the X0-X7 value from the entrypoint into the context
582 	 * Use memcpy as we are in control of the layout of the structures
583 	 */
584 	gp_regs = get_gpregs_ctx(ctx);
585 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
586 }
587 
588 /*******************************************************************************
589  * Context management library initialization routine. This library is used by
590  * runtime services to share pointers to 'cpu_context' structures for secure
591  * non-secure and realm states. Management of the structures and their associated
592  * memory is not done by the context management library e.g. the PSCI service
593  * manages the cpu context used for entry from and exit to the non-secure state.
594  * The Secure payload dispatcher service manages the context(s) corresponding to
595  * the secure state. It also uses this library to get access to the non-secure
596  * state cpu context pointers.
597  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
598  * which will be used for programming an entry into a lower EL. The same context
599  * will be used to save state upon exception entry from that EL.
600  ******************************************************************************/
601 void __init cm_init(void)
602 {
603 	/*
604 	 * The context management library has only global data to initialize, but
605 	 * that will be done when the BSS is zeroed out.
606 	 */
607 }
608 
609 /*******************************************************************************
610  * This is the high-level function used to initialize the cpu_context 'ctx' for
611  * first use. It performs initializations that are common to all security states
612  * and initializations specific to the security state specified in 'ep'
613  ******************************************************************************/
614 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
615 {
616 	unsigned int security_state;
617 
618 	assert(ctx != NULL);
619 
620 	/*
621 	 * Perform initializations that are common
622 	 * to all security states
623 	 */
624 	setup_context_common(ctx, ep);
625 
626 	security_state = GET_SECURITY_STATE(ep->h.attr);
627 
628 	/* Perform security state specific initializations */
629 	switch (security_state) {
630 	case SECURE:
631 		setup_secure_context(ctx, ep);
632 		break;
633 #if ENABLE_RME
634 	case REALM:
635 		setup_realm_context(ctx, ep);
636 		break;
637 #endif
638 	case NON_SECURE:
639 		setup_ns_context(ctx, ep);
640 		break;
641 	default:
642 		ERROR("Invalid security state\n");
643 		panic();
644 		break;
645 	}
646 }
647 
648 /*******************************************************************************
649  * Enable architecture extensions for EL3 execution. This function only updates
650  * registers in-place which are expected to either never change or be
651  * overwritten by el3_exit.
652  ******************************************************************************/
653 #if IMAGE_BL31
654 void cm_manage_extensions_el3(void)
655 {
656 	if (is_feat_amu_supported()) {
657 		amu_init_el3();
658 	}
659 
660 	if (is_feat_sme_supported()) {
661 		sme_init_el3();
662 	}
663 
664 	pmuv3_init_el3();
665 }
666 #endif /* IMAGE_BL31 */
667 
668 /******************************************************************************
669  * Function to initialise the registers with the RESET values in the context
670  * memory, which are maintained per world.
671  ******************************************************************************/
672 #if IMAGE_BL31
673 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
674 {
675 	/*
676 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
677 	 *
678 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
679 	 *  by Advanced SIMD, floating-point or SVE instructions (if
680 	 *  implemented) do not trap to EL3.
681 	 *
682 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
683 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
684 	 */
685 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
686 
687 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
688 
689 	/*
690 	 * Initialize MPAM3_EL3 to its default reset value
691 	 *
692 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
693 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
694 	 */
695 
696 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
697 }
698 #endif /* IMAGE_BL31 */
699 
700 /*******************************************************************************
701  * Initialise per_world_context for Non-Secure world.
702  * This function enables the architecture extensions, which have same value
703  * across the cores for the non-secure world.
704  ******************************************************************************/
705 #if IMAGE_BL31
706 void manage_extensions_nonsecure_per_world(void)
707 {
708 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
709 
710 	if (is_feat_sme_supported()) {
711 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
712 	}
713 
714 	if (is_feat_sve_supported()) {
715 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
716 	}
717 
718 	if (is_feat_amu_supported()) {
719 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
720 	}
721 
722 	if (is_feat_sys_reg_trace_supported()) {
723 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
724 	}
725 
726 	if (is_feat_mpam_supported()) {
727 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
728 	}
729 
730 	if (is_feat_fpmr_supported()) {
731 		fpmr_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
732 	}
733 }
734 #endif /* IMAGE_BL31 */
735 
736 /*******************************************************************************
737  * Initialise per_world_context for Secure world.
738  * This function enables the architecture extensions, which have same value
739  * across the cores for the secure world.
740  ******************************************************************************/
741 static void manage_extensions_secure_per_world(void)
742 {
743 #if IMAGE_BL31
744 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
745 
746 	if (is_feat_sme_supported()) {
747 
748 		if (ENABLE_SME_FOR_SWD) {
749 		/*
750 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
751 		 * SME, SVE, and FPU/SIMD context properly managed.
752 		 */
753 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
754 		} else {
755 		/*
756 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
757 		 * world can safely use the associated registers.
758 		 */
759 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
760 		}
761 	}
762 	if (is_feat_sve_supported()) {
763 		if (ENABLE_SVE_FOR_SWD) {
764 		/*
765 		 * Enable SVE and FPU in secure context, SPM must ensure
766 		 * that the SVE and FPU register contexts are properly managed.
767 		 */
768 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
769 		} else {
770 		/*
771 		 * Disable SVE and FPU in secure context so non-secure world
772 		 * can safely use them.
773 		 */
774 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
775 		}
776 	}
777 
778 	/* NS can access this but Secure shouldn't */
779 	if (is_feat_sys_reg_trace_supported()) {
780 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
781 	}
782 
783 	has_secure_perworld_init = true;
784 #endif /* IMAGE_BL31 */
785 }
786 
787 /*******************************************************************************
788  * Enable architecture extensions on first entry to Non-secure world.
789  ******************************************************************************/
790 static void manage_extensions_nonsecure(cpu_context_t *ctx)
791 {
792 #if IMAGE_BL31
793 	if (is_feat_amu_supported()) {
794 		amu_enable(ctx);
795 	}
796 
797 	if (is_feat_sme_supported()) {
798 		sme_enable(ctx);
799 	}
800 
801 	if (is_feat_fgt2_supported()) {
802 		fgt2_enable(ctx);
803 	}
804 
805 	if (is_feat_debugv8p9_supported()) {
806 		debugv8p9_extended_bp_wp_enable(ctx);
807 	}
808 
809 	/*
810 	 * SPE, TRBE, and BRBE have multi-field enables that affect which world
811 	 * they apply to. Despite this, it is useful to ignore these for
812 	 * simplicity in determining the feature's per world enablement status.
813 	 * This is only possible when context is written per-world. Relied on
814 	 * by SMCCC_ARCH_FEATURE_AVAILABILITY
815 	 */
816 	if (is_feat_spe_supported()) {
817 		spe_enable(ctx);
818 	}
819 
820 	if (is_feat_trbe_supported()) {
821 		trbe_enable(ctx);
822 	}
823 
824 	if (is_feat_brbe_supported()) {
825 		brbe_enable(ctx);
826 	}
827 #endif /* IMAGE_BL31 */
828 }
829 
830 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
831 static __unused void enable_pauth_el2(void)
832 {
833 	u_register_t hcr_el2 = read_hcr_el2();
834 	/*
835 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
836 	 *  accessing key registers or using pointer authentication instructions
837 	 *  from lower ELs.
838 	 */
839 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
840 
841 	write_hcr_el2(hcr_el2);
842 }
843 
844 #if INIT_UNUSED_NS_EL2
845 /*******************************************************************************
846  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
847  * world when EL2 is empty and unused.
848  ******************************************************************************/
849 static void manage_extensions_nonsecure_el2_unused(void)
850 {
851 #if IMAGE_BL31
852 	if (is_feat_spe_supported()) {
853 		spe_init_el2_unused();
854 	}
855 
856 	if (is_feat_amu_supported()) {
857 		amu_init_el2_unused();
858 	}
859 
860 	if (is_feat_mpam_supported()) {
861 		mpam_init_el2_unused();
862 	}
863 
864 	if (is_feat_trbe_supported()) {
865 		trbe_init_el2_unused();
866 	}
867 
868 	if (is_feat_sys_reg_trace_supported()) {
869 		sys_reg_trace_init_el2_unused();
870 	}
871 
872 	if (is_feat_trf_supported()) {
873 		trf_init_el2_unused();
874 	}
875 
876 	pmuv3_init_el2_unused();
877 
878 	if (is_feat_sve_supported()) {
879 		sve_init_el2_unused();
880 	}
881 
882 	if (is_feat_sme_supported()) {
883 		sme_init_el2_unused();
884 	}
885 
886 	if (is_feat_mops_supported()) {
887 		write_hcrx_el2(read_hcrx_el2() | HCRX_EL2_MSCEn_BIT);
888 	}
889 
890 #if ENABLE_PAUTH
891 	enable_pauth_el2();
892 #endif /* ENABLE_PAUTH */
893 #endif /* IMAGE_BL31 */
894 }
895 #endif /* INIT_UNUSED_NS_EL2 */
896 
897 /*******************************************************************************
898  * Enable architecture extensions on first entry to Secure world.
899  ******************************************************************************/
900 static void manage_extensions_secure(cpu_context_t *ctx)
901 {
902 #if IMAGE_BL31
903 	if (is_feat_sme_supported()) {
904 		if (ENABLE_SME_FOR_SWD) {
905 		/*
906 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
907 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
908 		 */
909 			sme_init_el3();
910 			sme_enable(ctx);
911 		} else {
912 		/*
913 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
914 		 * world can safely use the associated registers.
915 		 */
916 			sme_disable(ctx);
917 		}
918 	}
919 
920 	/*
921 	 * SPE and TRBE cannot be fully disabled from EL3 registers alone, only
922 	 * sysreg access can. In case the EL1 controls leave them active on
923 	 * context switch, we want the owning security state to be NS so Secure
924 	 * can't be DOSed.
925 	 */
926 	if (is_feat_spe_supported()) {
927 		spe_disable(ctx);
928 	}
929 
930 	if (is_feat_trbe_supported()) {
931 		trbe_disable(ctx);
932 	}
933 #endif /* IMAGE_BL31 */
934 }
935 
936 #if !IMAGE_BL1
937 /*******************************************************************************
938  * The following function initializes the cpu_context for a CPU specified by
939  * its `cpu_idx` for first use, and sets the initial entrypoint state as
940  * specified by the entry_point_info structure.
941  ******************************************************************************/
942 void cm_init_context_by_index(unsigned int cpu_idx,
943 			      const entry_point_info_t *ep)
944 {
945 	cpu_context_t *ctx;
946 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
947 	cm_setup_context(ctx, ep);
948 }
949 #endif /* !IMAGE_BL1 */
950 
951 /*******************************************************************************
952  * The following function initializes the cpu_context for the current CPU
953  * for first use, and sets the initial entrypoint state as specified by the
954  * entry_point_info structure.
955  ******************************************************************************/
956 void cm_init_my_context(const entry_point_info_t *ep)
957 {
958 	cpu_context_t *ctx;
959 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
960 	cm_setup_context(ctx, ep);
961 }
962 
963 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
964 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
965 {
966 #if INIT_UNUSED_NS_EL2
967 	u_register_t hcr_el2 = HCR_RESET_VAL;
968 	u_register_t mdcr_el2;
969 	u_register_t scr_el3;
970 
971 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
972 
973 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
974 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
975 		hcr_el2 |= HCR_RW_BIT;
976 	}
977 
978 	write_hcr_el2(hcr_el2);
979 
980 	/*
981 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
982 	 * All fields have architecturally UNKNOWN reset values.
983 	 */
984 	write_cptr_el2(CPTR_EL2_RESET_VAL);
985 
986 	/*
987 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
988 	 * reset and are set to zero except for field(s) listed below.
989 	 *
990 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
991 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
992 	 *
993 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
994 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
995 	 */
996 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
997 
998 	/*
999 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
1000 	 * UNKNOWN value.
1001 	 */
1002 	write_cntvoff_el2(0);
1003 
1004 	/*
1005 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
1006 	 * respectively.
1007 	 */
1008 	write_vpidr_el2(read_midr_el1());
1009 	write_vmpidr_el2(read_mpidr_el1());
1010 
1011 	/*
1012 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
1013 	 *
1014 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
1015 	 * translation is disabled, cache maintenance operations depend on the
1016 	 * VMID.
1017 	 *
1018 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
1019 	 * disabled.
1020 	 */
1021 	write_vttbr_el2(VTTBR_RESET_VAL &
1022 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
1023 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
1024 
1025 	/*
1026 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
1027 	 * Some fields are architecturally UNKNOWN on reset.
1028 	 *
1029 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
1030 	 * register accesses to the Debug ROM registers are not trapped to EL2.
1031 	 *
1032 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
1033 	 * accesses to the powerdown debug registers are not trapped to EL2.
1034 	 *
1035 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
1036 	 * debug registers do not trap to EL2.
1037 	 *
1038 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
1039 	 * EL2.
1040 	 */
1041 	mdcr_el2 = MDCR_EL2_RESET_VAL &
1042 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
1043 		   MDCR_EL2_TDE_BIT);
1044 
1045 	write_mdcr_el2(mdcr_el2);
1046 
1047 	/*
1048 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
1049 	 *
1050 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
1051 	 * EL1 accesses to System registers do not trap to EL2.
1052 	 */
1053 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
1054 
1055 	/*
1056 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
1057 	 * reset.
1058 	 *
1059 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1060 	 * and prevent timer interrupts.
1061 	 */
1062 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1063 
1064 	manage_extensions_nonsecure_el2_unused();
1065 #endif /* INIT_UNUSED_NS_EL2 */
1066 }
1067 
1068 /*******************************************************************************
1069  * Prepare the CPU system registers for first entry into realm, secure, or
1070  * normal world.
1071  *
1072  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1073  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1074  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1075  * For all entries, the EL1 registers are initialized from the cpu_context
1076  ******************************************************************************/
1077 void cm_prepare_el3_exit(uint32_t security_state)
1078 {
1079 	u_register_t sctlr_el2, scr_el3;
1080 	cpu_context_t *ctx = cm_get_context(security_state);
1081 
1082 	assert(ctx != NULL);
1083 
1084 	if (security_state == NON_SECURE) {
1085 		uint64_t el2_implemented = el_implemented(2);
1086 
1087 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1088 						 CTX_SCR_EL3);
1089 
1090 		if (el2_implemented != EL_IMPL_NONE) {
1091 
1092 			/*
1093 			 * If context is not being used for EL2, initialize
1094 			 * HCRX_EL2 with its init value here.
1095 			 */
1096 			if (is_feat_hcx_supported()) {
1097 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1098 			}
1099 
1100 			/*
1101 			 * Initialize Fine-grained trap registers introduced
1102 			 * by FEAT_FGT so all traps are initially disabled when
1103 			 * switching to EL2 or a lower EL, preventing undesired
1104 			 * behavior.
1105 			 */
1106 			if (is_feat_fgt_supported()) {
1107 				/*
1108 				 * Initialize HFG*_EL2 registers with a default
1109 				 * value so legacy systems unaware of FEAT_FGT
1110 				 * do not get trapped due to their lack of
1111 				 * initialization for this feature.
1112 				 */
1113 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1114 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1115 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1116 			}
1117 
1118 			/* Condition to ensure EL2 is being used. */
1119 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1120 				/* Initialize SCTLR_EL2 register with reset value. */
1121 				sctlr_el2 = SCTLR_EL2_RES1;
1122 
1123 				/*
1124 				 * If workaround of errata 764081 for Cortex-A75
1125 				 * is used then set SCTLR_EL2.IESB to enable
1126 				 * Implicit Error Synchronization Barrier.
1127 				 */
1128 				if (errata_a75_764081_applies()) {
1129 					sctlr_el2 |= SCTLR_IESB_BIT;
1130 				}
1131 
1132 				write_sctlr_el2(sctlr_el2);
1133 			} else {
1134 				/*
1135 				 * (scr_el3 & SCR_HCE_BIT==0)
1136 				 * EL2 implemented but unused.
1137 				 */
1138 				init_nonsecure_el2_unused(ctx);
1139 			}
1140 		}
1141 	}
1142 #if (!CTX_INCLUDE_EL2_REGS)
1143 	/* Restore EL1 system registers, only when CTX_INCLUDE_EL2_REGS=0 */
1144 	cm_el1_sysregs_context_restore(security_state);
1145 #endif
1146 	cm_set_next_eret_context(security_state);
1147 }
1148 
1149 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1150 
1151 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1152 {
1153 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1154 	if (is_feat_amu_supported()) {
1155 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1156 	}
1157 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1158 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1159 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1160 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1161 }
1162 
1163 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1164 {
1165 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1166 	if (is_feat_amu_supported()) {
1167 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1168 	}
1169 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1170 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1171 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1172 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1173 }
1174 
1175 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1176 {
1177 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1178 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1179 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1180 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1181 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1182 }
1183 
1184 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1185 {
1186 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1187 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1188 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1189 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1190 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1191 }
1192 
1193 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1194 {
1195 	u_register_t mpam_idr = read_mpamidr_el1();
1196 
1197 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1198 
1199 	/*
1200 	 * The context registers that we intend to save would be part of the
1201 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1202 	 */
1203 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1204 		return;
1205 	}
1206 
1207 	/*
1208 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1209 	 * MPAMIDR_HAS_HCR_BIT == 1.
1210 	 */
1211 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1212 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1213 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1214 
1215 	/*
1216 	 * The number of MPAMVPM registers is implementation defined, their
1217 	 * number is stored in the MPAMIDR_EL1 register.
1218 	 */
1219 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1220 	case 7:
1221 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1222 		__fallthrough;
1223 	case 6:
1224 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1225 		__fallthrough;
1226 	case 5:
1227 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1228 		__fallthrough;
1229 	case 4:
1230 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1231 		__fallthrough;
1232 	case 3:
1233 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1234 		__fallthrough;
1235 	case 2:
1236 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1237 		__fallthrough;
1238 	case 1:
1239 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1240 		break;
1241 	}
1242 }
1243 
1244 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1245 {
1246 	u_register_t mpam_idr = read_mpamidr_el1();
1247 
1248 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1249 
1250 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1251 		return;
1252 	}
1253 
1254 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1255 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1256 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1257 
1258 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1259 	case 7:
1260 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1261 		__fallthrough;
1262 	case 6:
1263 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1264 		__fallthrough;
1265 	case 5:
1266 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1267 		__fallthrough;
1268 	case 4:
1269 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1270 		__fallthrough;
1271 	case 3:
1272 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1273 		__fallthrough;
1274 	case 2:
1275 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1276 		__fallthrough;
1277 	case 1:
1278 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1279 		break;
1280 	}
1281 }
1282 
1283 /* ---------------------------------------------------------------------------
1284  * The following registers are not added:
1285  * ICH_AP0R<n>_EL2
1286  * ICH_AP1R<n>_EL2
1287  * ICH_LR<n>_EL2
1288  *
1289  * NOTE: For a system with S-EL2 present but not enabled, accessing
1290  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1291  * SCR_EL3.NS = 1 before accessing this register.
1292  * ---------------------------------------------------------------------------
1293  */
1294 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx, uint32_t security_state)
1295 {
1296 	u_register_t scr_el3 = read_scr_el3();
1297 
1298 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1299 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1300 #else
1301 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1302 	isb();
1303 
1304 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1305 
1306 	write_scr_el3(scr_el3);
1307 	isb();
1308 #endif
1309 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1310 
1311 	if (errata_ich_vmcr_el2_applies()) {
1312 		if (security_state == SECURE) {
1313 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1314 		} else {
1315 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1316 		}
1317 		isb();
1318 	}
1319 
1320 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1321 
1322 	if (errata_ich_vmcr_el2_applies()) {
1323 		write_scr_el3(scr_el3);
1324 		isb();
1325 	}
1326 }
1327 
1328 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx, uint32_t security_state)
1329 {
1330 	u_register_t scr_el3 = read_scr_el3();
1331 
1332 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1333 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1334 #else
1335 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1336 	isb();
1337 
1338 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1339 
1340 	write_scr_el3(scr_el3);
1341 	isb();
1342 #endif
1343 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1344 
1345 	if (errata_ich_vmcr_el2_applies()) {
1346 		if (security_state == SECURE) {
1347 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1348 		} else {
1349 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1350 		}
1351 		isb();
1352 	}
1353 
1354 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1355 
1356 	if (errata_ich_vmcr_el2_applies()) {
1357 		write_scr_el3(scr_el3);
1358 		isb();
1359 	}
1360 }
1361 
1362 /* -----------------------------------------------------
1363  * The following registers are not added:
1364  * AMEVCNTVOFF0<n>_EL2
1365  * AMEVCNTVOFF1<n>_EL2
1366  * -----------------------------------------------------
1367  */
1368 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1369 {
1370 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1371 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1372 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1373 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1374 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1375 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1376 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1377 	if (CTX_INCLUDE_AARCH32_REGS) {
1378 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1379 	}
1380 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1381 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1382 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1383 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1384 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1385 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1386 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1387 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1388 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1389 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1390 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1391 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1392 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1393 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1394 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1395 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1396 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1397 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1398 
1399 	write_el2_ctx_common_sysreg128(ctx, ttbr0_el2, read_ttbr0_el2());
1400 	write_el2_ctx_common_sysreg128(ctx, vttbr_el2, read_vttbr_el2());
1401 }
1402 
1403 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1404 {
1405 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1406 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1407 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1408 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1409 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1410 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1411 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1412 	if (CTX_INCLUDE_AARCH32_REGS) {
1413 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1414 	}
1415 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1416 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1417 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1418 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1419 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1420 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1421 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1422 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1423 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1424 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1425 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1426 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1427 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1428 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1429 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1430 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1431 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1432 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1433 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1434 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1435 }
1436 
1437 /*******************************************************************************
1438  * Save EL2 sysreg context
1439  ******************************************************************************/
1440 void cm_el2_sysregs_context_save(uint32_t security_state)
1441 {
1442 	cpu_context_t *ctx;
1443 	el2_sysregs_t *el2_sysregs_ctx;
1444 
1445 	ctx = cm_get_context(security_state);
1446 	assert(ctx != NULL);
1447 
1448 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1449 
1450 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1451 	el2_sysregs_context_save_gic(el2_sysregs_ctx, security_state);
1452 
1453 	if (is_feat_mte2_supported()) {
1454 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1455 	}
1456 
1457 	if (is_feat_mpam_supported()) {
1458 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1459 	}
1460 
1461 	if (is_feat_fgt_supported()) {
1462 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1463 	}
1464 
1465 	if (is_feat_fgt2_supported()) {
1466 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1467 	}
1468 
1469 	if (is_feat_ecv_v2_supported()) {
1470 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1471 	}
1472 
1473 	if (is_feat_vhe_supported()) {
1474 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1475 					read_contextidr_el2());
1476 		write_el2_ctx_vhe_sysreg128(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1477 	}
1478 
1479 	if (is_feat_ras_supported()) {
1480 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1481 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1482 	}
1483 
1484 	if (is_feat_nv2_supported()) {
1485 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1486 	}
1487 
1488 	if (is_feat_trf_supported()) {
1489 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1490 	}
1491 
1492 	if (is_feat_csv2_2_supported()) {
1493 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1494 					read_scxtnum_el2());
1495 	}
1496 
1497 	if (is_feat_hcx_supported()) {
1498 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1499 	}
1500 
1501 	if (is_feat_tcr2_supported()) {
1502 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1503 	}
1504 
1505 	if (is_feat_sxpie_supported()) {
1506 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1507 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1508 	}
1509 
1510 	if (is_feat_sxpoe_supported()) {
1511 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1512 	}
1513 
1514 	if (is_feat_s2pie_supported()) {
1515 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1516 	}
1517 
1518 	if (is_feat_gcs_supported()) {
1519 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1520 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1521 	}
1522 
1523 	if (is_feat_sctlr2_supported()) {
1524 		write_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2, read_sctlr2_el2());
1525 	}
1526 }
1527 
1528 /*******************************************************************************
1529  * Restore EL2 sysreg context
1530  ******************************************************************************/
1531 void cm_el2_sysregs_context_restore(uint32_t security_state)
1532 {
1533 	cpu_context_t *ctx;
1534 	el2_sysregs_t *el2_sysregs_ctx;
1535 
1536 	ctx = cm_get_context(security_state);
1537 	assert(ctx != NULL);
1538 
1539 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1540 
1541 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1542 	el2_sysregs_context_restore_gic(el2_sysregs_ctx, security_state);
1543 
1544 	if (is_feat_mte2_supported()) {
1545 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1546 	}
1547 
1548 	if (is_feat_mpam_supported()) {
1549 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1550 	}
1551 
1552 	if (is_feat_fgt_supported()) {
1553 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1554 	}
1555 
1556 	if (is_feat_fgt2_supported()) {
1557 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1558 	}
1559 
1560 	if (is_feat_ecv_v2_supported()) {
1561 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1562 	}
1563 
1564 	if (is_feat_vhe_supported()) {
1565 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1566 					contextidr_el2));
1567 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1568 	}
1569 
1570 	if (is_feat_ras_supported()) {
1571 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1572 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1573 	}
1574 
1575 	if (is_feat_nv2_supported()) {
1576 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1577 	}
1578 
1579 	if (is_feat_trf_supported()) {
1580 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1581 	}
1582 
1583 	if (is_feat_csv2_2_supported()) {
1584 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1585 					scxtnum_el2));
1586 	}
1587 
1588 	if (is_feat_hcx_supported()) {
1589 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1590 	}
1591 
1592 	if (is_feat_tcr2_supported()) {
1593 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1594 	}
1595 
1596 	if (is_feat_sxpie_supported()) {
1597 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1598 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1599 	}
1600 
1601 	if (is_feat_sxpoe_supported()) {
1602 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1603 	}
1604 
1605 	if (is_feat_s2pie_supported()) {
1606 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1607 	}
1608 
1609 	if (is_feat_gcs_supported()) {
1610 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1611 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1612 	}
1613 
1614 	if (is_feat_sctlr2_supported()) {
1615 		write_sctlr2_el2(read_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2));
1616 	}
1617 }
1618 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1619 
1620 #if IMAGE_BL31
1621 /*********************************************************************************
1622 * This function allows Architecture features asymmetry among cores.
1623 * TF-A assumes that all the cores in the platform has architecture feature parity
1624 * and hence the context is setup on different core (e.g. primary sets up the
1625 * context for secondary cores).This assumption may not be true for systems where
1626 * cores are not conforming to same Arch version or there is CPU Erratum which
1627 * requires certain feature to be be disabled only on a given core.
1628 *
1629 * This function is called on secondary cores to override any disparity in context
1630 * setup by primary, this would be called during warmboot path.
1631 *********************************************************************************/
1632 void cm_handle_asymmetric_features(void)
1633 {
1634 	cpu_context_t *ctx __maybe_unused = cm_get_context(NON_SECURE);
1635 
1636 	assert(ctx != NULL);
1637 
1638 #if ENABLE_SPE_FOR_NS == FEAT_STATE_CHECK_ASYMMETRIC
1639 	if (is_feat_spe_supported()) {
1640 		spe_enable(ctx);
1641 	} else {
1642 		spe_disable(ctx);
1643 	}
1644 #endif
1645 
1646 #if ERRATA_A520_2938996 || ERRATA_X4_2726228
1647 	if (check_if_affected_core() == ERRATA_APPLIES) {
1648 		if (is_feat_trbe_supported()) {
1649 			trbe_disable(ctx);
1650 		}
1651 	}
1652 #endif
1653 
1654 #if ENABLE_FEAT_TCR2 == FEAT_STATE_CHECK_ASYMMETRIC
1655 	el3_state_t *el3_state = get_el3state_ctx(ctx);
1656 	u_register_t spsr = read_ctx_reg(el3_state, CTX_SPSR_EL3);
1657 
1658 	if (is_feat_tcr2_supported() && (GET_RW(spsr) == MODE_RW_64)) {
1659 		tcr2_enable(ctx);
1660 	} else {
1661 		tcr2_disable(ctx);
1662 	}
1663 #endif
1664 
1665 }
1666 #endif
1667 
1668 /*******************************************************************************
1669  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1670  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1671  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1672  * cm_prepare_el3_exit function.
1673  ******************************************************************************/
1674 void cm_prepare_el3_exit_ns(void)
1675 {
1676 #if IMAGE_BL31
1677 	/*
1678 	 * Check and handle Architecture feature asymmetry among cores.
1679 	 *
1680 	 * In warmboot path secondary cores context is initialized on core which
1681 	 * did CPU_ON SMC call, if there is feature asymmetry in these cores handle
1682 	 * it in this function call.
1683 	 * For Symmetric cores this is an empty function.
1684 	 */
1685 	cm_handle_asymmetric_features();
1686 #endif
1687 
1688 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1689 #if ENABLE_ASSERTIONS
1690 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1691 	assert(ctx != NULL);
1692 
1693 	/* Assert that EL2 is used. */
1694 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1695 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1696 			(el_implemented(2U) != EL_IMPL_NONE));
1697 #endif /* ENABLE_ASSERTIONS */
1698 
1699 	/* Restore EL2 sysreg contexts */
1700 	cm_el2_sysregs_context_restore(NON_SECURE);
1701 	cm_set_next_eret_context(NON_SECURE);
1702 #else
1703 	cm_prepare_el3_exit(NON_SECURE);
1704 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1705 }
1706 
1707 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
1708 /*******************************************************************************
1709  * The next set of six functions are used by runtime services to save and restore
1710  * EL1 context on the 'cpu_context' structure for the specified security state.
1711  ******************************************************************************/
1712 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1713 {
1714 	write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1());
1715 	write_el1_ctx_common(ctx, elr_el1, read_elr_el1());
1716 
1717 #if (!ERRATA_SPECULATIVE_AT)
1718 	write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1());
1719 	write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1());
1720 #endif /* (!ERRATA_SPECULATIVE_AT) */
1721 
1722 	write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1());
1723 	write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1());
1724 	write_el1_ctx_common(ctx, sp_el1, read_sp_el1());
1725 	write_el1_ctx_common(ctx, esr_el1, read_esr_el1());
1726 	write_el1_ctx_common(ctx, mair_el1, read_mair_el1());
1727 	write_el1_ctx_common(ctx, amair_el1, read_amair_el1());
1728 	write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1());
1729 	write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1());
1730 	write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0());
1731 	write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0());
1732 	write_el1_ctx_common(ctx, far_el1, read_far_el1());
1733 	write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1());
1734 	write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1());
1735 	write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1());
1736 	write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1());
1737 	write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1());
1738 	write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1());
1739 
1740 	write_el1_ctx_common_sysreg128(ctx, par_el1, read_par_el1());
1741 	write_el1_ctx_common_sysreg128(ctx, ttbr0_el1, read_ttbr0_el1());
1742 	write_el1_ctx_common_sysreg128(ctx, ttbr1_el1, read_ttbr1_el1());
1743 
1744 	if (CTX_INCLUDE_AARCH32_REGS) {
1745 		/* Save Aarch32 registers */
1746 		write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt());
1747 		write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und());
1748 		write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq());
1749 		write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq());
1750 		write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2());
1751 		write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2());
1752 	}
1753 
1754 	if (NS_TIMER_SWITCH) {
1755 		/* Save NS Timer registers */
1756 		write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0());
1757 		write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0());
1758 		write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0());
1759 		write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0());
1760 		write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1());
1761 	}
1762 
1763 	if (is_feat_mte2_supported()) {
1764 		write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1());
1765 		write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1());
1766 		write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1());
1767 		write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1());
1768 	}
1769 
1770 	if (is_feat_ras_supported()) {
1771 		write_el1_ctx_ras(ctx, disr_el1, read_disr_el1());
1772 	}
1773 
1774 	if (is_feat_s1pie_supported()) {
1775 		write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1());
1776 		write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1());
1777 	}
1778 
1779 	if (is_feat_s1poe_supported()) {
1780 		write_el1_ctx_s1poe(ctx, por_el1, read_por_el1());
1781 	}
1782 
1783 	if (is_feat_s2poe_supported()) {
1784 		write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1());
1785 	}
1786 
1787 	if (is_feat_tcr2_supported()) {
1788 		write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1());
1789 	}
1790 
1791 	if (is_feat_trf_supported()) {
1792 		write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1());
1793 	}
1794 
1795 	if (is_feat_csv2_2_supported()) {
1796 		write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0());
1797 		write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1());
1798 	}
1799 
1800 	if (is_feat_gcs_supported()) {
1801 		write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1());
1802 		write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1());
1803 		write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1());
1804 		write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0());
1805 	}
1806 
1807 	if (is_feat_the_supported()) {
1808 		write_el1_ctx_the_sysreg128(ctx, rcwmask_el1, read_rcwmask_el1());
1809 		write_el1_ctx_the_sysreg128(ctx, rcwsmask_el1, read_rcwsmask_el1());
1810 	}
1811 
1812 	if (is_feat_sctlr2_supported()) {
1813 		write_el1_ctx_sctlr2(ctx, sctlr2_el1, read_sctlr2_el1());
1814 	}
1815 
1816 	if (is_feat_ls64_accdata_supported()) {
1817 		write_el1_ctx_ls64(ctx, accdata_el1, read_accdata_el1());
1818 	}
1819 }
1820 
1821 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1822 {
1823 	write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1));
1824 	write_elr_el1(read_el1_ctx_common(ctx, elr_el1));
1825 
1826 #if (!ERRATA_SPECULATIVE_AT)
1827 	write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1));
1828 	write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1));
1829 #endif /* (!ERRATA_SPECULATIVE_AT) */
1830 
1831 	write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1));
1832 	write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1));
1833 	write_sp_el1(read_el1_ctx_common(ctx, sp_el1));
1834 	write_esr_el1(read_el1_ctx_common(ctx, esr_el1));
1835 	write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1));
1836 	write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1));
1837 	write_mair_el1(read_el1_ctx_common(ctx, mair_el1));
1838 	write_amair_el1(read_el1_ctx_common(ctx, amair_el1));
1839 	write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1));
1840 	write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1));
1841 	write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0));
1842 	write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0));
1843 	write_par_el1(read_el1_ctx_common(ctx, par_el1));
1844 	write_far_el1(read_el1_ctx_common(ctx, far_el1));
1845 	write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1));
1846 	write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1));
1847 	write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1));
1848 	write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1));
1849 	write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1));
1850 	write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1));
1851 
1852 	if (CTX_INCLUDE_AARCH32_REGS) {
1853 		/* Restore Aarch32 registers */
1854 		write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt));
1855 		write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und));
1856 		write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq));
1857 		write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq));
1858 		write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2));
1859 		write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2));
1860 	}
1861 
1862 	if (NS_TIMER_SWITCH) {
1863 		/* Restore NS Timer registers */
1864 		write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0));
1865 		write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0));
1866 		write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0));
1867 		write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0));
1868 		write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1));
1869 	}
1870 
1871 	if (is_feat_mte2_supported()) {
1872 		write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1));
1873 		write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1));
1874 		write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1));
1875 		write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1));
1876 	}
1877 
1878 	if (is_feat_ras_supported()) {
1879 		write_disr_el1(read_el1_ctx_ras(ctx, disr_el1));
1880 	}
1881 
1882 	if (is_feat_s1pie_supported()) {
1883 		write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1));
1884 		write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1));
1885 	}
1886 
1887 	if (is_feat_s1poe_supported()) {
1888 		write_por_el1(read_el1_ctx_s1poe(ctx, por_el1));
1889 	}
1890 
1891 	if (is_feat_s2poe_supported()) {
1892 		write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1));
1893 	}
1894 
1895 	if (is_feat_tcr2_supported()) {
1896 		write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1));
1897 	}
1898 
1899 	if (is_feat_trf_supported()) {
1900 		write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1));
1901 	}
1902 
1903 	if (is_feat_csv2_2_supported()) {
1904 		write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0));
1905 		write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1));
1906 	}
1907 
1908 	if (is_feat_gcs_supported()) {
1909 		write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1));
1910 		write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1));
1911 		write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1));
1912 		write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0));
1913 	}
1914 
1915 	if (is_feat_the_supported()) {
1916 		write_rcwmask_el1(read_el1_ctx_the(ctx, rcwmask_el1));
1917 		write_rcwsmask_el1(read_el1_ctx_the(ctx, rcwsmask_el1));
1918 	}
1919 
1920 	if (is_feat_sctlr2_supported()) {
1921 		write_sctlr2_el1(read_el1_ctx_sctlr2(ctx, sctlr2_el1));
1922 	}
1923 
1924 	if (is_feat_ls64_accdata_supported()) {
1925 		write_accdata_el1(read_el1_ctx_ls64(ctx, accdata_el1));
1926 	}
1927 }
1928 
1929 /*******************************************************************************
1930  * The next couple of functions are used by runtime services to save and restore
1931  * EL1 context on the 'cpu_context' structure for the specified security state.
1932  ******************************************************************************/
1933 void cm_el1_sysregs_context_save(uint32_t security_state)
1934 {
1935 	cpu_context_t *ctx;
1936 
1937 	ctx = cm_get_context(security_state);
1938 	assert(ctx != NULL);
1939 
1940 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1941 
1942 #if IMAGE_BL31
1943 	if (security_state == SECURE)
1944 		PUBLISH_EVENT(cm_exited_secure_world);
1945 	else
1946 		PUBLISH_EVENT(cm_exited_normal_world);
1947 #endif
1948 }
1949 
1950 void cm_el1_sysregs_context_restore(uint32_t security_state)
1951 {
1952 	cpu_context_t *ctx;
1953 
1954 	ctx = cm_get_context(security_state);
1955 	assert(ctx != NULL);
1956 
1957 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1958 
1959 #if IMAGE_BL31
1960 	if (security_state == SECURE)
1961 		PUBLISH_EVENT(cm_entering_secure_world);
1962 	else
1963 		PUBLISH_EVENT(cm_entering_normal_world);
1964 #endif
1965 }
1966 
1967 #endif /* ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) */
1968 
1969 /*******************************************************************************
1970  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1971  * given security state with the given entrypoint
1972  ******************************************************************************/
1973 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1974 {
1975 	cpu_context_t *ctx;
1976 	el3_state_t *state;
1977 
1978 	ctx = cm_get_context(security_state);
1979 	assert(ctx != NULL);
1980 
1981 	/* Populate EL3 state so that ERET jumps to the correct entry */
1982 	state = get_el3state_ctx(ctx);
1983 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1984 }
1985 
1986 /*******************************************************************************
1987  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1988  * pertaining to the given security state
1989  ******************************************************************************/
1990 void cm_set_elr_spsr_el3(uint32_t security_state,
1991 			uintptr_t entrypoint, uint32_t spsr)
1992 {
1993 	cpu_context_t *ctx;
1994 	el3_state_t *state;
1995 
1996 	ctx = cm_get_context(security_state);
1997 	assert(ctx != NULL);
1998 
1999 	/* Populate EL3 state so that ERET jumps to the correct entry */
2000 	state = get_el3state_ctx(ctx);
2001 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
2002 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
2003 }
2004 
2005 /*******************************************************************************
2006  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
2007  * pertaining to the given security state using the value and bit position
2008  * specified in the parameters. It preserves all other bits.
2009  ******************************************************************************/
2010 void cm_write_scr_el3_bit(uint32_t security_state,
2011 			  uint32_t bit_pos,
2012 			  uint32_t value)
2013 {
2014 	cpu_context_t *ctx;
2015 	el3_state_t *state;
2016 	u_register_t scr_el3;
2017 
2018 	ctx = cm_get_context(security_state);
2019 	assert(ctx != NULL);
2020 
2021 	/* Ensure that the bit position is a valid one */
2022 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
2023 
2024 	/* Ensure that the 'value' is only a bit wide */
2025 	assert(value <= 1U);
2026 
2027 	/*
2028 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
2029 	 * and set it to its new value.
2030 	 */
2031 	state = get_el3state_ctx(ctx);
2032 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
2033 	scr_el3 &= ~(1UL << bit_pos);
2034 	scr_el3 |= (u_register_t)value << bit_pos;
2035 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
2036 }
2037 
2038 /*******************************************************************************
2039  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
2040  * given security state.
2041  ******************************************************************************/
2042 u_register_t cm_get_scr_el3(uint32_t security_state)
2043 {
2044 	cpu_context_t *ctx;
2045 	el3_state_t *state;
2046 
2047 	ctx = cm_get_context(security_state);
2048 	assert(ctx != NULL);
2049 
2050 	/* Populate EL3 state so that ERET jumps to the correct entry */
2051 	state = get_el3state_ctx(ctx);
2052 	return read_ctx_reg(state, CTX_SCR_EL3);
2053 }
2054 
2055 /*******************************************************************************
2056  * This function is used to program the context that's used for exception
2057  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
2058  * the required security state
2059  ******************************************************************************/
2060 void cm_set_next_eret_context(uint32_t security_state)
2061 {
2062 	cpu_context_t *ctx;
2063 
2064 	ctx = cm_get_context(security_state);
2065 	assert(ctx != NULL);
2066 
2067 	cm_set_next_context(ctx);
2068 }
2069