1 /* 2 * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <arch.h> 8 #include <arch_helpers.h> 9 #include <assert.h> 10 #include <bl_common.h> 11 #include <context.h> 12 #include <context_mgmt.h> 13 #include <interrupt_mgmt.h> 14 #include <platform.h> 15 #include <platform_def.h> 16 #include <smcc_helpers.h> 17 #include <string.h> 18 #include <utils.h> 19 20 21 /******************************************************************************* 22 * Context management library initialisation routine. This library is used by 23 * runtime services to share pointers to 'cpu_context' structures for the secure 24 * and non-secure states. Management of the structures and their associated 25 * memory is not done by the context management library e.g. the PSCI service 26 * manages the cpu context used for entry from and exit to the non-secure state. 27 * The Secure payload dispatcher service manages the context(s) corresponding to 28 * the secure state. It also uses this library to get access to the non-secure 29 * state cpu context pointers. 30 * Lastly, this library provides the api to make SP_EL3 point to the cpu context 31 * which will used for programming an entry into a lower EL. The same context 32 * will used to save state upon exception entry from that EL. 33 ******************************************************************************/ 34 void cm_init(void) 35 { 36 /* 37 * The context management library has only global data to intialize, but 38 * that will be done when the BSS is zeroed out 39 */ 40 } 41 42 /******************************************************************************* 43 * The following function initializes the cpu_context 'ctx' for 44 * first use, and sets the initial entrypoint state as specified by the 45 * entry_point_info structure. 46 * 47 * The security state to initialize is determined by the SECURE attribute 48 * of the entry_point_info. The function returns a pointer to the initialized 49 * context and sets this as the next context to return to. 50 * 51 * The EE and ST attributes are used to configure the endianess and secure 52 * timer availability for the new execution context. 53 * 54 * To prepare the register state for entry call cm_prepare_el3_exit() and 55 * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to 56 * cm_e1_sysreg_context_restore(). 57 ******************************************************************************/ 58 static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep) 59 { 60 unsigned int security_state; 61 uint32_t scr_el3, pmcr_el0; 62 el3_state_t *state; 63 gp_regs_t *gp_regs; 64 unsigned long sctlr_elx; 65 66 assert(ctx); 67 68 security_state = GET_SECURITY_STATE(ep->h.attr); 69 70 /* Clear any residual register values from the context */ 71 zeromem(ctx, sizeof(*ctx)); 72 73 /* 74 * SCR_EL3 was initialised during reset sequence in macro 75 * el3_arch_init_common. This code modifies the SCR_EL3 fields that 76 * affect the next EL. 77 * 78 * The following fields are initially set to zero and then updated to 79 * the required value depending on the state of the SPSR_EL3 and the 80 * Security state and entrypoint attributes of the next EL. 81 */ 82 scr_el3 = read_scr(); 83 scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT | 84 SCR_ST_BIT | SCR_HCE_BIT); 85 /* 86 * SCR_NS: Set the security state of the next EL. 87 */ 88 if (security_state != SECURE) 89 scr_el3 |= SCR_NS_BIT; 90 /* 91 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next 92 * Exception level as specified by SPSR. 93 */ 94 if (GET_RW(ep->spsr) == MODE_RW_64) 95 scr_el3 |= SCR_RW_BIT; 96 /* 97 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical 98 * Secure timer registers to EL3, from AArch64 state only, if specified 99 * by the entrypoint attributes. 100 */ 101 if (EP_GET_ST(ep->h.attr)) 102 scr_el3 |= SCR_ST_BIT; 103 104 #ifndef HANDLE_EA_EL3_FIRST 105 /* 106 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External 107 * to EL3 when executing at a lower EL. When executing at EL3, External 108 * Aborts are taken to EL3. 109 */ 110 scr_el3 &= ~SCR_EA_BIT; 111 #endif 112 113 #ifdef IMAGE_BL31 114 /* 115 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as 116 * indicated by the interrupt routing model for BL31. 117 */ 118 scr_el3 |= get_scr_el3_from_routing_model(security_state); 119 #endif 120 121 /* 122 * SCR_EL3.HCE: Enable HVC instructions if next execution state is 123 * AArch64 and next EL is EL2, or if next execution state is AArch32 and 124 * next mode is Hyp. 125 */ 126 if ((GET_RW(ep->spsr) == MODE_RW_64 127 && GET_EL(ep->spsr) == MODE_EL2) 128 || (GET_RW(ep->spsr) != MODE_RW_64 129 && GET_M32(ep->spsr) == MODE32_hyp)) { 130 scr_el3 |= SCR_HCE_BIT; 131 } 132 133 /* 134 * Initialise SCTLR_EL1 to the reset value corresponding to the target 135 * execution state setting all fields rather than relying of the hw. 136 * Some fields have architecturally UNKNOWN reset values and these are 137 * set to zero. 138 * 139 * SCTLR.EE: Endianness is taken from the entrypoint attributes. 140 * 141 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as 142 * required by PSCI specification) 143 */ 144 sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0; 145 if (GET_RW(ep->spsr) == MODE_RW_64) 146 sctlr_elx |= SCTLR_EL1_RES1; 147 else { 148 /* 149 * If the target execution state is AArch32 then the following 150 * fields need to be set. 151 * 152 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE 153 * instructions are not trapped to EL1. 154 * 155 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI 156 * instructions are not trapped to EL1. 157 * 158 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the 159 * CP15DMB, CP15DSB, and CP15ISB instructions. 160 */ 161 sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT 162 | SCTLR_NTWI_BIT | SCTLR_NTWE_BIT; 163 } 164 165 /* 166 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2 167 * and other EL2 registers are set up by cm_preapre_ns_entry() as they 168 * are not part of the stored cpu_context. 169 */ 170 write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx); 171 172 if (security_state == SECURE) { 173 /* 174 * Initialise PMCR_EL0 for secure context only, setting all 175 * fields rather than relying on hw. Some fields are 176 * architecturally UNKNOWN on reset. 177 * 178 * PMCR_EL0.LC: Set to one so that cycle counter overflow, that 179 * is recorded in PMOVSCLR_EL0[31], occurs on the increment 180 * that changes PMCCNTR_EL0[63] from 1 to 0. 181 * 182 * PMCR_EL0.DP: Set to one so that the cycle counter, 183 * PMCCNTR_EL0 does not count when event counting is prohibited. 184 * 185 * PMCR_EL0.X: Set to zero to disable export of events. 186 * 187 * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0 188 * counts on every clock cycle. 189 */ 190 pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT 191 | PMCR_EL0_DP_BIT) 192 & ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT)); 193 write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0); 194 } 195 196 /* Populate EL3 state so that we've the right context before doing ERET */ 197 state = get_el3state_ctx(ctx); 198 write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 199 write_ctx_reg(state, CTX_ELR_EL3, ep->pc); 200 write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); 201 202 /* 203 * Store the X0-X7 value from the entrypoint into the context 204 * Use memcpy as we are in control of the layout of the structures 205 */ 206 gp_regs = get_gpregs_ctx(ctx); 207 memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); 208 } 209 210 /******************************************************************************* 211 * The following function initializes the cpu_context for a CPU specified by 212 * its `cpu_idx` for first use, and sets the initial entrypoint state as 213 * specified by the entry_point_info structure. 214 ******************************************************************************/ 215 void cm_init_context_by_index(unsigned int cpu_idx, 216 const entry_point_info_t *ep) 217 { 218 cpu_context_t *ctx; 219 ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); 220 cm_init_context_common(ctx, ep); 221 } 222 223 /******************************************************************************* 224 * The following function initializes the cpu_context for the current CPU 225 * for first use, and sets the initial entrypoint state as specified by the 226 * entry_point_info structure. 227 ******************************************************************************/ 228 void cm_init_my_context(const entry_point_info_t *ep) 229 { 230 cpu_context_t *ctx; 231 ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); 232 cm_init_context_common(ctx, ep); 233 } 234 235 /******************************************************************************* 236 * Prepare the CPU system registers for first entry into secure or normal world 237 * 238 * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized 239 * If execution is requested to non-secure EL1 or svc mode, and the CPU supports 240 * EL2 then EL2 is disabled by configuring all necessary EL2 registers. 241 * For all entries, the EL1 registers are initialized from the cpu_context 242 ******************************************************************************/ 243 void cm_prepare_el3_exit(uint32_t security_state) 244 { 245 uint32_t sctlr_elx, scr_el3, mdcr_el2; 246 cpu_context_t *ctx = cm_get_context(security_state); 247 248 assert(ctx); 249 250 if (security_state == NON_SECURE) { 251 scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3); 252 if (scr_el3 & SCR_HCE_BIT) { 253 /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */ 254 sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx), 255 CTX_SCTLR_EL1); 256 sctlr_elx &= SCTLR_EE_BIT; 257 sctlr_elx |= SCTLR_EL2_RES1; 258 write_sctlr_el2(sctlr_elx); 259 } else if (EL_IMPLEMENTED(2)) { 260 /* 261 * EL2 present but unused, need to disable safely. 262 * SCTLR_EL2 can be ignored in this case. 263 * 264 * Initialise all fields in HCR_EL2, except HCR_EL2.RW, 265 * to zero so that Non-secure operations do not trap to 266 * EL2. 267 * 268 * HCR_EL2.RW: Set this field to match SCR_EL3.RW 269 */ 270 write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0); 271 272 /* 273 * Initialise CPTR_EL2 setting all fields rather than 274 * relying on the hw. All fields have architecturally 275 * UNKNOWN reset values. 276 * 277 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1 278 * accesses to the CPACR_EL1 or CPACR from both 279 * Execution states do not trap to EL2. 280 * 281 * CPTR_EL2.TTA: Set to zero so that Non-secure System 282 * register accesses to the trace registers from both 283 * Execution states do not trap to EL2. 284 * 285 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses 286 * to SIMD and floating-point functionality from both 287 * Execution states do not trap to EL2. 288 */ 289 write_cptr_el2(CPTR_EL2_RESET_VAL & 290 ~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT 291 | CPTR_EL2_TFP_BIT)); 292 293 /* 294 * Initiliase CNTHCTL_EL2. All fields are 295 * architecturally UNKNOWN on reset and are set to zero 296 * except for field(s) listed below. 297 * 298 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to 299 * Hyp mode of Non-secure EL0 and EL1 accesses to the 300 * physical timer registers. 301 * 302 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to 303 * Hyp mode of Non-secure EL0 and EL1 accesses to the 304 * physical counter registers. 305 */ 306 write_cnthctl_el2(CNTHCTL_RESET_VAL | 307 EL1PCEN_BIT | EL1PCTEN_BIT); 308 309 /* 310 * Initialise CNTVOFF_EL2 to zero as it resets to an 311 * architecturally UNKNOWN value. 312 */ 313 write_cntvoff_el2(0); 314 315 /* 316 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and 317 * MPIDR_EL1 respectively. 318 */ 319 write_vpidr_el2(read_midr_el1()); 320 write_vmpidr_el2(read_mpidr_el1()); 321 322 /* 323 * Initialise VTTBR_EL2. All fields are architecturally 324 * UNKNOWN on reset. 325 * 326 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 327 * 2 address translation is disabled, cache maintenance 328 * operations depend on the VMID. 329 * 330 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address 331 * translation is disabled. 332 */ 333 write_vttbr_el2(VTTBR_RESET_VAL & 334 ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) 335 | (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT))); 336 337 /* 338 * Initialise MDCR_EL2, setting all fields rather than 339 * relying on hw. Some fields are architecturally 340 * UNKNOWN on reset. 341 * 342 * MDCR_EL2.TPMS (ARM v8.2): Do not trap statistical 343 * profiling controls to EL2. 344 * 345 * MDCR_EL2.E2PB (ARM v8.2): SPE enabled in non-secure 346 * state. Accesses to profiling buffer controls at 347 * non-secure EL1 are not trapped to EL2. 348 * 349 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and 350 * EL1 System register accesses to the Debug ROM 351 * registers are not trapped to EL2. 352 * 353 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 354 * System register accesses to the powerdown debug 355 * registers are not trapped to EL2. 356 * 357 * MDCR_EL2.TDA: Set to zero so that System register 358 * accesses to the debug registers do not trap to EL2. 359 * 360 * MDCR_EL2.TDE: Set to zero so that debug exceptions 361 * are not routed to EL2. 362 * 363 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance 364 * Monitors. 365 * 366 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and 367 * EL1 accesses to all Performance Monitors registers 368 * are not trapped to EL2. 369 * 370 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0 371 * and EL1 accesses to the PMCR_EL0 or PMCR are not 372 * trapped to EL2. 373 * 374 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the 375 * architecturally-defined reset value. 376 */ 377 mdcr_el2 = ((MDCR_EL2_RESET_VAL | 378 ((read_pmcr_el0() & PMCR_EL0_N_BITS) 379 >> PMCR_EL0_N_SHIFT)) & 380 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT 381 | MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT 382 | MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT 383 | MDCR_EL2_TPMCR_BIT)); 384 385 #if ENABLE_SPE_FOR_LOWER_ELS 386 uint64_t id_aa64dfr0_el1; 387 388 /* Detect if SPE is implemented */ 389 id_aa64dfr0_el1 = read_id_aa64dfr0_el1() >> 390 ID_AA64DFR0_PMS_SHIFT; 391 if ((id_aa64dfr0_el1 & ID_AA64DFR0_PMS_MASK) == 1) { 392 /* 393 * Make sure traps to EL2 are not generated if 394 * EL2 is implemented but not used. 395 */ 396 mdcr_el2 &= ~MDCR_EL2_TPMS; 397 mdcr_el2 |= MDCR_EL2_E2PB(MDCR_EL2_E2PB_EL1); 398 } 399 #endif 400 401 write_mdcr_el2(mdcr_el2); 402 403 /* 404 * Initialise HSTR_EL2. All fields are architecturally 405 * UNKNOWN on reset. 406 * 407 * HSTR_EL2.T<n>: Set all these fields to zero so that 408 * Non-secure EL0 or EL1 accesses to System registers 409 * do not trap to EL2. 410 */ 411 write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK)); 412 /* 413 * Initialise CNTHP_CTL_EL2. All fields are 414 * architecturally UNKNOWN on reset. 415 * 416 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 417 * physical timer and prevent timer interrupts. 418 */ 419 write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & 420 ~(CNTHP_CTL_ENABLE_BIT)); 421 } 422 } 423 424 el1_sysregs_context_restore(get_sysregs_ctx(ctx)); 425 426 cm_set_next_context(ctx); 427 } 428 429 /******************************************************************************* 430 * The next four functions are used by runtime services to save and restore 431 * EL1 context on the 'cpu_context' structure for the specified security 432 * state. 433 ******************************************************************************/ 434 void cm_el1_sysregs_context_save(uint32_t security_state) 435 { 436 cpu_context_t *ctx; 437 438 ctx = cm_get_context(security_state); 439 assert(ctx); 440 441 el1_sysregs_context_save(get_sysregs_ctx(ctx)); 442 el1_sysregs_context_save_post_ops(); 443 } 444 445 void cm_el1_sysregs_context_restore(uint32_t security_state) 446 { 447 cpu_context_t *ctx; 448 449 ctx = cm_get_context(security_state); 450 assert(ctx); 451 452 el1_sysregs_context_restore(get_sysregs_ctx(ctx)); 453 } 454 455 /******************************************************************************* 456 * This function populates ELR_EL3 member of 'cpu_context' pertaining to the 457 * given security state with the given entrypoint 458 ******************************************************************************/ 459 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint) 460 { 461 cpu_context_t *ctx; 462 el3_state_t *state; 463 464 ctx = cm_get_context(security_state); 465 assert(ctx); 466 467 /* Populate EL3 state so that ERET jumps to the correct entry */ 468 state = get_el3state_ctx(ctx); 469 write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 470 } 471 472 /******************************************************************************* 473 * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' 474 * pertaining to the given security state 475 ******************************************************************************/ 476 void cm_set_elr_spsr_el3(uint32_t security_state, 477 uintptr_t entrypoint, uint32_t spsr) 478 { 479 cpu_context_t *ctx; 480 el3_state_t *state; 481 482 ctx = cm_get_context(security_state); 483 assert(ctx); 484 485 /* Populate EL3 state so that ERET jumps to the correct entry */ 486 state = get_el3state_ctx(ctx); 487 write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 488 write_ctx_reg(state, CTX_SPSR_EL3, spsr); 489 } 490 491 /******************************************************************************* 492 * This function updates a single bit in the SCR_EL3 member of the 'cpu_context' 493 * pertaining to the given security state using the value and bit position 494 * specified in the parameters. It preserves all other bits. 495 ******************************************************************************/ 496 void cm_write_scr_el3_bit(uint32_t security_state, 497 uint32_t bit_pos, 498 uint32_t value) 499 { 500 cpu_context_t *ctx; 501 el3_state_t *state; 502 uint32_t scr_el3; 503 504 ctx = cm_get_context(security_state); 505 assert(ctx); 506 507 /* Ensure that the bit position is a valid one */ 508 assert((1 << bit_pos) & SCR_VALID_BIT_MASK); 509 510 /* Ensure that the 'value' is only a bit wide */ 511 assert(value <= 1); 512 513 /* 514 * Get the SCR_EL3 value from the cpu context, clear the desired bit 515 * and set it to its new value. 516 */ 517 state = get_el3state_ctx(ctx); 518 scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 519 scr_el3 &= ~(1 << bit_pos); 520 scr_el3 |= value << bit_pos; 521 write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 522 } 523 524 /******************************************************************************* 525 * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the 526 * given security state. 527 ******************************************************************************/ 528 uint32_t cm_get_scr_el3(uint32_t security_state) 529 { 530 cpu_context_t *ctx; 531 el3_state_t *state; 532 533 ctx = cm_get_context(security_state); 534 assert(ctx); 535 536 /* Populate EL3 state so that ERET jumps to the correct entry */ 537 state = get_el3state_ctx(ctx); 538 return read_ctx_reg(state, CTX_SCR_EL3); 539 } 540 541 /******************************************************************************* 542 * This function is used to program the context that's used for exception 543 * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for 544 * the required security state 545 ******************************************************************************/ 546 void cm_set_next_eret_context(uint32_t security_state) 547 { 548 cpu_context_t *ctx; 549 550 ctx = cm_get_context(security_state); 551 assert(ctx); 552 553 cm_set_next_context(ctx); 554 } 555