xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision cff0d54160643e0e082f7541183b3acc4c71602b)
1 /*
2  * Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/pubsub_events.h>
24 #include <lib/extensions/amu.h>
25 #include <lib/extensions/brbe.h>
26 #include <lib/extensions/mpam.h>
27 #include <lib/extensions/sme.h>
28 #include <lib/extensions/spe.h>
29 #include <lib/extensions/sve.h>
30 #include <lib/extensions/sys_reg_trace.h>
31 #include <lib/extensions/trbe.h>
32 #include <lib/extensions/trf.h>
33 #include <lib/utils.h>
34 
35 #if ENABLE_FEAT_TWED
36 /* Make sure delay value fits within the range(0-15) */
37 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
38 #endif /* ENABLE_FEAT_TWED */
39 
40 static void manage_extensions_secure(cpu_context_t *ctx);
41 
42 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
43 {
44 	u_register_t sctlr_elx, actlr_elx;
45 
46 	/*
47 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
48 	 * execution state setting all fields rather than relying on the hw.
49 	 * Some fields have architecturally UNKNOWN reset values and these are
50 	 * set to zero.
51 	 *
52 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
53 	 *
54 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
55 	 * required by PSCI specification)
56 	 */
57 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
58 	if (GET_RW(ep->spsr) == MODE_RW_64) {
59 		sctlr_elx |= SCTLR_EL1_RES1;
60 	} else {
61 		/*
62 		 * If the target execution state is AArch32 then the following
63 		 * fields need to be set.
64 		 *
65 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
66 		 *  instructions are not trapped to EL1.
67 		 *
68 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
69 		 *  instructions are not trapped to EL1.
70 		 *
71 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
72 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
73 		 */
74 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
75 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
76 	}
77 
78 #if ERRATA_A75_764081
79 	/*
80 	 * If workaround of errata 764081 for Cortex-A75 is used then set
81 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
82 	 */
83 	sctlr_elx |= SCTLR_IESB_BIT;
84 #endif
85 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
86 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
87 
88 	/*
89 	 * Base the context ACTLR_EL1 on the current value, as it is
90 	 * implementation defined. The context restore process will write
91 	 * the value from the context to the actual register and can cause
92 	 * problems for processor cores that don't expect certain bits to
93 	 * be zero.
94 	 */
95 	actlr_elx = read_actlr_el1();
96 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
97 }
98 
99 /******************************************************************************
100  * This function performs initializations that are specific to SECURE state
101  * and updates the cpu context specified by 'ctx'.
102  *****************************************************************************/
103 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
104 {
105 	u_register_t scr_el3;
106 	el3_state_t *state;
107 
108 	state = get_el3state_ctx(ctx);
109 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
110 
111 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
112 	/*
113 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
114 	 * indicated by the interrupt routing model for BL31.
115 	 */
116 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
117 #endif
118 
119 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
120 	/* Get Memory Tagging Extension support level */
121 	unsigned int mte = get_armv8_5_mte_support();
122 #endif
123 	/*
124 	 * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS
125 	 * is set, or when MTE is only implemented at EL0.
126 	 */
127 #if CTX_INCLUDE_MTE_REGS
128 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
129 	scr_el3 |= SCR_ATA_BIT;
130 #else
131 	if (mte == MTE_IMPLEMENTED_EL0) {
132 		scr_el3 |= SCR_ATA_BIT;
133 	}
134 #endif /* CTX_INCLUDE_MTE_REGS */
135 
136 	/* Enable S-EL2 if the next EL is EL2 and S-EL2 is present */
137 	if ((GET_EL(ep->spsr) == MODE_EL2) && is_feat_sel2_supported()) {
138 		if (GET_RW(ep->spsr) != MODE_RW_64) {
139 			ERROR("S-EL2 can not be used in AArch32\n.");
140 			panic();
141 		}
142 
143 		scr_el3 |= SCR_EEL2_BIT;
144 	}
145 
146 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
147 
148 	/*
149 	 * Initialize EL1 context registers unless SPMC is running
150 	 * at S-EL2.
151 	 */
152 #if !SPMD_SPM_AT_SEL2
153 	setup_el1_context(ctx, ep);
154 #endif
155 
156 	manage_extensions_secure(ctx);
157 }
158 
159 #if ENABLE_RME
160 /******************************************************************************
161  * This function performs initializations that are specific to REALM state
162  * and updates the cpu context specified by 'ctx'.
163  *****************************************************************************/
164 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
165 {
166 	u_register_t scr_el3;
167 	el3_state_t *state;
168 
169 	state = get_el3state_ctx(ctx);
170 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
171 
172 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
173 
174 	if (is_feat_csv2_2_supported()) {
175 		/* Enable access to the SCXTNUM_ELx registers. */
176 		scr_el3 |= SCR_EnSCXT_BIT;
177 	}
178 
179 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
180 }
181 #endif /* ENABLE_RME */
182 
183 /******************************************************************************
184  * This function performs initializations that are specific to NON-SECURE state
185  * and updates the cpu context specified by 'ctx'.
186  *****************************************************************************/
187 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
188 {
189 	u_register_t scr_el3;
190 	el3_state_t *state;
191 
192 	state = get_el3state_ctx(ctx);
193 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
194 
195 	/* SCR_NS: Set the NS bit */
196 	scr_el3 |= SCR_NS_BIT;
197 
198 #if !CTX_INCLUDE_PAUTH_REGS
199 	/*
200 	 * If the pointer authentication registers aren't saved during world
201 	 * switches the value of the registers can be leaked from the Secure to
202 	 * the Non-secure world. To prevent this, rather than enabling pointer
203 	 * authentication everywhere, we only enable it in the Non-secure world.
204 	 *
205 	 * If the Secure world wants to use pointer authentication,
206 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
207 	 */
208 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
209 #endif /* !CTX_INCLUDE_PAUTH_REGS */
210 
211 	/* Allow access to Allocation Tags when MTE is implemented. */
212 	scr_el3 |= SCR_ATA_BIT;
213 
214 #if HANDLE_EA_EL3_FIRST_NS
215 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
216 	scr_el3 |= SCR_EA_BIT;
217 #endif
218 
219 #if RAS_TRAP_NS_ERR_REC_ACCESS
220 	/*
221 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
222 	 * and RAS ERX registers from EL1 and EL2(from any security state)
223 	 * are trapped to EL3.
224 	 * Set here to trap only for NS EL1/EL2
225 	 *
226 	 */
227 	scr_el3 |= SCR_TERR_BIT;
228 #endif
229 
230 	if (is_feat_csv2_2_supported()) {
231 		/* Enable access to the SCXTNUM_ELx registers. */
232 		scr_el3 |= SCR_EnSCXT_BIT;
233 	}
234 
235 #ifdef IMAGE_BL31
236 	/*
237 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
238 	 *  indicated by the interrupt routing model for BL31.
239 	 */
240 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
241 #endif
242 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
243 
244 	/* Initialize EL1 context registers */
245 	setup_el1_context(ctx, ep);
246 
247 	/* Initialize EL2 context registers */
248 #if CTX_INCLUDE_EL2_REGS
249 
250 	/*
251 	 * Initialize SCTLR_EL2 context register using Endianness value
252 	 * taken from the entrypoint attribute.
253 	 */
254 	u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
255 	sctlr_el2 |= SCTLR_EL2_RES1;
256 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2,
257 			sctlr_el2);
258 
259 	/*
260 	 * Program the ICC_SRE_EL2 to make sure the correct bits are set
261 	 * when restoring NS context.
262 	 */
263 	u_register_t icc_sre_el2 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
264 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
265 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_ICC_SRE_EL2,
266 			icc_sre_el2);
267 
268 	/*
269 	 * Initialize MDCR_EL2.HPMN to its hardware reset value so we don't
270 	 * throw anyone off who expects this to be sensible.
271 	 * TODO: A similar thing happens in cm_prepare_el3_exit. They should be
272 	 * unified with the proper PMU implementation
273 	 */
274 	u_register_t mdcr_el2 = ((read_pmcr_el0() >> PMCR_EL0_N_SHIFT) &
275 			PMCR_EL0_N_MASK);
276 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_MDCR_EL2, mdcr_el2);
277 
278 	if (is_feat_hcx_supported()) {
279 		/*
280 		 * Initialize register HCRX_EL2 with its init value.
281 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
282 		 * chance that this can lead to unexpected behavior in lower
283 		 * ELs that have not been updated since the introduction of
284 		 * this feature if not properly initialized, especially when
285 		 * it comes to those bits that enable/disable traps.
286 		 */
287 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HCRX_EL2,
288 			HCRX_EL2_INIT_VAL);
289 	}
290 #endif /* CTX_INCLUDE_EL2_REGS */
291 }
292 
293 /*******************************************************************************
294  * The following function performs initialization of the cpu_context 'ctx'
295  * for first use that is common to all security states, and sets the
296  * initial entrypoint state as specified by the entry_point_info structure.
297  *
298  * The EE and ST attributes are used to configure the endianness and secure
299  * timer availability for the new execution context.
300  ******************************************************************************/
301 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
302 {
303 	u_register_t scr_el3;
304 	el3_state_t *state;
305 	gp_regs_t *gp_regs;
306 
307 	/* Clear any residual register values from the context */
308 	zeromem(ctx, sizeof(*ctx));
309 
310 	/*
311 	 * SCR_EL3 was initialised during reset sequence in macro
312 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
313 	 * affect the next EL.
314 	 *
315 	 * The following fields are initially set to zero and then updated to
316 	 * the required value depending on the state of the SPSR_EL3 and the
317 	 * Security state and entrypoint attributes of the next EL.
318 	 */
319 	scr_el3 = read_scr();
320 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_EA_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
321 			SCR_ST_BIT | SCR_HCE_BIT | SCR_NSE_BIT);
322 
323 	/*
324 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
325 	 *  Exception level as specified by SPSR.
326 	 */
327 	if (GET_RW(ep->spsr) == MODE_RW_64) {
328 		scr_el3 |= SCR_RW_BIT;
329 	}
330 
331 	/*
332 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
333 	 * Secure timer registers to EL3, from AArch64 state only, if specified
334 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
335 	 * bit always behaves as 1 (i.e. secure physical timer register access
336 	 * is not trapped)
337 	 */
338 	if (EP_GET_ST(ep->h.attr) != 0U) {
339 		scr_el3 |= SCR_ST_BIT;
340 	}
341 
342 	/*
343 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
344 	 * SCR_EL3.HXEn.
345 	 */
346 	if (is_feat_hcx_supported()) {
347 		scr_el3 |= SCR_HXEn_BIT;
348 	}
349 
350 	/*
351 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
352 	 * registers are trapped to EL3.
353 	 */
354 #if ENABLE_FEAT_RNG_TRAP
355 	scr_el3 |= SCR_TRNDR_BIT;
356 #endif
357 
358 #if FAULT_INJECTION_SUPPORT
359 	/* Enable fault injection from lower ELs */
360 	scr_el3 |= SCR_FIEN_BIT;
361 #endif
362 
363 	/*
364 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
365 	 */
366 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
367 		scr_el3 |= SCR_TCR2EN_BIT;
368 	}
369 
370 	/*
371 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
372 	 * registers for AArch64 if present.
373 	 */
374 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
375 		scr_el3 |= SCR_PIEN_BIT;
376 	}
377 
378 	/*
379 	 * CPTR_EL3 was initialized out of reset, copy that value to the
380 	 * context register.
381 	 */
382 	write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3());
383 
384 	/*
385 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
386 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
387 	 * next mode is Hyp.
388 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
389 	 * same conditions as HVC instructions and when the processor supports
390 	 * ARMv8.6-FGT.
391 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
392 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
393 	 * and when the processor supports ECV.
394 	 */
395 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
396 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
397 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
398 		scr_el3 |= SCR_HCE_BIT;
399 
400 		if (is_feat_fgt_supported()) {
401 			scr_el3 |= SCR_FGTEN_BIT;
402 		}
403 
404 		if (is_feat_ecv_supported()) {
405 			scr_el3 |= SCR_ECVEN_BIT;
406 		}
407 	}
408 
409 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
410 	if (is_feat_twed_supported()) {
411 		/* Set delay in SCR_EL3 */
412 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
413 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
414 				<< SCR_TWEDEL_SHIFT);
415 
416 		/* Enable WFE delay */
417 		scr_el3 |= SCR_TWEDEn_BIT;
418 	}
419 
420 	/*
421 	 * Populate EL3 state so that we've the right context
422 	 * before doing ERET
423 	 */
424 	state = get_el3state_ctx(ctx);
425 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
426 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
427 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
428 
429 	/*
430 	 * Store the X0-X7 value from the entrypoint into the context
431 	 * Use memcpy as we are in control of the layout of the structures
432 	 */
433 	gp_regs = get_gpregs_ctx(ctx);
434 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
435 }
436 
437 /*******************************************************************************
438  * Context management library initialization routine. This library is used by
439  * runtime services to share pointers to 'cpu_context' structures for secure
440  * non-secure and realm states. Management of the structures and their associated
441  * memory is not done by the context management library e.g. the PSCI service
442  * manages the cpu context used for entry from and exit to the non-secure state.
443  * The Secure payload dispatcher service manages the context(s) corresponding to
444  * the secure state. It also uses this library to get access to the non-secure
445  * state cpu context pointers.
446  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
447  * which will be used for programming an entry into a lower EL. The same context
448  * will be used to save state upon exception entry from that EL.
449  ******************************************************************************/
450 void __init cm_init(void)
451 {
452 	/*
453 	 * The context management library has only global data to intialize, but
454 	 * that will be done when the BSS is zeroed out.
455 	 */
456 }
457 
458 /*******************************************************************************
459  * This is the high-level function used to initialize the cpu_context 'ctx' for
460  * first use. It performs initializations that are common to all security states
461  * and initializations specific to the security state specified in 'ep'
462  ******************************************************************************/
463 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
464 {
465 	unsigned int security_state;
466 
467 	assert(ctx != NULL);
468 
469 	/*
470 	 * Perform initializations that are common
471 	 * to all security states
472 	 */
473 	setup_context_common(ctx, ep);
474 
475 	security_state = GET_SECURITY_STATE(ep->h.attr);
476 
477 	/* Perform security state specific initializations */
478 	switch (security_state) {
479 	case SECURE:
480 		setup_secure_context(ctx, ep);
481 		break;
482 #if ENABLE_RME
483 	case REALM:
484 		setup_realm_context(ctx, ep);
485 		break;
486 #endif
487 	case NON_SECURE:
488 		setup_ns_context(ctx, ep);
489 		break;
490 	default:
491 		ERROR("Invalid security state\n");
492 		panic();
493 		break;
494 	}
495 }
496 
497 /*******************************************************************************
498  * Enable architecture extensions on first entry to Non-secure world.
499  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
500  * it is zero.
501  ******************************************************************************/
502 static void manage_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx)
503 {
504 #if IMAGE_BL31
505 	if (is_feat_spe_supported()) {
506 		spe_enable(el2_unused);
507 	}
508 
509 	if (is_feat_amu_supported()) {
510 		amu_enable(el2_unused, ctx);
511 	}
512 
513 	/* Enable SME, SVE, and FPU/SIMD for non-secure world. */
514 	if (is_feat_sme_supported()) {
515 		sme_enable(ctx);
516 	} else if (is_feat_sve_supported()) {
517 		/* Enable SVE and FPU/SIMD for non-secure world. */
518 		sve_enable(ctx);
519 	}
520 
521 	if (is_feat_mpam_supported()) {
522 		mpam_enable(el2_unused);
523 	}
524 
525 	if (is_feat_trbe_supported()) {
526 		trbe_enable();
527 	}
528 
529 	if (is_feat_brbe_supported()) {
530 		brbe_enable();
531 	}
532 
533 	if (is_feat_sys_reg_trace_supported()) {
534 		sys_reg_trace_enable(ctx);
535 	}
536 
537 	if (is_feat_trf_supported()) {
538 		trf_enable();
539 	}
540 #endif
541 }
542 
543 /*******************************************************************************
544  * Enable architecture extensions on first entry to Secure world.
545  ******************************************************************************/
546 static void manage_extensions_secure(cpu_context_t *ctx)
547 {
548 #if IMAGE_BL31
549 
550 	if (is_feat_sme_supported()) {
551 		if (ENABLE_SME_FOR_SWD) {
552 		/*
553 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
554 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
555 		 */
556 			sme_enable(ctx);
557 		} else {
558 		/*
559 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
560 		 * world can safely use the associated registers.
561 		 */
562 			sme_disable(ctx);
563 		}
564 	} else if (is_feat_sve_supported()) {
565 		if (ENABLE_SVE_FOR_SWD) {
566 		/*
567 		 * Enable SVE and FPU in secure context, secure manager must
568 		 * ensure that the SVE and FPU register contexts are properly
569 		 * managed.
570 		 */
571 			sve_enable(ctx);
572 		} else {
573 		/*
574 		 * Disable SVE and FPU in secure context so non-secure world
575 		 * can safely use them.
576 		 */
577 			sve_disable(ctx);
578 		}
579 	}
580 
581 #endif /* IMAGE_BL31 */
582 }
583 
584 /*******************************************************************************
585  * The following function initializes the cpu_context for a CPU specified by
586  * its `cpu_idx` for first use, and sets the initial entrypoint state as
587  * specified by the entry_point_info structure.
588  ******************************************************************************/
589 void cm_init_context_by_index(unsigned int cpu_idx,
590 			      const entry_point_info_t *ep)
591 {
592 	cpu_context_t *ctx;
593 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
594 	cm_setup_context(ctx, ep);
595 }
596 
597 /*******************************************************************************
598  * The following function initializes the cpu_context for the current CPU
599  * for first use, and sets the initial entrypoint state as specified by the
600  * entry_point_info structure.
601  ******************************************************************************/
602 void cm_init_my_context(const entry_point_info_t *ep)
603 {
604 	cpu_context_t *ctx;
605 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
606 	cm_setup_context(ctx, ep);
607 }
608 
609 /*******************************************************************************
610  * Prepare the CPU system registers for first entry into realm, secure, or
611  * normal world.
612  *
613  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
614  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
615  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
616  * For all entries, the EL1 registers are initialized from the cpu_context
617  ******************************************************************************/
618 void cm_prepare_el3_exit(uint32_t security_state)
619 {
620 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
621 	cpu_context_t *ctx = cm_get_context(security_state);
622 	bool el2_unused = false;
623 	uint64_t hcr_el2 = 0U;
624 
625 	assert(ctx != NULL);
626 
627 	if (security_state == NON_SECURE) {
628 		uint64_t el2_implemented = el_implemented(2);
629 
630 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
631 						 CTX_SCR_EL3);
632 
633 		if (((scr_el3 & SCR_HCE_BIT) != 0U)
634 			|| (el2_implemented != EL_IMPL_NONE)) {
635 			/*
636 			 * If context is not being used for EL2, initialize
637 			 * HCRX_EL2 with its init value here.
638 			 */
639 			if (is_feat_hcx_supported()) {
640 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
641 			}
642 		}
643 
644 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
645 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
646 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
647 							   CTX_SCTLR_EL1);
648 			sctlr_elx &= SCTLR_EE_BIT;
649 			sctlr_elx |= SCTLR_EL2_RES1;
650 #if ERRATA_A75_764081
651 			/*
652 			 * If workaround of errata 764081 for Cortex-A75 is used
653 			 * then set SCTLR_EL2.IESB to enable Implicit Error
654 			 * Synchronization Barrier.
655 			 */
656 			sctlr_elx |= SCTLR_IESB_BIT;
657 #endif
658 			write_sctlr_el2(sctlr_elx);
659 		} else if (el2_implemented != EL_IMPL_NONE) {
660 			el2_unused = true;
661 
662 			/*
663 			 * EL2 present but unused, need to disable safely.
664 			 * SCTLR_EL2 can be ignored in this case.
665 			 *
666 			 * Set EL2 register width appropriately: Set HCR_EL2
667 			 * field to match SCR_EL3.RW.
668 			 */
669 			if ((scr_el3 & SCR_RW_BIT) != 0U)
670 				hcr_el2 |= HCR_RW_BIT;
671 
672 			/*
673 			 * For Armv8.3 pointer authentication feature, disable
674 			 * traps to EL2 when accessing key registers or using
675 			 * pointer authentication instructions from lower ELs.
676 			 */
677 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
678 
679 			write_hcr_el2(hcr_el2);
680 
681 			/*
682 			 * Initialise CPTR_EL2 setting all fields rather than
683 			 * relying on the hw. All fields have architecturally
684 			 * UNKNOWN reset values.
685 			 *
686 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
687 			 *  accesses to the CPACR_EL1 or CPACR from both
688 			 *  Execution states do not trap to EL2.
689 			 *
690 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
691 			 *  register accesses to the trace registers from both
692 			 *  Execution states do not trap to EL2.
693 			 *  If PE trace unit System registers are not implemented
694 			 *  then this bit is reserved, and must be set to zero.
695 			 *
696 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
697 			 *  to SIMD and floating-point functionality from both
698 			 *  Execution states do not trap to EL2.
699 			 */
700 			write_cptr_el2(CPTR_EL2_RESET_VAL &
701 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
702 					| CPTR_EL2_TFP_BIT));
703 
704 			/*
705 			 * Initialise CNTHCTL_EL2. All fields are
706 			 * architecturally UNKNOWN on reset and are set to zero
707 			 * except for field(s) listed below.
708 			 *
709 			 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to
710 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
711 			 *  physical timer registers.
712 			 *
713 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
714 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
715 			 *  physical counter registers.
716 			 */
717 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
718 						EL1PCEN_BIT | EL1PCTEN_BIT);
719 
720 			/*
721 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
722 			 * architecturally UNKNOWN value.
723 			 */
724 			write_cntvoff_el2(0);
725 
726 			/*
727 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
728 			 * MPIDR_EL1 respectively.
729 			 */
730 			write_vpidr_el2(read_midr_el1());
731 			write_vmpidr_el2(read_mpidr_el1());
732 
733 			/*
734 			 * Initialise VTTBR_EL2. All fields are architecturally
735 			 * UNKNOWN on reset.
736 			 *
737 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
738 			 *  2 address translation is disabled, cache maintenance
739 			 *  operations depend on the VMID.
740 			 *
741 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
742 			 *  translation is disabled.
743 			 */
744 			write_vttbr_el2(VTTBR_RESET_VAL &
745 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
746 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
747 
748 			/*
749 			 * Initialise MDCR_EL2, setting all fields rather than
750 			 * relying on hw. Some fields are architecturally
751 			 * UNKNOWN on reset.
752 			 *
753 			 * MDCR_EL2.HLP: Set to one so that event counter
754 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
755 			 *  occurs on the increment that changes
756 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
757 			 *  implemented. This bit is RES0 in versions of the
758 			 *  architecture earlier than ARMv8.5, setting it to 1
759 			 *  doesn't have any effect on them.
760 			 *
761 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
762 			 *  Filter Control register TRFCR_EL1 at EL1 is not
763 			 *  trapped to EL2. This bit is RES0 in versions of
764 			 *  the architecture earlier than ARMv8.4.
765 			 *
766 			 * MDCR_EL2.HPMD: Set to one so that event counting is
767 			 *  prohibited at EL2. This bit is RES0 in versions of
768 			 *  the architecture earlier than ARMv8.1, setting it
769 			 *  to 1 doesn't have any effect on them.
770 			 *
771 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
772 			 *  Statistical Profiling control registers from EL1
773 			 *  do not trap to EL2. This bit is RES0 when SPE is
774 			 *  not implemented.
775 			 *
776 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
777 			 *  EL1 System register accesses to the Debug ROM
778 			 *  registers are not trapped to EL2.
779 			 *
780 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
781 			 *  System register accesses to the powerdown debug
782 			 *  registers are not trapped to EL2.
783 			 *
784 			 * MDCR_EL2.TDA: Set to zero so that System register
785 			 *  accesses to the debug registers do not trap to EL2.
786 			 *
787 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
788 			 *  are not routed to EL2.
789 			 *
790 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
791 			 *  Monitors.
792 			 *
793 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
794 			 *  EL1 accesses to all Performance Monitors registers
795 			 *  are not trapped to EL2.
796 			 *
797 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
798 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
799 			 *  trapped to EL2.
800 			 *
801 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
802 			 *  architecturally-defined reset value.
803 			 *
804 			 * MDCR_EL2.E2TB: Set to zero so that the trace Buffer
805 			 *  owning exception level is NS-EL1 and, tracing is
806 			 *  prohibited at NS-EL2. These bits are RES0 when
807 			 *  FEAT_TRBE is not implemented.
808 			 */
809 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
810 				     MDCR_EL2_HPMD) |
811 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
812 				   >> PMCR_EL0_N_SHIFT)) &
813 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
814 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
815 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
816 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
817 				     MDCR_EL2_TPMCR_BIT |
818 				     MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1));
819 
820 			write_mdcr_el2(mdcr_el2);
821 
822 			/*
823 			 * Initialise HSTR_EL2. All fields are architecturally
824 			 * UNKNOWN on reset.
825 			 *
826 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
827 			 *  Non-secure EL0 or EL1 accesses to System registers
828 			 *  do not trap to EL2.
829 			 */
830 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
831 			/*
832 			 * Initialise CNTHP_CTL_EL2. All fields are
833 			 * architecturally UNKNOWN on reset.
834 			 *
835 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
836 			 *  physical timer and prevent timer interrupts.
837 			 */
838 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
839 						~(CNTHP_CTL_ENABLE_BIT));
840 		}
841 		manage_extensions_nonsecure(el2_unused, ctx);
842 	}
843 
844 	cm_el1_sysregs_context_restore(security_state);
845 	cm_set_next_eret_context(security_state);
846 }
847 
848 #if CTX_INCLUDE_EL2_REGS
849 
850 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
851 {
852 	write_ctx_reg(ctx, CTX_HDFGRTR_EL2, read_hdfgrtr_el2());
853 	if (is_feat_amu_supported()) {
854 		write_ctx_reg(ctx, CTX_HAFGRTR_EL2, read_hafgrtr_el2());
855 	}
856 	write_ctx_reg(ctx, CTX_HDFGWTR_EL2, read_hdfgwtr_el2());
857 	write_ctx_reg(ctx, CTX_HFGITR_EL2, read_hfgitr_el2());
858 	write_ctx_reg(ctx, CTX_HFGRTR_EL2, read_hfgrtr_el2());
859 	write_ctx_reg(ctx, CTX_HFGWTR_EL2, read_hfgwtr_el2());
860 }
861 
862 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
863 {
864 	write_hdfgrtr_el2(read_ctx_reg(ctx, CTX_HDFGRTR_EL2));
865 	if (is_feat_amu_supported()) {
866 		write_hafgrtr_el2(read_ctx_reg(ctx, CTX_HAFGRTR_EL2));
867 	}
868 	write_hdfgwtr_el2(read_ctx_reg(ctx, CTX_HDFGWTR_EL2));
869 	write_hfgitr_el2(read_ctx_reg(ctx, CTX_HFGITR_EL2));
870 	write_hfgrtr_el2(read_ctx_reg(ctx, CTX_HFGRTR_EL2));
871 	write_hfgwtr_el2(read_ctx_reg(ctx, CTX_HFGWTR_EL2));
872 }
873 
874 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
875 {
876 	u_register_t mpam_idr = read_mpamidr_el1();
877 
878 	write_ctx_reg(ctx, CTX_MPAM2_EL2, read_mpam2_el2());
879 
880 	/*
881 	 * The context registers that we intend to save would be part of the
882 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
883 	 */
884 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
885 		return;
886 	}
887 
888 	/*
889 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
890 	 * MPAMIDR_HAS_HCR_BIT == 1.
891 	 */
892 	write_ctx_reg(ctx, CTX_MPAMHCR_EL2, read_mpamhcr_el2());
893 	write_ctx_reg(ctx, CTX_MPAMVPM0_EL2, read_mpamvpm0_el2());
894 	write_ctx_reg(ctx, CTX_MPAMVPMV_EL2, read_mpamvpmv_el2());
895 
896 	/*
897 	 * The number of MPAMVPM registers is implementation defined, their
898 	 * number is stored in the MPAMIDR_EL1 register.
899 	 */
900 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
901 	case 7:
902 		write_ctx_reg(ctx, CTX_MPAMVPM7_EL2, read_mpamvpm7_el2());
903 		__fallthrough;
904 	case 6:
905 		write_ctx_reg(ctx, CTX_MPAMVPM6_EL2, read_mpamvpm6_el2());
906 		__fallthrough;
907 	case 5:
908 		write_ctx_reg(ctx, CTX_MPAMVPM5_EL2, read_mpamvpm5_el2());
909 		__fallthrough;
910 	case 4:
911 		write_ctx_reg(ctx, CTX_MPAMVPM4_EL2, read_mpamvpm4_el2());
912 		__fallthrough;
913 	case 3:
914 		write_ctx_reg(ctx, CTX_MPAMVPM3_EL2, read_mpamvpm3_el2());
915 		__fallthrough;
916 	case 2:
917 		write_ctx_reg(ctx, CTX_MPAMVPM2_EL2, read_mpamvpm2_el2());
918 		__fallthrough;
919 	case 1:
920 		write_ctx_reg(ctx, CTX_MPAMVPM1_EL2, read_mpamvpm1_el2());
921 		break;
922 	}
923 }
924 
925 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
926 {
927 	u_register_t mpam_idr = read_mpamidr_el1();
928 
929 	write_mpam2_el2(read_ctx_reg(ctx, CTX_MPAM2_EL2));
930 
931 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
932 		return;
933 	}
934 
935 	write_mpamhcr_el2(read_ctx_reg(ctx, CTX_MPAMHCR_EL2));
936 	write_mpamvpm0_el2(read_ctx_reg(ctx, CTX_MPAMVPM0_EL2));
937 	write_mpamvpmv_el2(read_ctx_reg(ctx, CTX_MPAMVPMV_EL2));
938 
939 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
940 	case 7:
941 		write_mpamvpm7_el2(read_ctx_reg(ctx, CTX_MPAMVPM7_EL2));
942 		__fallthrough;
943 	case 6:
944 		write_mpamvpm6_el2(read_ctx_reg(ctx, CTX_MPAMVPM6_EL2));
945 		__fallthrough;
946 	case 5:
947 		write_mpamvpm5_el2(read_ctx_reg(ctx, CTX_MPAMVPM5_EL2));
948 		__fallthrough;
949 	case 4:
950 		write_mpamvpm4_el2(read_ctx_reg(ctx, CTX_MPAMVPM4_EL2));
951 		__fallthrough;
952 	case 3:
953 		write_mpamvpm3_el2(read_ctx_reg(ctx, CTX_MPAMVPM3_EL2));
954 		__fallthrough;
955 	case 2:
956 		write_mpamvpm2_el2(read_ctx_reg(ctx, CTX_MPAMVPM2_EL2));
957 		__fallthrough;
958 	case 1:
959 		write_mpamvpm1_el2(read_ctx_reg(ctx, CTX_MPAMVPM1_EL2));
960 		break;
961 	}
962 }
963 
964 /*******************************************************************************
965  * Save EL2 sysreg context
966  ******************************************************************************/
967 void cm_el2_sysregs_context_save(uint32_t security_state)
968 {
969 	u_register_t scr_el3 = read_scr();
970 
971 	/*
972 	 * Always save the non-secure and realm EL2 context, only save the
973 	 * S-EL2 context if S-EL2 is enabled.
974 	 */
975 	if ((security_state != SECURE) ||
976 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
977 		cpu_context_t *ctx;
978 		el2_sysregs_t *el2_sysregs_ctx;
979 
980 		ctx = cm_get_context(security_state);
981 		assert(ctx != NULL);
982 
983 		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
984 
985 		el2_sysregs_context_save_common(el2_sysregs_ctx);
986 #if CTX_INCLUDE_MTE_REGS
987 		el2_sysregs_context_save_mte(el2_sysregs_ctx);
988 #endif
989 		if (is_feat_mpam_supported()) {
990 			el2_sysregs_context_save_mpam(el2_sysregs_ctx);
991 		}
992 
993 		if (is_feat_fgt_supported()) {
994 			el2_sysregs_context_save_fgt(el2_sysregs_ctx);
995 		}
996 
997 		if (is_feat_ecv_v2_supported()) {
998 			write_ctx_reg(el2_sysregs_ctx, CTX_CNTPOFF_EL2,
999 				      read_cntpoff_el2());
1000 		}
1001 
1002 		if (is_feat_vhe_supported()) {
1003 			write_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2,
1004 				      read_contextidr_el2());
1005 			write_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2,
1006 				      read_ttbr1_el2());
1007 		}
1008 #if RAS_EXTENSION
1009 		el2_sysregs_context_save_ras(el2_sysregs_ctx);
1010 #endif
1011 
1012 		if (is_feat_nv2_supported()) {
1013 			write_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2,
1014 				      read_vncr_el2());
1015 		}
1016 
1017 		if (is_feat_trf_supported()) {
1018 			write_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2, read_trfcr_el2());
1019 		}
1020 
1021 		if (is_feat_csv2_2_supported()) {
1022 			write_ctx_reg(el2_sysregs_ctx, CTX_SCXTNUM_EL2,
1023 				      read_scxtnum_el2());
1024 		}
1025 
1026 		if (is_feat_hcx_supported()) {
1027 			write_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2, read_hcrx_el2());
1028 		}
1029 		if (is_feat_tcr2_supported()) {
1030 			write_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2, read_tcr2_el2());
1031 		}
1032 		if (is_feat_sxpie_supported()) {
1033 			write_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2, read_pire0_el2());
1034 			write_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2, read_pir_el2());
1035 		}
1036 		if (is_feat_s2pie_supported()) {
1037 			write_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2, read_s2pir_el2());
1038 		}
1039 		if (is_feat_sxpoe_supported()) {
1040 			write_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2, read_por_el2());
1041 		}
1042 	}
1043 }
1044 
1045 /*******************************************************************************
1046  * Restore EL2 sysreg context
1047  ******************************************************************************/
1048 void cm_el2_sysregs_context_restore(uint32_t security_state)
1049 {
1050 	u_register_t scr_el3 = read_scr();
1051 
1052 	/*
1053 	 * Always restore the non-secure and realm EL2 context, only restore the
1054 	 * S-EL2 context if S-EL2 is enabled.
1055 	 */
1056 	if ((security_state != SECURE) ||
1057 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
1058 		cpu_context_t *ctx;
1059 		el2_sysregs_t *el2_sysregs_ctx;
1060 
1061 		ctx = cm_get_context(security_state);
1062 		assert(ctx != NULL);
1063 
1064 		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1065 
1066 		el2_sysregs_context_restore_common(el2_sysregs_ctx);
1067 #if CTX_INCLUDE_MTE_REGS
1068 		el2_sysregs_context_restore_mte(el2_sysregs_ctx);
1069 #endif
1070 		if (is_feat_mpam_supported()) {
1071 			el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1072 		}
1073 
1074 		if (is_feat_fgt_supported()) {
1075 			el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1076 		}
1077 
1078 		if (is_feat_ecv_v2_supported()) {
1079 			write_cntpoff_el2(read_ctx_reg(el2_sysregs_ctx,
1080 						       CTX_CNTPOFF_EL2));
1081 		}
1082 
1083 		if (is_feat_vhe_supported()) {
1084 			write_contextidr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2));
1085 			write_ttbr1_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2));
1086 		}
1087 #if RAS_EXTENSION
1088 		el2_sysregs_context_restore_ras(el2_sysregs_ctx);
1089 #endif
1090 
1091 		if (is_feat_nv2_supported()) {
1092 			write_vncr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2));
1093 		}
1094 		if (is_feat_trf_supported()) {
1095 			write_trfcr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2));
1096 		}
1097 
1098 		if (is_feat_csv2_2_supported()) {
1099 			write_scxtnum_el2(read_ctx_reg(el2_sysregs_ctx,
1100 						       CTX_SCXTNUM_EL2));
1101 		}
1102 
1103 		if (is_feat_hcx_supported()) {
1104 			write_hcrx_el2(read_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2));
1105 		}
1106 		if (is_feat_tcr2_supported()) {
1107 			write_tcr2_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2));
1108 		}
1109 		if (is_feat_sxpie_supported()) {
1110 			write_pire0_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2));
1111 			write_pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2));
1112 		}
1113 		if (is_feat_s2pie_supported()) {
1114 			write_s2pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2));
1115 		}
1116 		if (is_feat_sxpoe_supported()) {
1117 			write_por_el2(read_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2));
1118 		}
1119 	}
1120 }
1121 #endif /* CTX_INCLUDE_EL2_REGS */
1122 
1123 /*******************************************************************************
1124  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1125  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1126  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1127  * cm_prepare_el3_exit function.
1128  ******************************************************************************/
1129 void cm_prepare_el3_exit_ns(void)
1130 {
1131 #if CTX_INCLUDE_EL2_REGS
1132 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1133 	assert(ctx != NULL);
1134 
1135 	/* Assert that EL2 is used. */
1136 #if ENABLE_ASSERTIONS
1137 	el3_state_t *state = get_el3state_ctx(ctx);
1138 	u_register_t scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1139 #endif
1140 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1141 			(el_implemented(2U) != EL_IMPL_NONE));
1142 
1143 	/*
1144 	 * Currently some extensions are configured using
1145 	 * direct register updates. Therefore, do this here
1146 	 * instead of when setting up context.
1147 	 */
1148 	manage_extensions_nonsecure(0, ctx);
1149 
1150 	/*
1151 	 * Set the NS bit to be able to access the ICC_SRE_EL2
1152 	 * register when restoring context.
1153 	 */
1154 	write_scr_el3(read_scr_el3() | SCR_NS_BIT);
1155 
1156 	/*
1157 	 * Ensure the NS bit change is committed before the EL2/EL1
1158 	 * state restoration.
1159 	 */
1160 	isb();
1161 
1162 	/* Restore EL2 and EL1 sysreg contexts */
1163 	cm_el2_sysregs_context_restore(NON_SECURE);
1164 	cm_el1_sysregs_context_restore(NON_SECURE);
1165 	cm_set_next_eret_context(NON_SECURE);
1166 #else
1167 	cm_prepare_el3_exit(NON_SECURE);
1168 #endif /* CTX_INCLUDE_EL2_REGS */
1169 }
1170 
1171 /*******************************************************************************
1172  * The next four functions are used by runtime services to save and restore
1173  * EL1 context on the 'cpu_context' structure for the specified security
1174  * state.
1175  ******************************************************************************/
1176 void cm_el1_sysregs_context_save(uint32_t security_state)
1177 {
1178 	cpu_context_t *ctx;
1179 
1180 	ctx = cm_get_context(security_state);
1181 	assert(ctx != NULL);
1182 
1183 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1184 
1185 #if IMAGE_BL31
1186 	if (security_state == SECURE)
1187 		PUBLISH_EVENT(cm_exited_secure_world);
1188 	else
1189 		PUBLISH_EVENT(cm_exited_normal_world);
1190 #endif
1191 }
1192 
1193 void cm_el1_sysregs_context_restore(uint32_t security_state)
1194 {
1195 	cpu_context_t *ctx;
1196 
1197 	ctx = cm_get_context(security_state);
1198 	assert(ctx != NULL);
1199 
1200 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1201 
1202 #if IMAGE_BL31
1203 	if (security_state == SECURE)
1204 		PUBLISH_EVENT(cm_entering_secure_world);
1205 	else
1206 		PUBLISH_EVENT(cm_entering_normal_world);
1207 #endif
1208 }
1209 
1210 /*******************************************************************************
1211  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1212  * given security state with the given entrypoint
1213  ******************************************************************************/
1214 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1215 {
1216 	cpu_context_t *ctx;
1217 	el3_state_t *state;
1218 
1219 	ctx = cm_get_context(security_state);
1220 	assert(ctx != NULL);
1221 
1222 	/* Populate EL3 state so that ERET jumps to the correct entry */
1223 	state = get_el3state_ctx(ctx);
1224 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1225 }
1226 
1227 /*******************************************************************************
1228  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1229  * pertaining to the given security state
1230  ******************************************************************************/
1231 void cm_set_elr_spsr_el3(uint32_t security_state,
1232 			uintptr_t entrypoint, uint32_t spsr)
1233 {
1234 	cpu_context_t *ctx;
1235 	el3_state_t *state;
1236 
1237 	ctx = cm_get_context(security_state);
1238 	assert(ctx != NULL);
1239 
1240 	/* Populate EL3 state so that ERET jumps to the correct entry */
1241 	state = get_el3state_ctx(ctx);
1242 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1243 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1244 }
1245 
1246 /*******************************************************************************
1247  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1248  * pertaining to the given security state using the value and bit position
1249  * specified in the parameters. It preserves all other bits.
1250  ******************************************************************************/
1251 void cm_write_scr_el3_bit(uint32_t security_state,
1252 			  uint32_t bit_pos,
1253 			  uint32_t value)
1254 {
1255 	cpu_context_t *ctx;
1256 	el3_state_t *state;
1257 	u_register_t scr_el3;
1258 
1259 	ctx = cm_get_context(security_state);
1260 	assert(ctx != NULL);
1261 
1262 	/* Ensure that the bit position is a valid one */
1263 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1264 
1265 	/* Ensure that the 'value' is only a bit wide */
1266 	assert(value <= 1U);
1267 
1268 	/*
1269 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1270 	 * and set it to its new value.
1271 	 */
1272 	state = get_el3state_ctx(ctx);
1273 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1274 	scr_el3 &= ~(1UL << bit_pos);
1275 	scr_el3 |= (u_register_t)value << bit_pos;
1276 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1277 }
1278 
1279 /*******************************************************************************
1280  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1281  * given security state.
1282  ******************************************************************************/
1283 u_register_t cm_get_scr_el3(uint32_t security_state)
1284 {
1285 	cpu_context_t *ctx;
1286 	el3_state_t *state;
1287 
1288 	ctx = cm_get_context(security_state);
1289 	assert(ctx != NULL);
1290 
1291 	/* Populate EL3 state so that ERET jumps to the correct entry */
1292 	state = get_el3state_ctx(ctx);
1293 	return read_ctx_reg(state, CTX_SCR_EL3);
1294 }
1295 
1296 /*******************************************************************************
1297  * This function is used to program the context that's used for exception
1298  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1299  * the required security state
1300  ******************************************************************************/
1301 void cm_set_next_eret_context(uint32_t security_state)
1302 {
1303 	cpu_context_t *ctx;
1304 
1305 	ctx = cm_get_context(security_state);
1306 	assert(ctx != NULL);
1307 
1308 	cm_set_next_context(ctx);
1309 }
1310