xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision bd0c34778174aa4239ff96b448d0b6e1deeec4e2)
1 /*
2  * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <bl_common.h>
11 #include <context.h>
12 #include <context_mgmt.h>
13 #include <interrupt_mgmt.h>
14 #include <platform.h>
15 #include <platform_def.h>
16 #include <smcc_helpers.h>
17 #include <string.h>
18 #include <utils.h>
19 
20 
21 /*******************************************************************************
22  * Context management library initialisation routine. This library is used by
23  * runtime services to share pointers to 'cpu_context' structures for the secure
24  * and non-secure states. Management of the structures and their associated
25  * memory is not done by the context management library e.g. the PSCI service
26  * manages the cpu context used for entry from and exit to the non-secure state.
27  * The Secure payload dispatcher service manages the context(s) corresponding to
28  * the secure state. It also uses this library to get access to the non-secure
29  * state cpu context pointers.
30  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
31  * which will used for programming an entry into a lower EL. The same context
32  * will used to save state upon exception entry from that EL.
33  ******************************************************************************/
34 void cm_init(void)
35 {
36 	/*
37 	 * The context management library has only global data to intialize, but
38 	 * that will be done when the BSS is zeroed out
39 	 */
40 }
41 
42 /*******************************************************************************
43  * The following function initializes the cpu_context 'ctx' for
44  * first use, and sets the initial entrypoint state as specified by the
45  * entry_point_info structure.
46  *
47  * The security state to initialize is determined by the SECURE attribute
48  * of the entry_point_info. The function returns a pointer to the initialized
49  * context and sets this as the next context to return to.
50  *
51  * The EE and ST attributes are used to configure the endianess and secure
52  * timer availability for the new execution context.
53  *
54  * To prepare the register state for entry call cm_prepare_el3_exit() and
55  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
56  * cm_e1_sysreg_context_restore().
57  ******************************************************************************/
58 static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
59 {
60 	unsigned int security_state;
61 	uint32_t scr_el3, pmcr_el0;
62 	el3_state_t *state;
63 	gp_regs_t *gp_regs;
64 	unsigned long sctlr_elx;
65 
66 	assert(ctx);
67 
68 	security_state = GET_SECURITY_STATE(ep->h.attr);
69 
70 	/* Clear any residual register values from the context */
71 	zeromem(ctx, sizeof(*ctx));
72 
73 	/*
74 	 * SCR_EL3 was initialised during reset sequence in macro
75 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
76 	 * affect the next EL.
77 	 *
78 	 * The following fields are initially set to zero and then updated to
79 	 * the required value depending on the state of the SPSR_EL3 and the
80 	 * Security state and entrypoint attributes of the next EL.
81 	 */
82 	scr_el3 = read_scr();
83 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
84 			SCR_ST_BIT | SCR_HCE_BIT);
85 	/*
86 	 * SCR_NS: Set the security state of the next EL.
87 	 */
88 	if (security_state != SECURE)
89 		scr_el3 |= SCR_NS_BIT;
90 	/*
91 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
92 	 *  Exception level as specified by SPSR.
93 	 */
94 	if (GET_RW(ep->spsr) == MODE_RW_64)
95 		scr_el3 |= SCR_RW_BIT;
96 	/*
97 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
98 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
99 	 *  by the entrypoint attributes.
100 	 */
101 	if (EP_GET_ST(ep->h.attr))
102 		scr_el3 |= SCR_ST_BIT;
103 
104 #ifndef HANDLE_EA_EL3_FIRST
105 	/*
106 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
107 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
108 	 *  Aborts are taken to EL3.
109 	 */
110 	scr_el3 &= ~SCR_EA_BIT;
111 #endif
112 
113 #ifdef IMAGE_BL31
114 	/*
115 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as
116 	 *  indicated by the interrupt routing model for BL31.
117 	 */
118 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
119 #endif
120 
121 	/*
122 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
123 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
124 	 * next mode is Hyp.
125 	 */
126 	if ((GET_RW(ep->spsr) == MODE_RW_64
127 	     && GET_EL(ep->spsr) == MODE_EL2)
128 	    || (GET_RW(ep->spsr) != MODE_RW_64
129 		&& GET_M32(ep->spsr) == MODE32_hyp)) {
130 		scr_el3 |= SCR_HCE_BIT;
131 	}
132 
133 	/*
134 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
135 	 * execution state setting all fields rather than relying of the hw.
136 	 * Some fields have architecturally UNKNOWN reset values and these are
137 	 * set to zero.
138 	 *
139 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
140 	 *
141 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
142 	 *  required by PSCI specification)
143 	 */
144 	sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
145 	if (GET_RW(ep->spsr) == MODE_RW_64)
146 		sctlr_elx |= SCTLR_EL1_RES1;
147 	else {
148 		/*
149 		 * If the target execution state is AArch32 then the following
150 		 * fields need to be set.
151 		 *
152 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
153 		 *  instructions are not trapped to EL1.
154 		 *
155 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
156 		 *  instructions are not trapped to EL1.
157 		 *
158 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
159 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
160 		 */
161 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
162 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
163 	}
164 
165 	/*
166 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
167 	 * and other EL2 registers are set up by cm_preapre_ns_entry() as they
168 	 * are not part of the stored cpu_context.
169 	 */
170 	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
171 
172 	if (security_state == SECURE) {
173 		/*
174 		 * Initialise PMCR_EL0 for secure context only, setting all
175 		 * fields rather than relying on hw. Some fields are
176 		 * architecturally UNKNOWN on reset.
177 		 *
178 		 * PMCR_EL0.LC: Set to one so that cycle counter overflow, that
179 		 *  is recorded in PMOVSCLR_EL0[31], occurs on the increment
180 		 *  that changes PMCCNTR_EL0[63] from 1 to 0.
181 		 *
182 		 * PMCR_EL0.DP: Set to one so that the cycle counter,
183 		 *  PMCCNTR_EL0 does not count when event counting is prohibited.
184 		 *
185 		 * PMCR_EL0.X: Set to zero to disable export of events.
186 		 *
187 		 * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0
188 		 *  counts on every clock cycle.
189 		 */
190 		pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT
191 				| PMCR_EL0_DP_BIT)
192 				& ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT));
193 		write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0);
194 	}
195 
196 	/* Populate EL3 state so that we've the right context before doing ERET */
197 	state = get_el3state_ctx(ctx);
198 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
199 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
200 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
201 
202 	/*
203 	 * Store the X0-X7 value from the entrypoint into the context
204 	 * Use memcpy as we are in control of the layout of the structures
205 	 */
206 	gp_regs = get_gpregs_ctx(ctx);
207 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
208 }
209 
210 /*******************************************************************************
211  * The following function initializes the cpu_context for a CPU specified by
212  * its `cpu_idx` for first use, and sets the initial entrypoint state as
213  * specified by the entry_point_info structure.
214  ******************************************************************************/
215 void cm_init_context_by_index(unsigned int cpu_idx,
216 			      const entry_point_info_t *ep)
217 {
218 	cpu_context_t *ctx;
219 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
220 	cm_init_context_common(ctx, ep);
221 }
222 
223 /*******************************************************************************
224  * The following function initializes the cpu_context for the current CPU
225  * for first use, and sets the initial entrypoint state as specified by the
226  * entry_point_info structure.
227  ******************************************************************************/
228 void cm_init_my_context(const entry_point_info_t *ep)
229 {
230 	cpu_context_t *ctx;
231 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
232 	cm_init_context_common(ctx, ep);
233 }
234 
235 /*******************************************************************************
236  * Prepare the CPU system registers for first entry into secure or normal world
237  *
238  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
239  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
240  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
241  * For all entries, the EL1 registers are initialized from the cpu_context
242  ******************************************************************************/
243 void cm_prepare_el3_exit(uint32_t security_state)
244 {
245 	uint32_t sctlr_elx, scr_el3, mdcr_el2;
246 	cpu_context_t *ctx = cm_get_context(security_state);
247 
248 	assert(ctx);
249 
250 	if (security_state == NON_SECURE) {
251 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
252 		if (scr_el3 & SCR_HCE_BIT) {
253 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
254 			sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
255 						 CTX_SCTLR_EL1);
256 			sctlr_elx &= SCTLR_EE_BIT;
257 			sctlr_elx |= SCTLR_EL2_RES1;
258 			write_sctlr_el2(sctlr_elx);
259 		} else if (EL_IMPLEMENTED(2)) {
260 			/*
261 			 * EL2 present but unused, need to disable safely.
262 			 * SCTLR_EL2 can be ignored in this case.
263 			 *
264 			 * Initialise all fields in HCR_EL2, except HCR_EL2.RW,
265 			 * to zero so that Non-secure operations do not trap to
266 			 * EL2.
267 			 *
268 			 * HCR_EL2.RW: Set this field to match SCR_EL3.RW
269 			 */
270 			write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);
271 
272 			/*
273 			 * Initialise CPTR_EL2 setting all fields rather than
274 			 * relying on the hw. All fields have architecturally
275 			 * UNKNOWN reset values.
276 			 *
277 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
278 			 *  accesses to the CPACR_EL1 or CPACR from both
279 			 *  Execution states do not trap to EL2.
280 			 *
281 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
282 			 *  register accesses to the trace registers from both
283 			 *  Execution states do not trap to EL2.
284 			 *
285 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
286 			 *  to SIMD and floating-point functionality from both
287 			 *  Execution states do not trap to EL2.
288 			 */
289 			write_cptr_el2(CPTR_EL2_RESET_VAL &
290 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
291 					| CPTR_EL2_TFP_BIT));
292 
293 			/*
294 			 * Initiliase CNTHCTL_EL2. All fields are
295 			 * architecturally UNKNOWN on reset and are set to zero
296 			 * except for field(s) listed below.
297 			 *
298 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
299 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
300 			 *  physical timer registers.
301 			 *
302 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
303 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
304 			 *  physical counter registers.
305 			 */
306 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
307 						EL1PCEN_BIT | EL1PCTEN_BIT);
308 
309 			/*
310 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
311 			 * architecturally UNKNOWN value.
312 			 */
313 			write_cntvoff_el2(0);
314 
315 			/*
316 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
317 			 * MPIDR_EL1 respectively.
318 			 */
319 			write_vpidr_el2(read_midr_el1());
320 			write_vmpidr_el2(read_mpidr_el1());
321 
322 			/*
323 			 * Initialise VTTBR_EL2. All fields are architecturally
324 			 * UNKNOWN on reset.
325 			 *
326 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
327 			 *  2 address translation is disabled, cache maintenance
328 			 *  operations depend on the VMID.
329 			 *
330 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
331 			 *  translation is disabled.
332 			 */
333 			write_vttbr_el2(VTTBR_RESET_VAL &
334 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
335 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
336 
337 			/*
338 			 * Initialise MDCR_EL2, setting all fields rather than
339 			 * relying on hw. Some fields are architecturally
340 			 * UNKNOWN on reset.
341 			 *
342 			 * MDCR_EL2.TPMS (ARM v8.2): Do not trap statistical
343 			 * profiling controls to EL2.
344 			 *
345 			 * MDCR_EL2.E2PB (ARM v8.2): SPE enabled in non-secure
346 			 * state. Accesses to profiling buffer controls at
347 			 * non-secure EL1 are not trapped to EL2.
348 			 *
349 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
350 			 *  EL1 System register accesses to the Debug ROM
351 			 *  registers are not trapped to EL2.
352 			 *
353 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
354 			 *  System register accesses to the powerdown debug
355 			 *  registers are not trapped to EL2.
356 			 *
357 			 * MDCR_EL2.TDA: Set to zero so that System register
358 			 *  accesses to the debug registers do not trap to EL2.
359 			 *
360 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
361 			 *  are not routed to EL2.
362 			 *
363 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
364 			 *  Monitors.
365 			 *
366 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
367 			 *  EL1 accesses to all Performance Monitors registers
368 			 *  are not trapped to EL2.
369 			 *
370 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
371 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
372 			 *  trapped to EL2.
373 			 *
374 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
375 			 *  architecturally-defined reset value.
376 			 */
377 			mdcr_el2 = ((MDCR_EL2_RESET_VAL |
378 					((read_pmcr_el0() & PMCR_EL0_N_BITS)
379 					>> PMCR_EL0_N_SHIFT)) &
380 					~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT
381 					| MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT
382 					| MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT
383 					| MDCR_EL2_TPMCR_BIT));
384 
385 #if ENABLE_SPE_FOR_LOWER_ELS
386 			uint64_t id_aa64dfr0_el1;
387 
388 			/* Detect if SPE is implemented */
389 			id_aa64dfr0_el1 = read_id_aa64dfr0_el1() >>
390 				ID_AA64DFR0_PMS_SHIFT;
391 			if ((id_aa64dfr0_el1 & ID_AA64DFR0_PMS_MASK) == 1) {
392 				/*
393 				 * Make sure traps to EL2 are not generated if
394 				 * EL2 is implemented but not used.
395 				 */
396 				mdcr_el2 &= ~MDCR_EL2_TPMS;
397 				mdcr_el2 |= MDCR_EL2_E2PB(MDCR_EL2_E2PB_EL1);
398 			}
399 #endif
400 
401 			write_mdcr_el2(mdcr_el2);
402 
403 			/*
404 			 * Initialise HSTR_EL2. All fields are architecturally
405 			 * UNKNOWN on reset.
406 			 *
407 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
408 			 *  Non-secure EL0 or EL1 accesses to System registers
409 			 *  do not trap to EL2.
410 			 */
411 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
412 			/*
413 			 * Initialise CNTHP_CTL_EL2. All fields are
414 			 * architecturally UNKNOWN on reset.
415 			 *
416 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
417 			 *  physical timer and prevent timer interrupts.
418 			 */
419 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
420 						~(CNTHP_CTL_ENABLE_BIT));
421 		}
422 	}
423 
424 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
425 
426 	cm_set_next_context(ctx);
427 }
428 
429 /*******************************************************************************
430  * The next four functions are used by runtime services to save and restore
431  * EL1 context on the 'cpu_context' structure for the specified security
432  * state.
433  ******************************************************************************/
434 void cm_el1_sysregs_context_save(uint32_t security_state)
435 {
436 	cpu_context_t *ctx;
437 
438 	ctx = cm_get_context(security_state);
439 	assert(ctx);
440 
441 	el1_sysregs_context_save(get_sysregs_ctx(ctx));
442 	el1_sysregs_context_save_post_ops();
443 }
444 
445 void cm_el1_sysregs_context_restore(uint32_t security_state)
446 {
447 	cpu_context_t *ctx;
448 
449 	ctx = cm_get_context(security_state);
450 	assert(ctx);
451 
452 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
453 }
454 
455 /*******************************************************************************
456  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
457  * given security state with the given entrypoint
458  ******************************************************************************/
459 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
460 {
461 	cpu_context_t *ctx;
462 	el3_state_t *state;
463 
464 	ctx = cm_get_context(security_state);
465 	assert(ctx);
466 
467 	/* Populate EL3 state so that ERET jumps to the correct entry */
468 	state = get_el3state_ctx(ctx);
469 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
470 }
471 
472 /*******************************************************************************
473  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
474  * pertaining to the given security state
475  ******************************************************************************/
476 void cm_set_elr_spsr_el3(uint32_t security_state,
477 			uintptr_t entrypoint, uint32_t spsr)
478 {
479 	cpu_context_t *ctx;
480 	el3_state_t *state;
481 
482 	ctx = cm_get_context(security_state);
483 	assert(ctx);
484 
485 	/* Populate EL3 state so that ERET jumps to the correct entry */
486 	state = get_el3state_ctx(ctx);
487 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
488 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
489 }
490 
491 /*******************************************************************************
492  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
493  * pertaining to the given security state using the value and bit position
494  * specified in the parameters. It preserves all other bits.
495  ******************************************************************************/
496 void cm_write_scr_el3_bit(uint32_t security_state,
497 			  uint32_t bit_pos,
498 			  uint32_t value)
499 {
500 	cpu_context_t *ctx;
501 	el3_state_t *state;
502 	uint32_t scr_el3;
503 
504 	ctx = cm_get_context(security_state);
505 	assert(ctx);
506 
507 	/* Ensure that the bit position is a valid one */
508 	assert((1 << bit_pos) & SCR_VALID_BIT_MASK);
509 
510 	/* Ensure that the 'value' is only a bit wide */
511 	assert(value <= 1);
512 
513 	/*
514 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
515 	 * and set it to its new value.
516 	 */
517 	state = get_el3state_ctx(ctx);
518 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
519 	scr_el3 &= ~(1 << bit_pos);
520 	scr_el3 |= value << bit_pos;
521 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
522 }
523 
524 /*******************************************************************************
525  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
526  * given security state.
527  ******************************************************************************/
528 uint32_t cm_get_scr_el3(uint32_t security_state)
529 {
530 	cpu_context_t *ctx;
531 	el3_state_t *state;
532 
533 	ctx = cm_get_context(security_state);
534 	assert(ctx);
535 
536 	/* Populate EL3 state so that ERET jumps to the correct entry */
537 	state = get_el3state_ctx(ctx);
538 	return read_ctx_reg(state, CTX_SCR_EL3);
539 }
540 
541 /*******************************************************************************
542  * This function is used to program the context that's used for exception
543  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
544  * the required security state
545  ******************************************************************************/
546 void cm_set_next_eret_context(uint32_t security_state)
547 {
548 	cpu_context_t *ctx;
549 
550 	ctx = cm_get_context(security_state);
551 	assert(ctx);
552 
553 	cm_set_next_context(ctx);
554 }
555