xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision cb4ec47b5c73e04472984acf821e6be41b98064f)
1 /*
2  * Copyright (c) 2013-2021, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_helpers.h>
15 #include <arch_features.h>
16 #include <bl31/interrupt_mgmt.h>
17 #include <common/bl_common.h>
18 #include <context.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/el3_runtime/pubsub_events.h>
21 #include <lib/extensions/amu.h>
22 #include <lib/extensions/mpam.h>
23 #include <lib/extensions/spe.h>
24 #include <lib/extensions/sve.h>
25 #include <lib/extensions/sys_reg_trace.h>
26 #include <lib/extensions/trbe.h>
27 #include <lib/extensions/trf.h>
28 #include <lib/extensions/twed.h>
29 #include <lib/utils.h>
30 
31 static void enable_extensions_secure(cpu_context_t *ctx);
32 
33 /*******************************************************************************
34  * Context management library initialisation routine. This library is used by
35  * runtime services to share pointers to 'cpu_context' structures for the secure
36  * and non-secure states. Management of the structures and their associated
37  * memory is not done by the context management library e.g. the PSCI service
38  * manages the cpu context used for entry from and exit to the non-secure state.
39  * The Secure payload dispatcher service manages the context(s) corresponding to
40  * the secure state. It also uses this library to get access to the non-secure
41  * state cpu context pointers.
42  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
43  * which will used for programming an entry into a lower EL. The same context
44  * will used to save state upon exception entry from that EL.
45  ******************************************************************************/
46 void __init cm_init(void)
47 {
48 	/*
49 	 * The context management library has only global data to intialize, but
50 	 * that will be done when the BSS is zeroed out
51 	 */
52 }
53 
54 /*******************************************************************************
55  * The following function initializes the cpu_context 'ctx' for
56  * first use, and sets the initial entrypoint state as specified by the
57  * entry_point_info structure.
58  *
59  * The security state to initialize is determined by the SECURE attribute
60  * of the entry_point_info.
61  *
62  * The EE and ST attributes are used to configure the endianness and secure
63  * timer availability for the new execution context.
64  *
65  * To prepare the register state for entry call cm_prepare_el3_exit() and
66  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
67  * cm_el1_sysregs_context_restore().
68  ******************************************************************************/
69 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
70 {
71 	unsigned int security_state;
72 	u_register_t scr_el3;
73 	el3_state_t *state;
74 	gp_regs_t *gp_regs;
75 	u_register_t sctlr_elx, actlr_elx;
76 
77 	assert(ctx != NULL);
78 
79 	security_state = GET_SECURITY_STATE(ep->h.attr);
80 
81 	/* Clear any residual register values from the context */
82 	zeromem(ctx, sizeof(*ctx));
83 
84 	/*
85 	 * SCR_EL3 was initialised during reset sequence in macro
86 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
87 	 * affect the next EL.
88 	 *
89 	 * The following fields are initially set to zero and then updated to
90 	 * the required value depending on the state of the SPSR_EL3 and the
91 	 * Security state and entrypoint attributes of the next EL.
92 	 */
93 	scr_el3 = read_scr();
94 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
95 			SCR_ST_BIT | SCR_HCE_BIT);
96 	/*
97 	 * SCR_NS: Set the security state of the next EL.
98 	 */
99 	if (security_state != SECURE)
100 		scr_el3 |= SCR_NS_BIT;
101 	/*
102 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
103 	 *  Exception level as specified by SPSR.
104 	 */
105 	if (GET_RW(ep->spsr) == MODE_RW_64)
106 		scr_el3 |= SCR_RW_BIT;
107 	/*
108 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
109 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
110 	 *  by the entrypoint attributes.
111 	 */
112 	if (EP_GET_ST(ep->h.attr) != 0U)
113 		scr_el3 |= SCR_ST_BIT;
114 
115 	/*
116 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
117 	 * SCR_EL3.HXEn.
118 	 */
119 #if ENABLE_FEAT_HCX
120 	scr_el3 |= SCR_HXEn_BIT;
121 #endif
122 
123 #if RAS_TRAP_LOWER_EL_ERR_ACCESS
124 	/*
125 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
126 	 * and RAS ERX registers from EL1 and EL2 are trapped to EL3.
127 	 */
128 	scr_el3 |= SCR_TERR_BIT;
129 #endif
130 
131 #if !HANDLE_EA_EL3_FIRST
132 	/*
133 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
134 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
135 	 *  Aborts are taken to EL3.
136 	 */
137 	scr_el3 &= ~SCR_EA_BIT;
138 #endif
139 
140 #if FAULT_INJECTION_SUPPORT
141 	/* Enable fault injection from lower ELs */
142 	scr_el3 |= SCR_FIEN_BIT;
143 #endif
144 
145 #if !CTX_INCLUDE_PAUTH_REGS
146 	/*
147 	 * If the pointer authentication registers aren't saved during world
148 	 * switches the value of the registers can be leaked from the Secure to
149 	 * the Non-secure world. To prevent this, rather than enabling pointer
150 	 * authentication everywhere, we only enable it in the Non-secure world.
151 	 *
152 	 * If the Secure world wants to use pointer authentication,
153 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
154 	 */
155 	if (security_state == NON_SECURE)
156 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
157 #endif /* !CTX_INCLUDE_PAUTH_REGS */
158 
159 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
160 	/* Get Memory Tagging Extension support level */
161 	unsigned int mte = get_armv8_5_mte_support();
162 #endif
163 	/*
164 	 * Enable MTE support. Support is enabled unilaterally for the normal
165 	 * world, and only for the secure world when CTX_INCLUDE_MTE_REGS is
166 	 * set.
167 	 */
168 #if CTX_INCLUDE_MTE_REGS
169 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
170 	scr_el3 |= SCR_ATA_BIT;
171 #else
172 	/*
173 	 * When MTE is only implemented at EL0, it can be enabled
174 	 * across both worlds as no MTE registers are used.
175 	 */
176 	if ((mte == MTE_IMPLEMENTED_EL0) ||
177 	/*
178 	 * When MTE is implemented at all ELs, it can be only enabled
179 	 * in Non-Secure world without register saving.
180 	 */
181 	  (((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY)) &&
182 	    (security_state == NON_SECURE))) {
183 		scr_el3 |= SCR_ATA_BIT;
184 	}
185 #endif	/* CTX_INCLUDE_MTE_REGS */
186 
187 #ifdef IMAGE_BL31
188 	/*
189 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
190 	 *  indicated by the interrupt routing model for BL31.
191 	 */
192 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
193 #endif
194 
195 	/* Save the initialized value of CPTR_EL3 register */
196 	write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3());
197 	if (security_state == SECURE) {
198 		enable_extensions_secure(ctx);
199 	}
200 
201 	/*
202 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
203 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
204 	 * next mode is Hyp.
205 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
206 	 * same conditions as HVC instructions and when the processor supports
207 	 * ARMv8.6-FGT.
208 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
209 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
210 	 * and when the processor supports ECV.
211 	 */
212 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
213 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
214 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
215 		scr_el3 |= SCR_HCE_BIT;
216 
217 		if (is_armv8_6_fgt_present()) {
218 			scr_el3 |= SCR_FGTEN_BIT;
219 		}
220 
221 		if (get_armv8_6_ecv_support()
222 		    == ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) {
223 			scr_el3 |= SCR_ECVEN_BIT;
224 		}
225 	}
226 
227 	/* Enable S-EL2 if the next EL is EL2 and security state is secure */
228 	if ((security_state == SECURE) && (GET_EL(ep->spsr) == MODE_EL2)) {
229 		if (GET_RW(ep->spsr) != MODE_RW_64) {
230 			ERROR("S-EL2 can not be used in AArch32.");
231 			panic();
232 		}
233 
234 		scr_el3 |= SCR_EEL2_BIT;
235 	}
236 
237 	/*
238 	 * FEAT_AMUv1p1 virtual offset registers are only accessible from EL3
239 	 * and EL2, when clear, this bit traps accesses from EL2 so we set it
240 	 * to 1 when EL2 is present.
241 	 */
242 	if (is_armv8_6_feat_amuv1p1_present() &&
243 		(el_implemented(2) != EL_IMPL_NONE)) {
244 		scr_el3 |= SCR_AMVOFFEN_BIT;
245 	}
246 
247 	/*
248 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
249 	 * execution state setting all fields rather than relying of the hw.
250 	 * Some fields have architecturally UNKNOWN reset values and these are
251 	 * set to zero.
252 	 *
253 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
254 	 *
255 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
256 	 *  required by PSCI specification)
257 	 */
258 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
259 	if (GET_RW(ep->spsr) == MODE_RW_64)
260 		sctlr_elx |= SCTLR_EL1_RES1;
261 	else {
262 		/*
263 		 * If the target execution state is AArch32 then the following
264 		 * fields need to be set.
265 		 *
266 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
267 		 *  instructions are not trapped to EL1.
268 		 *
269 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
270 		 *  instructions are not trapped to EL1.
271 		 *
272 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
273 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
274 		 */
275 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
276 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
277 	}
278 
279 #if ERRATA_A75_764081
280 	/*
281 	 * If workaround of errata 764081 for Cortex-A75 is used then set
282 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
283 	 */
284 	sctlr_elx |= SCTLR_IESB_BIT;
285 #endif
286 
287 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
288 	if (is_armv8_6_twed_present()) {
289 		uint32_t delay = plat_arm_set_twedel_scr_el3();
290 
291 		if (delay != TWED_DISABLED) {
292 			/* Make sure delay value fits */
293 			assert((delay & ~SCR_TWEDEL_MASK) == 0U);
294 
295 			/* Set delay in SCR_EL3 */
296 			scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
297 			scr_el3 |= ((delay & SCR_TWEDEL_MASK)
298 					<< SCR_TWEDEL_SHIFT);
299 
300 			/* Enable WFE delay */
301 			scr_el3 |= SCR_TWEDEn_BIT;
302 		}
303 	}
304 
305 	/*
306 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
307 	 * and other EL2 registers are set up by cm_prepare_el3_exit() as they
308 	 * are not part of the stored cpu_context.
309 	 */
310 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
311 
312 	/*
313 	 * Base the context ACTLR_EL1 on the current value, as it is
314 	 * implementation defined. The context restore process will write
315 	 * the value from the context to the actual register and can cause
316 	 * problems for processor cores that don't expect certain bits to
317 	 * be zero.
318 	 */
319 	actlr_elx = read_actlr_el1();
320 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
321 
322 	/*
323 	 * Populate EL3 state so that we've the right context
324 	 * before doing ERET
325 	 */
326 	state = get_el3state_ctx(ctx);
327 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
328 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
329 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
330 
331 	/*
332 	 * Store the X0-X7 value from the entrypoint into the context
333 	 * Use memcpy as we are in control of the layout of the structures
334 	 */
335 	gp_regs = get_gpregs_ctx(ctx);
336 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
337 }
338 
339 /*******************************************************************************
340  * Enable architecture extensions on first entry to Non-secure world.
341  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
342  * it is zero.
343  ******************************************************************************/
344 static void enable_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx)
345 {
346 #if IMAGE_BL31
347 #if ENABLE_SPE_FOR_LOWER_ELS
348 	spe_enable(el2_unused);
349 #endif
350 
351 #if ENABLE_AMU
352 	amu_enable(el2_unused, ctx);
353 #endif
354 
355 #if ENABLE_SVE_FOR_NS
356 	sve_enable(ctx);
357 #endif
358 
359 #if ENABLE_MPAM_FOR_LOWER_ELS
360 	mpam_enable(el2_unused);
361 #endif
362 
363 #if ENABLE_TRBE_FOR_NS
364 	trbe_enable();
365 #endif /* ENABLE_TRBE_FOR_NS */
366 
367 #if ENABLE_SYS_REG_TRACE_FOR_NS
368 	sys_reg_trace_enable(ctx);
369 #endif /* ENABLE_SYS_REG_TRACE_FOR_NS */
370 
371 #if ENABLE_TRF_FOR_NS
372 	trf_enable();
373 #endif /* ENABLE_TRF_FOR_NS */
374 
375 #endif
376 }
377 
378 /*******************************************************************************
379  * Enable architecture extensions on first entry to Secure world.
380  ******************************************************************************/
381 static void enable_extensions_secure(cpu_context_t *ctx)
382 {
383 #if IMAGE_BL31
384 #if ENABLE_SVE_FOR_SWD
385 	sve_enable(ctx);
386 #endif
387 #endif
388 }
389 
390 /*******************************************************************************
391  * The following function initializes the cpu_context for a CPU specified by
392  * its `cpu_idx` for first use, and sets the initial entrypoint state as
393  * specified by the entry_point_info structure.
394  ******************************************************************************/
395 void cm_init_context_by_index(unsigned int cpu_idx,
396 			      const entry_point_info_t *ep)
397 {
398 	cpu_context_t *ctx;
399 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
400 	cm_setup_context(ctx, ep);
401 }
402 
403 /*******************************************************************************
404  * The following function initializes the cpu_context for the current CPU
405  * for first use, and sets the initial entrypoint state as specified by the
406  * entry_point_info structure.
407  ******************************************************************************/
408 void cm_init_my_context(const entry_point_info_t *ep)
409 {
410 	cpu_context_t *ctx;
411 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
412 	cm_setup_context(ctx, ep);
413 }
414 
415 /*******************************************************************************
416  * Prepare the CPU system registers for first entry into secure or normal world
417  *
418  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
419  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
420  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
421  * For all entries, the EL1 registers are initialized from the cpu_context
422  ******************************************************************************/
423 void cm_prepare_el3_exit(uint32_t security_state)
424 {
425 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
426 	cpu_context_t *ctx = cm_get_context(security_state);
427 	bool el2_unused = false;
428 	uint64_t hcr_el2 = 0U;
429 
430 	assert(ctx != NULL);
431 
432 	if (security_state == NON_SECURE) {
433 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
434 						 CTX_SCR_EL3);
435 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
436 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
437 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
438 							   CTX_SCTLR_EL1);
439 			sctlr_elx &= SCTLR_EE_BIT;
440 			sctlr_elx |= SCTLR_EL2_RES1;
441 #if ERRATA_A75_764081
442 			/*
443 			 * If workaround of errata 764081 for Cortex-A75 is used
444 			 * then set SCTLR_EL2.IESB to enable Implicit Error
445 			 * Synchronization Barrier.
446 			 */
447 			sctlr_elx |= SCTLR_IESB_BIT;
448 #endif
449 			write_sctlr_el2(sctlr_elx);
450 		} else if (el_implemented(2) != EL_IMPL_NONE) {
451 			el2_unused = true;
452 
453 			/*
454 			 * EL2 present but unused, need to disable safely.
455 			 * SCTLR_EL2 can be ignored in this case.
456 			 *
457 			 * Set EL2 register width appropriately: Set HCR_EL2
458 			 * field to match SCR_EL3.RW.
459 			 */
460 			if ((scr_el3 & SCR_RW_BIT) != 0U)
461 				hcr_el2 |= HCR_RW_BIT;
462 
463 			/*
464 			 * For Armv8.3 pointer authentication feature, disable
465 			 * traps to EL2 when accessing key registers or using
466 			 * pointer authentication instructions from lower ELs.
467 			 */
468 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
469 
470 			write_hcr_el2(hcr_el2);
471 
472 			/*
473 			 * Initialise CPTR_EL2 setting all fields rather than
474 			 * relying on the hw. All fields have architecturally
475 			 * UNKNOWN reset values.
476 			 *
477 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
478 			 *  accesses to the CPACR_EL1 or CPACR from both
479 			 *  Execution states do not trap to EL2.
480 			 *
481 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
482 			 *  register accesses to the trace registers from both
483 			 *  Execution states do not trap to EL2.
484 			 *  If PE trace unit System registers are not implemented
485 			 *  then this bit is reserved, and must be set to zero.
486 			 *
487 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
488 			 *  to SIMD and floating-point functionality from both
489 			 *  Execution states do not trap to EL2.
490 			 */
491 			write_cptr_el2(CPTR_EL2_RESET_VAL &
492 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
493 					| CPTR_EL2_TFP_BIT));
494 
495 			/*
496 			 * Initialise CNTHCTL_EL2. All fields are
497 			 * architecturally UNKNOWN on reset and are set to zero
498 			 * except for field(s) listed below.
499 			 *
500 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
501 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
502 			 *  physical timer registers.
503 			 *
504 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
505 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
506 			 *  physical counter registers.
507 			 */
508 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
509 						EL1PCEN_BIT | EL1PCTEN_BIT);
510 
511 			/*
512 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
513 			 * architecturally UNKNOWN value.
514 			 */
515 			write_cntvoff_el2(0);
516 
517 			/*
518 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
519 			 * MPIDR_EL1 respectively.
520 			 */
521 			write_vpidr_el2(read_midr_el1());
522 			write_vmpidr_el2(read_mpidr_el1());
523 
524 			/*
525 			 * Initialise VTTBR_EL2. All fields are architecturally
526 			 * UNKNOWN on reset.
527 			 *
528 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
529 			 *  2 address translation is disabled, cache maintenance
530 			 *  operations depend on the VMID.
531 			 *
532 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
533 			 *  translation is disabled.
534 			 */
535 			write_vttbr_el2(VTTBR_RESET_VAL &
536 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
537 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
538 
539 			/*
540 			 * Initialise MDCR_EL2, setting all fields rather than
541 			 * relying on hw. Some fields are architecturally
542 			 * UNKNOWN on reset.
543 			 *
544 			 * MDCR_EL2.HLP: Set to one so that event counter
545 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
546 			 *  occurs on the increment that changes
547 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
548 			 *  implemented. This bit is RES0 in versions of the
549 			 *  architecture earlier than ARMv8.5, setting it to 1
550 			 *  doesn't have any effect on them.
551 			 *
552 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
553 			 *  Filter Control register TRFCR_EL1 at EL1 is not
554 			 *  trapped to EL2. This bit is RES0 in versions of
555 			 *  the architecture earlier than ARMv8.4.
556 			 *
557 			 * MDCR_EL2.HPMD: Set to one so that event counting is
558 			 *  prohibited at EL2. This bit is RES0 in versions of
559 			 *  the architecture earlier than ARMv8.1, setting it
560 			 *  to 1 doesn't have any effect on them.
561 			 *
562 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
563 			 *  Statistical Profiling control registers from EL1
564 			 *  do not trap to EL2. This bit is RES0 when SPE is
565 			 *  not implemented.
566 			 *
567 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
568 			 *  EL1 System register accesses to the Debug ROM
569 			 *  registers are not trapped to EL2.
570 			 *
571 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
572 			 *  System register accesses to the powerdown debug
573 			 *  registers are not trapped to EL2.
574 			 *
575 			 * MDCR_EL2.TDA: Set to zero so that System register
576 			 *  accesses to the debug registers do not trap to EL2.
577 			 *
578 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
579 			 *  are not routed to EL2.
580 			 *
581 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
582 			 *  Monitors.
583 			 *
584 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
585 			 *  EL1 accesses to all Performance Monitors registers
586 			 *  are not trapped to EL2.
587 			 *
588 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
589 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
590 			 *  trapped to EL2.
591 			 *
592 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
593 			 *  architecturally-defined reset value.
594 			 *
595 			 * MDCR_EL2.E2TB: Set to zero so that the trace Buffer
596 			 *  owning exception level is NS-EL1 and, tracing is
597 			 *  prohibited at NS-EL2. These bits are RES0 when
598 			 *  FEAT_TRBE is not implemented.
599 			 */
600 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
601 				     MDCR_EL2_HPMD) |
602 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
603 				   >> PMCR_EL0_N_SHIFT)) &
604 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
605 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
606 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
607 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
608 				     MDCR_EL2_TPMCR_BIT |
609 				     MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1));
610 
611 			write_mdcr_el2(mdcr_el2);
612 
613 			/*
614 			 * Initialise HSTR_EL2. All fields are architecturally
615 			 * UNKNOWN on reset.
616 			 *
617 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
618 			 *  Non-secure EL0 or EL1 accesses to System registers
619 			 *  do not trap to EL2.
620 			 */
621 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
622 			/*
623 			 * Initialise CNTHP_CTL_EL2. All fields are
624 			 * architecturally UNKNOWN on reset.
625 			 *
626 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
627 			 *  physical timer and prevent timer interrupts.
628 			 */
629 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
630 						~(CNTHP_CTL_ENABLE_BIT));
631 		}
632 		enable_extensions_nonsecure(el2_unused, ctx);
633 	}
634 
635 	cm_el1_sysregs_context_restore(security_state);
636 	cm_set_next_eret_context(security_state);
637 }
638 
639 #if CTX_INCLUDE_EL2_REGS
640 /*******************************************************************************
641  * Save EL2 sysreg context
642  ******************************************************************************/
643 void cm_el2_sysregs_context_save(uint32_t security_state)
644 {
645 	u_register_t scr_el3 = read_scr();
646 
647 	/*
648 	 * Always save the non-secure EL2 context, only save the
649 	 * S-EL2 context if S-EL2 is enabled.
650 	 */
651 	if ((security_state == NON_SECURE) ||
652 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
653 		cpu_context_t *ctx;
654 
655 		ctx = cm_get_context(security_state);
656 		assert(ctx != NULL);
657 
658 		el2_sysregs_context_save(get_el2_sysregs_ctx(ctx));
659 	}
660 }
661 
662 /*******************************************************************************
663  * Restore EL2 sysreg context
664  ******************************************************************************/
665 void cm_el2_sysregs_context_restore(uint32_t security_state)
666 {
667 	u_register_t scr_el3 = read_scr();
668 
669 	/*
670 	 * Always restore the non-secure EL2 context, only restore the
671 	 * S-EL2 context if S-EL2 is enabled.
672 	 */
673 	if ((security_state == NON_SECURE) ||
674 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
675 		cpu_context_t *ctx;
676 
677 		ctx = cm_get_context(security_state);
678 		assert(ctx != NULL);
679 
680 		el2_sysregs_context_restore(get_el2_sysregs_ctx(ctx));
681 	}
682 }
683 #endif /* CTX_INCLUDE_EL2_REGS */
684 
685 /*******************************************************************************
686  * The next four functions are used by runtime services to save and restore
687  * EL1 context on the 'cpu_context' structure for the specified security
688  * state.
689  ******************************************************************************/
690 void cm_el1_sysregs_context_save(uint32_t security_state)
691 {
692 	cpu_context_t *ctx;
693 
694 	ctx = cm_get_context(security_state);
695 	assert(ctx != NULL);
696 
697 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
698 
699 #if IMAGE_BL31
700 	if (security_state == SECURE)
701 		PUBLISH_EVENT(cm_exited_secure_world);
702 	else
703 		PUBLISH_EVENT(cm_exited_normal_world);
704 #endif
705 }
706 
707 void cm_el1_sysregs_context_restore(uint32_t security_state)
708 {
709 	cpu_context_t *ctx;
710 
711 	ctx = cm_get_context(security_state);
712 	assert(ctx != NULL);
713 
714 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
715 
716 #if IMAGE_BL31
717 	if (security_state == SECURE)
718 		PUBLISH_EVENT(cm_entering_secure_world);
719 	else
720 		PUBLISH_EVENT(cm_entering_normal_world);
721 #endif
722 }
723 
724 /*******************************************************************************
725  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
726  * given security state with the given entrypoint
727  ******************************************************************************/
728 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
729 {
730 	cpu_context_t *ctx;
731 	el3_state_t *state;
732 
733 	ctx = cm_get_context(security_state);
734 	assert(ctx != NULL);
735 
736 	/* Populate EL3 state so that ERET jumps to the correct entry */
737 	state = get_el3state_ctx(ctx);
738 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
739 }
740 
741 /*******************************************************************************
742  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
743  * pertaining to the given security state
744  ******************************************************************************/
745 void cm_set_elr_spsr_el3(uint32_t security_state,
746 			uintptr_t entrypoint, uint32_t spsr)
747 {
748 	cpu_context_t *ctx;
749 	el3_state_t *state;
750 
751 	ctx = cm_get_context(security_state);
752 	assert(ctx != NULL);
753 
754 	/* Populate EL3 state so that ERET jumps to the correct entry */
755 	state = get_el3state_ctx(ctx);
756 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
757 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
758 }
759 
760 /*******************************************************************************
761  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
762  * pertaining to the given security state using the value and bit position
763  * specified in the parameters. It preserves all other bits.
764  ******************************************************************************/
765 void cm_write_scr_el3_bit(uint32_t security_state,
766 			  uint32_t bit_pos,
767 			  uint32_t value)
768 {
769 	cpu_context_t *ctx;
770 	el3_state_t *state;
771 	u_register_t scr_el3;
772 
773 	ctx = cm_get_context(security_state);
774 	assert(ctx != NULL);
775 
776 	/* Ensure that the bit position is a valid one */
777 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
778 
779 	/* Ensure that the 'value' is only a bit wide */
780 	assert(value <= 1U);
781 
782 	/*
783 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
784 	 * and set it to its new value.
785 	 */
786 	state = get_el3state_ctx(ctx);
787 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
788 	scr_el3 &= ~(1UL << bit_pos);
789 	scr_el3 |= (u_register_t)value << bit_pos;
790 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
791 }
792 
793 /*******************************************************************************
794  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
795  * given security state.
796  ******************************************************************************/
797 u_register_t cm_get_scr_el3(uint32_t security_state)
798 {
799 	cpu_context_t *ctx;
800 	el3_state_t *state;
801 
802 	ctx = cm_get_context(security_state);
803 	assert(ctx != NULL);
804 
805 	/* Populate EL3 state so that ERET jumps to the correct entry */
806 	state = get_el3state_ctx(ctx);
807 	return read_ctx_reg(state, CTX_SCR_EL3);
808 }
809 
810 /*******************************************************************************
811  * This function is used to program the context that's used for exception
812  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
813  * the required security state
814  ******************************************************************************/
815 void cm_set_next_eret_context(uint32_t security_state)
816 {
817 	cpu_context_t *ctx;
818 
819 	ctx = cm_get_context(security_state);
820 	assert(ctx != NULL);
821 
822 	cm_set_next_context(ctx);
823 }
824