xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision c3cf06f1a3a9b9ee8ac7a0ae505f95c45f7dca84)
1 /*
2  * Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <amu.h>
8 #include <arch.h>
9 #include <arch_helpers.h>
10 #include <assert.h>
11 #include <bl_common.h>
12 #include <context.h>
13 #include <context_mgmt.h>
14 #include <interrupt_mgmt.h>
15 #include <mpam.h>
16 #include <platform.h>
17 #include <platform_def.h>
18 #include <pubsub_events.h>
19 #include <smccc_helpers.h>
20 #include <spe.h>
21 #include <stdbool.h>
22 #include <string.h>
23 #include <sve.h>
24 #include <utils.h>
25 
26 
27 /*******************************************************************************
28  * Context management library initialisation routine. This library is used by
29  * runtime services to share pointers to 'cpu_context' structures for the secure
30  * and non-secure states. Management of the structures and their associated
31  * memory is not done by the context management library e.g. the PSCI service
32  * manages the cpu context used for entry from and exit to the non-secure state.
33  * The Secure payload dispatcher service manages the context(s) corresponding to
34  * the secure state. It also uses this library to get access to the non-secure
35  * state cpu context pointers.
36  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
37  * which will used for programming an entry into a lower EL. The same context
38  * will used to save state upon exception entry from that EL.
39  ******************************************************************************/
40 void __init cm_init(void)
41 {
42 	/*
43 	 * The context management library has only global data to intialize, but
44 	 * that will be done when the BSS is zeroed out
45 	 */
46 }
47 
48 /*******************************************************************************
49  * The following function initializes the cpu_context 'ctx' for
50  * first use, and sets the initial entrypoint state as specified by the
51  * entry_point_info structure.
52  *
53  * The security state to initialize is determined by the SECURE attribute
54  * of the entry_point_info.
55  *
56  * The EE and ST attributes are used to configure the endianess and secure
57  * timer availability for the new execution context.
58  *
59  * To prepare the register state for entry call cm_prepare_el3_exit() and
60  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
61  * cm_e1_sysreg_context_restore().
62  ******************************************************************************/
63 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
64 {
65 	unsigned int security_state;
66 	uint32_t scr_el3, pmcr_el0;
67 	el3_state_t *state;
68 	gp_regs_t *gp_regs;
69 	unsigned long sctlr_elx, actlr_elx;
70 
71 	assert(ctx != NULL);
72 
73 	security_state = GET_SECURITY_STATE(ep->h.attr);
74 
75 	/* Clear any residual register values from the context */
76 	zeromem(ctx, sizeof(*ctx));
77 
78 	/*
79 	 * SCR_EL3 was initialised during reset sequence in macro
80 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
81 	 * affect the next EL.
82 	 *
83 	 * The following fields are initially set to zero and then updated to
84 	 * the required value depending on the state of the SPSR_EL3 and the
85 	 * Security state and entrypoint attributes of the next EL.
86 	 */
87 	scr_el3 = (uint32_t)read_scr();
88 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
89 			SCR_ST_BIT | SCR_HCE_BIT);
90 	/*
91 	 * SCR_NS: Set the security state of the next EL.
92 	 */
93 	if (security_state != SECURE)
94 		scr_el3 |= SCR_NS_BIT;
95 	/*
96 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
97 	 *  Exception level as specified by SPSR.
98 	 */
99 	if (GET_RW(ep->spsr) == MODE_RW_64)
100 		scr_el3 |= SCR_RW_BIT;
101 	/*
102 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
103 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
104 	 *  by the entrypoint attributes.
105 	 */
106 	if (EP_GET_ST(ep->h.attr) != 0U)
107 		scr_el3 |= SCR_ST_BIT;
108 
109 #if !HANDLE_EA_EL3_FIRST
110 	/*
111 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
112 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
113 	 *  Aborts are taken to EL3.
114 	 */
115 	scr_el3 &= ~SCR_EA_BIT;
116 #endif
117 
118 #if FAULT_INJECTION_SUPPORT
119 	/* Enable fault injection from lower ELs */
120 	scr_el3 |= SCR_FIEN_BIT;
121 #endif
122 
123 #ifdef IMAGE_BL31
124 	/*
125 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as
126 	 *  indicated by the interrupt routing model for BL31.
127 	 */
128 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
129 #endif
130 
131 	/*
132 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
133 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
134 	 * next mode is Hyp.
135 	 */
136 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
137 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
138 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
139 		scr_el3 |= SCR_HCE_BIT;
140 	}
141 
142 	/*
143 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
144 	 * execution state setting all fields rather than relying of the hw.
145 	 * Some fields have architecturally UNKNOWN reset values and these are
146 	 * set to zero.
147 	 *
148 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
149 	 *
150 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
151 	 *  required by PSCI specification)
152 	 */
153 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
154 	if (GET_RW(ep->spsr) == MODE_RW_64)
155 		sctlr_elx |= SCTLR_EL1_RES1;
156 	else {
157 		/*
158 		 * If the target execution state is AArch32 then the following
159 		 * fields need to be set.
160 		 *
161 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
162 		 *  instructions are not trapped to EL1.
163 		 *
164 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
165 		 *  instructions are not trapped to EL1.
166 		 *
167 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
168 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
169 		 */
170 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
171 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
172 	}
173 
174 	/*
175 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
176 	 * and other EL2 registers are set up by cm_preapre_ns_entry() as they
177 	 * are not part of the stored cpu_context.
178 	 */
179 	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
180 
181 	/*
182 	 * Base the context ACTLR_EL1 on the current value, as it is
183 	 * implementation defined. The context restore process will write
184 	 * the value from the context to the actual register and can cause
185 	 * problems for processor cores that don't expect certain bits to
186 	 * be zero.
187 	 */
188 	actlr_elx = read_actlr_el1();
189 	write_ctx_reg((get_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
190 
191 	if (security_state == SECURE) {
192 		/*
193 		 * Initialise PMCR_EL0 for secure context only, setting all
194 		 * fields rather than relying on hw. Some fields are
195 		 * architecturally UNKNOWN on reset.
196 		 *
197 		 * PMCR_EL0.LC: Set to one so that cycle counter overflow, that
198 		 *  is recorded in PMOVSCLR_EL0[31], occurs on the increment
199 		 *  that changes PMCCNTR_EL0[63] from 1 to 0.
200 		 *
201 		 * PMCR_EL0.DP: Set to one so that the cycle counter,
202 		 *  PMCCNTR_EL0 does not count when event counting is prohibited.
203 		 *
204 		 * PMCR_EL0.X: Set to zero to disable export of events.
205 		 *
206 		 * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0
207 		 *  counts on every clock cycle.
208 		 */
209 		pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT
210 				| PMCR_EL0_DP_BIT)
211 				& ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT));
212 		write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0);
213 	}
214 
215 	/* Populate EL3 state so that we've the right context before doing ERET */
216 	state = get_el3state_ctx(ctx);
217 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
218 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
219 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
220 
221 	/*
222 	 * Store the X0-X7 value from the entrypoint into the context
223 	 * Use memcpy as we are in control of the layout of the structures
224 	 */
225 	gp_regs = get_gpregs_ctx(ctx);
226 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
227 }
228 
229 /*******************************************************************************
230  * Enable architecture extensions on first entry to Non-secure world.
231  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
232  * it is zero.
233  ******************************************************************************/
234 static void enable_extensions_nonsecure(bool el2_unused)
235 {
236 #if IMAGE_BL31
237 #if ENABLE_SPE_FOR_LOWER_ELS
238 	spe_enable(el2_unused);
239 #endif
240 
241 #if ENABLE_AMU
242 	amu_enable(el2_unused);
243 #endif
244 
245 #if ENABLE_SVE_FOR_NS
246 	sve_enable(el2_unused);
247 #endif
248 
249 #if ENABLE_MPAM_FOR_LOWER_ELS
250 	mpam_enable(el2_unused);
251 #endif
252 #endif
253 }
254 
255 /*******************************************************************************
256  * The following function initializes the cpu_context for a CPU specified by
257  * its `cpu_idx` for first use, and sets the initial entrypoint state as
258  * specified by the entry_point_info structure.
259  ******************************************************************************/
260 void cm_init_context_by_index(unsigned int cpu_idx,
261 			      const entry_point_info_t *ep)
262 {
263 	cpu_context_t *ctx;
264 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
265 	cm_setup_context(ctx, ep);
266 }
267 
268 /*******************************************************************************
269  * The following function initializes the cpu_context for the current CPU
270  * for first use, and sets the initial entrypoint state as specified by the
271  * entry_point_info structure.
272  ******************************************************************************/
273 void cm_init_my_context(const entry_point_info_t *ep)
274 {
275 	cpu_context_t *ctx;
276 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
277 	cm_setup_context(ctx, ep);
278 }
279 
280 /*******************************************************************************
281  * Prepare the CPU system registers for first entry into secure or normal world
282  *
283  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
284  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
285  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
286  * For all entries, the EL1 registers are initialized from the cpu_context
287  ******************************************************************************/
288 void cm_prepare_el3_exit(uint32_t security_state)
289 {
290 	uint32_t sctlr_elx, scr_el3, mdcr_el2;
291 	cpu_context_t *ctx = cm_get_context(security_state);
292 	bool el2_unused = false;
293 	uint64_t hcr_el2 = 0U;
294 
295 	assert(ctx != NULL);
296 
297 	if (security_state == NON_SECURE) {
298 		scr_el3 = (uint32_t)read_ctx_reg(get_el3state_ctx(ctx),
299 						 CTX_SCR_EL3);
300 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
301 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
302 			sctlr_elx = (uint32_t)read_ctx_reg(get_sysregs_ctx(ctx),
303 							   CTX_SCTLR_EL1);
304 			sctlr_elx &= SCTLR_EE_BIT;
305 			sctlr_elx |= SCTLR_EL2_RES1;
306 			write_sctlr_el2(sctlr_elx);
307 		} else if (el_implemented(2) != EL_IMPL_NONE) {
308 			el2_unused = true;
309 
310 			/*
311 			 * EL2 present but unused, need to disable safely.
312 			 * SCTLR_EL2 can be ignored in this case.
313 			 *
314 			 * Set EL2 register width appropriately: Set HCR_EL2
315 			 * field to match SCR_EL3.RW.
316 			 */
317 			if ((scr_el3 & SCR_RW_BIT) != 0U)
318 				hcr_el2 |= HCR_RW_BIT;
319 
320 			/*
321 			 * For Armv8.3 pointer authentication feature, disable
322 			 * traps to EL2 when accessing key registers or using
323 			 * pointer authentication instructions from lower ELs.
324 			 */
325 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
326 
327 			write_hcr_el2(hcr_el2);
328 
329 			/*
330 			 * Initialise CPTR_EL2 setting all fields rather than
331 			 * relying on the hw. All fields have architecturally
332 			 * UNKNOWN reset values.
333 			 *
334 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
335 			 *  accesses to the CPACR_EL1 or CPACR from both
336 			 *  Execution states do not trap to EL2.
337 			 *
338 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
339 			 *  register accesses to the trace registers from both
340 			 *  Execution states do not trap to EL2.
341 			 *
342 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
343 			 *  to SIMD and floating-point functionality from both
344 			 *  Execution states do not trap to EL2.
345 			 */
346 			write_cptr_el2(CPTR_EL2_RESET_VAL &
347 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
348 					| CPTR_EL2_TFP_BIT));
349 
350 			/*
351 			 * Initiliase CNTHCTL_EL2. All fields are
352 			 * architecturally UNKNOWN on reset and are set to zero
353 			 * except for field(s) listed below.
354 			 *
355 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
356 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
357 			 *  physical timer registers.
358 			 *
359 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
360 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
361 			 *  physical counter registers.
362 			 */
363 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
364 						EL1PCEN_BIT | EL1PCTEN_BIT);
365 
366 			/*
367 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
368 			 * architecturally UNKNOWN value.
369 			 */
370 			write_cntvoff_el2(0);
371 
372 			/*
373 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
374 			 * MPIDR_EL1 respectively.
375 			 */
376 			write_vpidr_el2(read_midr_el1());
377 			write_vmpidr_el2(read_mpidr_el1());
378 
379 			/*
380 			 * Initialise VTTBR_EL2. All fields are architecturally
381 			 * UNKNOWN on reset.
382 			 *
383 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
384 			 *  2 address translation is disabled, cache maintenance
385 			 *  operations depend on the VMID.
386 			 *
387 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
388 			 *  translation is disabled.
389 			 */
390 			write_vttbr_el2(VTTBR_RESET_VAL &
391 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
392 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
393 
394 			/*
395 			 * Initialise MDCR_EL2, setting all fields rather than
396 			 * relying on hw. Some fields are architecturally
397 			 * UNKNOWN on reset.
398 			 *
399 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
400 			 *  EL1 System register accesses to the Debug ROM
401 			 *  registers are not trapped to EL2.
402 			 *
403 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
404 			 *  System register accesses to the powerdown debug
405 			 *  registers are not trapped to EL2.
406 			 *
407 			 * MDCR_EL2.TDA: Set to zero so that System register
408 			 *  accesses to the debug registers do not trap to EL2.
409 			 *
410 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
411 			 *  are not routed to EL2.
412 			 *
413 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
414 			 *  Monitors.
415 			 *
416 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
417 			 *  EL1 accesses to all Performance Monitors registers
418 			 *  are not trapped to EL2.
419 			 *
420 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
421 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
422 			 *  trapped to EL2.
423 			 *
424 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
425 			 *  architecturally-defined reset value.
426 			 */
427 			mdcr_el2 = ((MDCR_EL2_RESET_VAL |
428 					((read_pmcr_el0() & PMCR_EL0_N_BITS)
429 					>> PMCR_EL0_N_SHIFT)) &
430 					~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT
431 					| MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT
432 					| MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT
433 					| MDCR_EL2_TPMCR_BIT));
434 
435 			write_mdcr_el2(mdcr_el2);
436 
437 			/*
438 			 * Initialise HSTR_EL2. All fields are architecturally
439 			 * UNKNOWN on reset.
440 			 *
441 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
442 			 *  Non-secure EL0 or EL1 accesses to System registers
443 			 *  do not trap to EL2.
444 			 */
445 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
446 			/*
447 			 * Initialise CNTHP_CTL_EL2. All fields are
448 			 * architecturally UNKNOWN on reset.
449 			 *
450 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
451 			 *  physical timer and prevent timer interrupts.
452 			 */
453 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
454 						~(CNTHP_CTL_ENABLE_BIT));
455 		}
456 		enable_extensions_nonsecure(el2_unused);
457 	}
458 
459 	cm_el1_sysregs_context_restore(security_state);
460 	cm_set_next_eret_context(security_state);
461 }
462 
463 /*******************************************************************************
464  * The next four functions are used by runtime services to save and restore
465  * EL1 context on the 'cpu_context' structure for the specified security
466  * state.
467  ******************************************************************************/
468 void cm_el1_sysregs_context_save(uint32_t security_state)
469 {
470 	cpu_context_t *ctx;
471 
472 	ctx = cm_get_context(security_state);
473 	assert(ctx != NULL);
474 
475 	el1_sysregs_context_save(get_sysregs_ctx(ctx));
476 
477 #if IMAGE_BL31
478 	if (security_state == SECURE)
479 		PUBLISH_EVENT(cm_exited_secure_world);
480 	else
481 		PUBLISH_EVENT(cm_exited_normal_world);
482 #endif
483 }
484 
485 void cm_el1_sysregs_context_restore(uint32_t security_state)
486 {
487 	cpu_context_t *ctx;
488 
489 	ctx = cm_get_context(security_state);
490 	assert(ctx != NULL);
491 
492 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
493 
494 #if IMAGE_BL31
495 	if (security_state == SECURE)
496 		PUBLISH_EVENT(cm_entering_secure_world);
497 	else
498 		PUBLISH_EVENT(cm_entering_normal_world);
499 #endif
500 }
501 
502 /*******************************************************************************
503  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
504  * given security state with the given entrypoint
505  ******************************************************************************/
506 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
507 {
508 	cpu_context_t *ctx;
509 	el3_state_t *state;
510 
511 	ctx = cm_get_context(security_state);
512 	assert(ctx != NULL);
513 
514 	/* Populate EL3 state so that ERET jumps to the correct entry */
515 	state = get_el3state_ctx(ctx);
516 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
517 }
518 
519 /*******************************************************************************
520  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
521  * pertaining to the given security state
522  ******************************************************************************/
523 void cm_set_elr_spsr_el3(uint32_t security_state,
524 			uintptr_t entrypoint, uint32_t spsr)
525 {
526 	cpu_context_t *ctx;
527 	el3_state_t *state;
528 
529 	ctx = cm_get_context(security_state);
530 	assert(ctx != NULL);
531 
532 	/* Populate EL3 state so that ERET jumps to the correct entry */
533 	state = get_el3state_ctx(ctx);
534 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
535 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
536 }
537 
538 /*******************************************************************************
539  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
540  * pertaining to the given security state using the value and bit position
541  * specified in the parameters. It preserves all other bits.
542  ******************************************************************************/
543 void cm_write_scr_el3_bit(uint32_t security_state,
544 			  uint32_t bit_pos,
545 			  uint32_t value)
546 {
547 	cpu_context_t *ctx;
548 	el3_state_t *state;
549 	uint32_t scr_el3;
550 
551 	ctx = cm_get_context(security_state);
552 	assert(ctx != NULL);
553 
554 	/* Ensure that the bit position is a valid one */
555 	assert(((1U << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
556 
557 	/* Ensure that the 'value' is only a bit wide */
558 	assert(value <= 1U);
559 
560 	/*
561 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
562 	 * and set it to its new value.
563 	 */
564 	state = get_el3state_ctx(ctx);
565 	scr_el3 = (uint32_t)read_ctx_reg(state, CTX_SCR_EL3);
566 	scr_el3 &= ~(1U << bit_pos);
567 	scr_el3 |= value << bit_pos;
568 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
569 }
570 
571 /*******************************************************************************
572  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
573  * given security state.
574  ******************************************************************************/
575 uint32_t cm_get_scr_el3(uint32_t security_state)
576 {
577 	cpu_context_t *ctx;
578 	el3_state_t *state;
579 
580 	ctx = cm_get_context(security_state);
581 	assert(ctx != NULL);
582 
583 	/* Populate EL3 state so that ERET jumps to the correct entry */
584 	state = get_el3state_ctx(ctx);
585 	return (uint32_t)read_ctx_reg(state, CTX_SCR_EL3);
586 }
587 
588 /*******************************************************************************
589  * This function is used to program the context that's used for exception
590  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
591  * the required security state
592  ******************************************************************************/
593 void cm_set_next_eret_context(uint32_t security_state)
594 {
595 	cpu_context_t *ctx;
596 
597 	ctx = cm_get_context(security_state);
598 	assert(ctx != NULL);
599 
600 	cm_set_next_context(ctx);
601 }
602