xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision ba3668f1865b44635e8c7aa3a38d0d315850cec3)
1 /*
2  * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/cpus/cpu_ops.h>
23 #include <lib/cpus/errata.h>
24 #include <lib/el3_runtime/context_mgmt.h>
25 #include <lib/el3_runtime/cpu_data.h>
26 #include <lib/el3_runtime/pubsub_events.h>
27 #include <lib/extensions/amu.h>
28 #include <lib/extensions/brbe.h>
29 #include <lib/extensions/cpa2.h>
30 #include <lib/extensions/debug_v8p9.h>
31 #include <lib/extensions/fgt2.h>
32 #include <lib/extensions/mpam.h>
33 #include <lib/extensions/pauth.h>
34 #include <lib/extensions/pmuv3.h>
35 #include <lib/extensions/sme.h>
36 #include <lib/extensions/spe.h>
37 #include <lib/extensions/sve.h>
38 #include <lib/extensions/sysreg128.h>
39 #include <lib/extensions/sys_reg_trace.h>
40 #include <lib/extensions/tcr2.h>
41 #include <lib/extensions/trbe.h>
42 #include <lib/extensions/trf.h>
43 #include <lib/utils.h>
44 
45 #if ENABLE_FEAT_TWED
46 /* Make sure delay value fits within the range(0-15) */
47 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
48 #endif /* ENABLE_FEAT_TWED */
49 
50 per_world_context_t per_world_context[CPU_CONTEXT_NUM];
51 
52 static void manage_extensions_nonsecure(cpu_context_t *ctx);
53 static void manage_extensions_secure(cpu_context_t *ctx);
54 
55 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
56 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
57 {
58 	u_register_t sctlr_elx, actlr_elx;
59 
60 	/*
61 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
62 	 * execution state setting all fields rather than relying on the hw.
63 	 * Some fields have architecturally UNKNOWN reset values and these are
64 	 * set to zero.
65 	 *
66 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
67 	 *
68 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
69 	 * required by PSCI specification)
70 	 */
71 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
72 	if (GET_RW(ep->spsr) == MODE_RW_64) {
73 		sctlr_elx |= SCTLR_EL1_RES1;
74 	} else {
75 		/*
76 		 * If the target execution state is AArch32 then the following
77 		 * fields need to be set.
78 		 *
79 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
80 		 *  instructions are not trapped to EL1.
81 		 *
82 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
83 		 *  instructions are not trapped to EL1.
84 		 *
85 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
86 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
87 		 */
88 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
89 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
90 	}
91 
92 	/*
93 	 * If workaround of errata 764081 for Cortex-A75 is used then set
94 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
95 	 */
96 	if (errata_a75_764081_applies()) {
97 		sctlr_elx |= SCTLR_IESB_BIT;
98 	}
99 
100 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
101 	write_ctx_sctlr_el1_reg_errata(ctx, sctlr_elx);
102 
103 	/*
104 	 * Base the context ACTLR_EL1 on the current value, as it is
105 	 * implementation defined. The context restore process will write
106 	 * the value from the context to the actual register and can cause
107 	 * problems for processor cores that don't expect certain bits to
108 	 * be zero.
109 	 */
110 	actlr_elx = read_actlr_el1();
111 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx);
112 }
113 #endif /* (IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)) */
114 
115 /******************************************************************************
116  * This function performs initializations that are specific to SECURE state
117  * and updates the cpu context specified by 'ctx'.
118  *****************************************************************************/
119 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
120 {
121 	u_register_t scr_el3;
122 	el3_state_t *state;
123 
124 	state = get_el3state_ctx(ctx);
125 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
126 
127 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
128 	/*
129 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
130 	 * indicated by the interrupt routing model for BL31.
131 	 */
132 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
133 #endif
134 
135 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
136 	if (is_feat_mte2_supported()) {
137 		scr_el3 |= SCR_ATA_BIT;
138 	}
139 
140 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
141 
142 	/*
143 	 * Initialize EL1 context registers unless SPMC is running
144 	 * at S-EL2.
145 	 */
146 #if !CTX_INCLUDE_EL2_REGS || IMAGE_BL1
147 	setup_el1_context(ctx, ep);
148 #endif
149 
150 	manage_extensions_secure(ctx);
151 }
152 
153 #if ENABLE_RME && IMAGE_BL31
154 /******************************************************************************
155  * This function performs initializations that are specific to REALM state
156  * and updates the cpu context specified by 'ctx'.
157  *
158  * NOTE: any changes to this function must be verified by an RMMD maintainer.
159  *****************************************************************************/
160 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
161 {
162 	u_register_t scr_el3;
163 	el3_state_t *state;
164 	el2_sysregs_t *el2_ctx;
165 
166 	state = get_el3state_ctx(ctx);
167 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
168 	el2_ctx = get_el2_sysregs_ctx(ctx);
169 
170 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
171 
172 	write_el2_ctx_common(el2_ctx, spsr_el2, SPSR_EL2_REALM);
173 
174 	/* CSV2 version 2 and above */
175 	if (is_feat_csv2_2_supported()) {
176 		/* Enable access to the SCXTNUM_ELx registers. */
177 		scr_el3 |= SCR_EnSCXT_BIT;
178 	}
179 
180 	if (is_feat_sctlr2_supported()) {
181 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
182 		 * SCTLR2_ELx registers.
183 		 */
184 		scr_el3 |= SCR_SCTLR2En_BIT;
185 	}
186 
187 	if (is_feat_d128_supported()) {
188 		/*
189 		 * Set the D128En bit in SCR_EL3 to enable access to 128-bit
190 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
191 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
192 		 */
193 		scr_el3 |= SCR_D128En_BIT;
194 	}
195 
196 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
197 
198 	if (is_feat_fgt2_supported()) {
199 		fgt2_enable(ctx);
200 	}
201 
202 	if (is_feat_debugv8p9_supported()) {
203 		debugv8p9_extended_bp_wp_enable(ctx);
204 	}
205 
206 	if (is_feat_brbe_supported()) {
207 		brbe_enable(ctx);
208 	}
209 
210 	/*
211 	 * Enable access to TPIDR2_EL0 if SME/SME2 is enabled for Non Secure world.
212 	 */
213 	if (is_feat_sme_supported()) {
214 		sme_enable(ctx);
215 	}
216 
217 	if (is_feat_spe_supported()) {
218 		spe_disable_realm(ctx);
219 	}
220 
221 	if (is_feat_trbe_supported()) {
222 		trbe_disable_realm(ctx);
223 	}
224 }
225 #endif /* ENABLE_RME && IMAGE_BL31 */
226 
227 /******************************************************************************
228  * This function performs initializations that are specific to NON-SECURE state
229  * and updates the cpu context specified by 'ctx'.
230  *****************************************************************************/
231 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
232 {
233 	u_register_t scr_el3;
234 	el3_state_t *state;
235 
236 	state = get_el3state_ctx(ctx);
237 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
238 
239 	/* SCR_NS: Set the NS bit */
240 	scr_el3 |= SCR_NS_BIT;
241 
242 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
243 	if (is_feat_mte2_supported()) {
244 		scr_el3 |= SCR_ATA_BIT;
245 	}
246 
247 	/*
248 	 * Pointer Authentication feature, if present, is always enabled by
249 	 * default for Non secure lower exception levels. We do not have an
250 	 * explicit flag to set it. To prevent the leakage between the worlds
251 	 * during world switch, we enable it only for the non-secure world.
252 	 *
253 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
254 	 * exception levels of secure and realm worlds.
255 	 *
256 	 * If the Secure/realm world wants to use pointer authentication,
257 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
258 	 * it will be enabled globally for all the contexts.
259 	 *
260 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
261 	 *  other than EL3
262 	 *
263 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
264 	 *  than EL3
265 	 */
266 	if (!is_ctx_pauth_supported()) {
267 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
268 	}
269 
270 #if HANDLE_EA_EL3_FIRST_NS
271 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
272 	scr_el3 |= SCR_EA_BIT;
273 #endif
274 
275 #if RAS_TRAP_NS_ERR_REC_ACCESS
276 	/*
277 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
278 	 * and RAS ERX registers from EL1 and EL2(from any security state)
279 	 * are trapped to EL3.
280 	 * Set here to trap only for NS EL1/EL2
281 	 */
282 	scr_el3 |= SCR_TERR_BIT;
283 #endif
284 
285 	/* CSV2 version 2 and above */
286 	if (is_feat_csv2_2_supported()) {
287 		/* Enable access to the SCXTNUM_ELx registers. */
288 		scr_el3 |= SCR_EnSCXT_BIT;
289 	}
290 
291 #ifdef IMAGE_BL31
292 	/*
293 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
294 	 *  indicated by the interrupt routing model for BL31.
295 	 */
296 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
297 #endif
298 
299 	if (is_feat_the_supported()) {
300 		/* Set the RCWMASKEn bit in SCR_EL3 to enable access to
301 		 * RCWMASK_EL1 and RCWSMASK_EL1 registers.
302 		 */
303 		scr_el3 |= SCR_RCWMASKEn_BIT;
304 	}
305 
306 	if (is_feat_sctlr2_supported()) {
307 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
308 		 * SCTLR2_ELx registers.
309 		 */
310 		scr_el3 |= SCR_SCTLR2En_BIT;
311 	}
312 
313 	if (is_feat_d128_supported()) {
314 		/* Set the D128En bit in SCR_EL3 to enable access to 128-bit
315 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
316 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
317 		 */
318 		scr_el3 |= SCR_D128En_BIT;
319 	}
320 
321 	if (is_feat_fpmr_supported()) {
322 		/* Set the EnFPM bit in SCR_EL3 to enable access to FPMR
323 		 * register.
324 		 */
325 		scr_el3 |= SCR_EnFPM_BIT;
326 	}
327 
328 	if (is_feat_aie_supported()) {
329 		/* Set the AIEn bit in SCR_EL3 to enable access to (A)MAIR2
330 		 * system registers from NS world.
331 		 */
332 		scr_el3 |= SCR_AIEn_BIT;
333 	}
334 
335 	if (is_feat_pfar_supported()) {
336 		/* Set the PFAREn bit in SCR_EL3 to enable access to the PFAR
337 		 * system registers from NS world.
338 		 */
339 		scr_el3 |= SCR_PFAREn_BIT;
340 	}
341 
342 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
343 
344 	/* Initialize EL2 context registers */
345 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
346 	if (is_feat_hcx_supported()) {
347 		/*
348 		 * Initialize register HCRX_EL2 with its init value.
349 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
350 		 * chance that this can lead to unexpected behavior in lower
351 		 * ELs that have not been updated since the introduction of
352 		 * this feature if not properly initialized, especially when
353 		 * it comes to those bits that enable/disable traps.
354 		 */
355 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
356 			HCRX_EL2_INIT_VAL);
357 	}
358 
359 	if (is_feat_fgt_supported()) {
360 		/*
361 		 * Initialize HFG*_EL2 registers with a default value so legacy
362 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
363 		 * of initialization for this feature.
364 		 */
365 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
366 			HFGITR_EL2_INIT_VAL);
367 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
368 			HFGRTR_EL2_INIT_VAL);
369 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
370 			HFGWTR_EL2_INIT_VAL);
371 	}
372 #else
373 	/* Initialize EL1 context registers */
374 	setup_el1_context(ctx, ep);
375 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
376 
377 	manage_extensions_nonsecure(ctx);
378 }
379 
380 /*******************************************************************************
381  * The following function performs initialization of the cpu_context 'ctx'
382  * for first use that is common to all security states, and sets the
383  * initial entrypoint state as specified by the entry_point_info structure.
384  *
385  * The EE and ST attributes are used to configure the endianness and secure
386  * timer availability for the new execution context.
387  ******************************************************************************/
388 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
389 {
390 	u_register_t scr_el3;
391 	u_register_t mdcr_el3;
392 	el3_state_t *state;
393 	gp_regs_t *gp_regs;
394 
395 	state = get_el3state_ctx(ctx);
396 
397 	/* Clear any residual register values from the context */
398 	zeromem(ctx, sizeof(*ctx));
399 
400 	/*
401 	 * The lower-EL context is zeroed so that no stale values leak to a world.
402 	 * It is assumed that an all-zero lower-EL context is good enough for it
403 	 * to boot correctly. However, there are very few registers where this
404 	 * is not true and some values need to be recreated.
405 	 */
406 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
407 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
408 
409 	/*
410 	 * These bits are set in the gicv3 driver. Losing them (especially the
411 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
412 	 */
413 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
414 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
415 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
416 
417 	/*
418 	 * The actlr_el2 register can be initialized in platform's reset handler
419 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
420 	 */
421 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
422 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
423 
424 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
425 	scr_el3 = SCR_RESET_VAL;
426 
427 	/*
428 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
429 	 *  EL2, EL1 and EL0 are not trapped to EL3.
430 	 *
431 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
432 	 *  EL2, EL1 and EL0 are not trapped to EL3.
433 	 *
434 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
435 	 *  both Security states and both Execution states.
436 	 *
437 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
438 	 *  Non-secure memory.
439 	 */
440 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
441 
442 	scr_el3 |= SCR_SIF_BIT;
443 
444 	/*
445 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
446 	 *  Exception level as specified by SPSR.
447 	 */
448 	if (GET_RW(ep->spsr) == MODE_RW_64) {
449 		scr_el3 |= SCR_RW_BIT;
450 	}
451 
452 	/*
453 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
454 	 * Secure timer registers to EL3, from AArch64 state only, if specified
455 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
456 	 * bit always behaves as 1 (i.e. secure physical timer register access
457 	 * is not trapped)
458 	 */
459 	if (EP_GET_ST(ep->h.attr) != 0U) {
460 		scr_el3 |= SCR_ST_BIT;
461 	}
462 
463 	/*
464 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
465 	 * SCR_EL3.HXEn.
466 	 */
467 	if (is_feat_hcx_supported()) {
468 		scr_el3 |= SCR_HXEn_BIT;
469 	}
470 
471 	/*
472 	 * If FEAT_LS64_ACCDATA is enabled, enable access to ACCDATA_EL1 by
473 	 * setting SCR_EL3.ADEn and allow the ST64BV0 instruction by setting
474 	 * SCR_EL3.EnAS0.
475 	 */
476 	if (is_feat_ls64_accdata_supported()) {
477 		scr_el3 |= SCR_ADEn_BIT | SCR_EnAS0_BIT;
478 	}
479 
480 	/*
481 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
482 	 * registers are trapped to EL3.
483 	 */
484 	if (is_feat_rng_trap_supported()) {
485 		scr_el3 |= SCR_TRNDR_BIT;
486 	}
487 
488 #if FAULT_INJECTION_SUPPORT
489 	/* Enable fault injection from lower ELs */
490 	scr_el3 |= SCR_FIEN_BIT;
491 #endif
492 
493 	/*
494 	 * Enable Pointer Authentication globally for all the worlds.
495 	 *
496 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
497 	 *  other than EL3
498 	 *
499 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
500 	 *  than EL3
501 	 */
502 	if (is_ctx_pauth_supported()) {
503 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
504 	}
505 
506 	/*
507 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
508 	 * registers for AArch64 if present.
509 	 */
510 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
511 		scr_el3 |= SCR_PIEN_BIT;
512 	}
513 
514 	/*
515 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
516 	 */
517 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
518 		scr_el3 |= SCR_GCSEn_BIT;
519 	}
520 
521 	/*
522 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
523 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
524 	 * next mode is Hyp.
525 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
526 	 * same conditions as HVC instructions and when the processor supports
527 	 * ARMv8.6-FGT.
528 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
529 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
530 	 * and when the processor supports ECV.
531 	 */
532 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
533 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
534 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
535 		scr_el3 |= SCR_HCE_BIT;
536 
537 		if (is_feat_fgt_supported()) {
538 			scr_el3 |= SCR_FGTEN_BIT;
539 		}
540 
541 		if (is_feat_ecv_supported()) {
542 			scr_el3 |= SCR_ECVEN_BIT;
543 		}
544 	}
545 
546 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
547 	if (is_feat_twed_supported()) {
548 		/* Set delay in SCR_EL3 */
549 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
550 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
551 				<< SCR_TWEDEL_SHIFT);
552 
553 		/* Enable WFE delay */
554 		scr_el3 |= SCR_TWEDEn_BIT;
555 	}
556 
557 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
558 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
559 	if (is_feat_sel2_supported()) {
560 		scr_el3 |= SCR_EEL2_BIT;
561 	}
562 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
563 
564 	if (is_feat_mec_supported()) {
565 		scr_el3 |= SCR_MECEn_BIT;
566 	}
567 
568 	/*
569 	 * Populate EL3 state so that we've the right context
570 	 * before doing ERET
571 	 */
572 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
573 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
574 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
575 
576 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
577 	mdcr_el3 = MDCR_EL3_RESET_VAL;
578 
579 	/* ---------------------------------------------------------------------
580 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
581 	 * Some fields are architecturally UNKNOWN on reset.
582 	 *
583 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
584 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
585 	 *  disabled from all ELs in Secure state.
586 	 *
587 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
588 	 *  privileged debug from S-EL1.
589 	 *
590 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
591 	 *  access to the powerdown debug registers do not trap to EL3.
592 	 *
593 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
594 	 *  debug registers, other than those registers that are controlled by
595 	 *  MDCR_EL3.TDOSA.
596 	 */
597 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
598 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
599 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
600 
601 #if IMAGE_BL31
602 	/* Enable FEAT_TRF for Non-Secure and prohibit for Secure state. */
603 	if (is_feat_trf_supported()) {
604 		trf_enable(ctx);
605 	}
606 
607 	if (is_feat_tcr2_supported()) {
608 		tcr2_enable(ctx);
609 	}
610 
611 	pmuv3_enable(ctx);
612 
613 #if CTX_INCLUDE_EL2_REGS && IMAGE_BL31
614 	/*
615 	 * Initialize SCTLR_EL2 context register with reset value.
616 	 */
617 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
618 #endif /* CTX_INCLUDE_EL2_REGS */
619 #endif /* IMAGE_BL31 */
620 
621 	/*
622 	 * Store the X0-X7 value from the entrypoint into the context
623 	 * Use memcpy as we are in control of the layout of the structures
624 	 */
625 	gp_regs = get_gpregs_ctx(ctx);
626 	memcpy((void *)gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
627 }
628 
629 /*******************************************************************************
630  * Context management library initialization routine. This library is used by
631  * runtime services to share pointers to 'cpu_context' structures for secure
632  * non-secure and realm states. Management of the structures and their associated
633  * memory is not done by the context management library e.g. the PSCI service
634  * manages the cpu context used for entry from and exit to the non-secure state.
635  * The Secure payload dispatcher service manages the context(s) corresponding to
636  * the secure state. It also uses this library to get access to the non-secure
637  * state cpu context pointers.
638  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
639  * which will be used for programming an entry into a lower EL. The same context
640  * will be used to save state upon exception entry from that EL.
641  ******************************************************************************/
642 void __init cm_init(void)
643 {
644 	/*
645 	 * The context management library has only global data to initialize, but
646 	 * that will be done when the BSS is zeroed out.
647 	 */
648 }
649 
650 /*******************************************************************************
651  * This is the high-level function used to initialize the cpu_context 'ctx' for
652  * first use. It performs initializations that are common to all security states
653  * and initializations specific to the security state specified in 'ep'
654  ******************************************************************************/
655 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
656 {
657 	size_t security_state;
658 
659 	assert(ctx != NULL);
660 
661 	/*
662 	 * Perform initializations that are common
663 	 * to all security states
664 	 */
665 	setup_context_common(ctx, ep);
666 
667 	security_state = GET_SECURITY_STATE(ep->h.attr);
668 
669 	/* Perform security state specific initializations */
670 	switch (security_state) {
671 	case SECURE:
672 		setup_secure_context(ctx, ep);
673 		break;
674 #if ENABLE_RME && IMAGE_BL31
675 	case REALM:
676 		setup_realm_context(ctx, ep);
677 		break;
678 #endif
679 	case NON_SECURE:
680 		setup_ns_context(ctx, ep);
681 		break;
682 	default:
683 		ERROR("Invalid security state\n");
684 		panic();
685 		break;
686 	}
687 }
688 
689 /*******************************************************************************
690  * Enable architecture extensions for EL3 execution. This function only updates
691  * registers in-place which are expected to either never change or be
692  * overwritten by el3_exit. Expects the core_pos of the current core as argument.
693  ******************************************************************************/
694 void __no_pauth cm_manage_extensions_el3(unsigned int my_idx)
695 {
696 	if (is_feat_pauth_supported()) {
697 		pauth_init_enable_el3();
698 	}
699 
700 #if IMAGE_BL31
701 	if (is_feat_sve_supported()) {
702 		sve_init_el3();
703 	}
704 
705 	if (is_feat_amu_supported()) {
706 		amu_init_el3(my_idx);
707 	}
708 
709 	if (is_feat_sme_supported()) {
710 		sme_init_el3();
711 	}
712 
713 	if (is_feat_fgwte3_supported()) {
714 		write_fgwte3_el3(FGWTE3_EL3_EARLY_INIT_VAL);
715 	}
716 
717 	if (is_feat_mpam_supported()) {
718 		mpam_init_el3();
719 	}
720 
721 	if (is_feat_cpa2_supported()) {
722 		cpa2_enable_el3();
723 	}
724 
725 	pmuv3_init_el3();
726 #endif /* IMAGE_BL31 */
727 }
728 
729 /******************************************************************************
730  * Function to initialise the registers with the RESET values in the context
731  * memory, which are maintained per world.
732  ******************************************************************************/
733 static void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
734 {
735 	per_world_ctx->ctx_cptr_el3 = CPTR_EL3_RESET_VAL;
736 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
737 }
738 
739 /*******************************************************************************
740  * Initialise per_world_context for Non-Secure world.
741  * This function enables the architecture extensions, which have same value
742  * across the cores for the non-secure world.
743  ******************************************************************************/
744 static void manage_extensions_nonsecure_per_world(void)
745 {
746 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
747 
748 #if IMAGE_BL31
749 	if (is_feat_sme_supported()) {
750 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
751 	}
752 
753 	if (is_feat_sve_supported()) {
754 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
755 	}
756 
757 	if (is_feat_amu_supported()) {
758 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
759 	}
760 
761 	if (is_feat_sys_reg_trace_supported()) {
762 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
763 	}
764 
765 	if (is_feat_mpam_supported()) {
766 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
767 	}
768 #endif /* IMAGE_BL31 */
769 }
770 
771 /*******************************************************************************
772  * Initialise per_world_context for Secure world.
773  * This function enables the architecture extensions, which have same value
774  * across the cores for the secure world.
775  ******************************************************************************/
776 static void manage_extensions_secure_per_world(void)
777 {
778 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
779 
780 #if IMAGE_BL31
781 	if (is_feat_sme_supported()) {
782 
783 		if (ENABLE_SME_FOR_SWD) {
784 		/*
785 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
786 		 * SME, SVE, and FPU/SIMD context properly managed.
787 		 */
788 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
789 		} else {
790 		/*
791 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
792 		 * world can safely use the associated registers.
793 		 */
794 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
795 		}
796 	}
797 	if (is_feat_sve_supported()) {
798 		if (ENABLE_SVE_FOR_SWD) {
799 		/*
800 		 * Enable SVE and FPU in secure context, SPM must ensure
801 		 * that the SVE and FPU register contexts are properly managed.
802 		 */
803 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
804 		} else {
805 		/*
806 		 * Disable SVE and FPU in secure context so non-secure world
807 		 * can safely use them.
808 		 */
809 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
810 		}
811 	}
812 
813 	/* NS can access this but Secure shouldn't */
814 	if (is_feat_sys_reg_trace_supported()) {
815 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
816 	}
817 #endif /* IMAGE_BL31 */
818 }
819 
820 static void manage_extensions_realm_per_world(void)
821 {
822 #if ENABLE_RME && IMAGE_BL31
823 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_REALM]);
824 
825 	if (is_feat_sve_supported()) {
826 	/*
827 	 * Enable SVE and FPU in realm context when it is enabled for NS.
828 	 * Realm manager must ensure that the SVE and FPU register
829 	 * contexts are properly managed.
830 	 */
831 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
832 	}
833 
834 	/* NS can access this but Realm shouldn't */
835 	if (is_feat_sys_reg_trace_supported()) {
836 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
837 	}
838 
839 	/*
840 	 * If SME/SME2 is supported and enabled for NS world, then disable trapping
841 	 * of SME instructions for Realm world. RMM will save/restore required
842 	 * registers that are shared with SVE/FPU so that Realm can use FPU or SVE.
843 	 */
844 	if (is_feat_sme_supported()) {
845 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
846 	}
847 
848 	/*
849 	 * If FEAT_MPAM is supported and enabled, then disable trapping access
850 	 * to the MPAM registers for Realm world. Instead, RMM will configure
851 	 * the access to be trapped by itself so it can inject undefined aborts
852 	 * back to the Realm.
853 	 */
854 	if (is_feat_mpam_supported()) {
855 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
856 	}
857 #endif /* ENABLE_RME && IMAGE_BL31 */
858 }
859 
860 void cm_manage_extensions_per_world(void)
861 {
862 	manage_extensions_nonsecure_per_world();
863 	manage_extensions_secure_per_world();
864 	manage_extensions_realm_per_world();
865 }
866 
867 /*******************************************************************************
868  * Enable architecture extensions on first entry to Non-secure world.
869  ******************************************************************************/
870 static void manage_extensions_nonsecure(cpu_context_t *ctx)
871 {
872 #if IMAGE_BL31
873 	/* NOTE: registers are not context switched */
874 	if (is_feat_amu_supported()) {
875 		amu_enable(ctx);
876 	}
877 
878 	if (is_feat_sme_supported()) {
879 		sme_enable(ctx);
880 	}
881 
882 	if (is_feat_fgt2_supported()) {
883 		fgt2_enable(ctx);
884 	}
885 
886 	if (is_feat_debugv8p9_supported()) {
887 		debugv8p9_extended_bp_wp_enable(ctx);
888 	}
889 
890 	if (is_feat_spe_supported()) {
891 		spe_enable_ns(ctx);
892 	}
893 
894 	if (is_feat_trbe_supported()) {
895 		if (check_if_trbe_disable_affected_core()) {
896 			trbe_disable_ns(ctx);
897 		} else {
898 			trbe_enable_ns(ctx);
899 		}
900 	}
901 
902 	if (is_feat_brbe_supported()) {
903 		brbe_enable(ctx);
904 	}
905 #endif /* IMAGE_BL31 */
906 }
907 
908 #if INIT_UNUSED_NS_EL2
909 /*******************************************************************************
910  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
911  * world when EL2 is empty and unused.
912  ******************************************************************************/
913 static void manage_extensions_nonsecure_el2_unused(void)
914 {
915 #if IMAGE_BL31
916 	if (is_feat_spe_supported()) {
917 		spe_init_el2_unused();
918 	}
919 
920 	if (is_feat_amu_supported()) {
921 		amu_init_el2_unused();
922 	}
923 
924 	if (is_feat_mpam_supported()) {
925 		mpam_init_el2_unused();
926 	}
927 
928 	if (is_feat_trbe_supported()) {
929 		trbe_init_el2_unused();
930 	}
931 
932 	if (is_feat_sys_reg_trace_supported()) {
933 		sys_reg_trace_init_el2_unused();
934 	}
935 
936 	if (is_feat_trf_supported()) {
937 		trf_init_el2_unused();
938 	}
939 
940 	pmuv3_init_el2_unused();
941 
942 	if (is_feat_sve_supported()) {
943 		sve_init_el2_unused();
944 	}
945 
946 	if (is_feat_sme_supported()) {
947 		sme_init_el2_unused();
948 	}
949 
950 	if (is_feat_mops_supported() && is_feat_hcx_supported()) {
951 		write_hcrx_el2(read_hcrx_el2() | HCRX_EL2_MSCEn_BIT);
952 	}
953 
954 	if (is_feat_pauth_supported()) {
955 		pauth_enable_el2();
956 	}
957 #endif /* IMAGE_BL31 */
958 }
959 #endif /* INIT_UNUSED_NS_EL2 */
960 
961 /*******************************************************************************
962  * Enable architecture extensions on first entry to Secure world.
963  ******************************************************************************/
964 static void manage_extensions_secure(cpu_context_t *ctx)
965 {
966 #if IMAGE_BL31
967 	if (is_feat_sme_supported()) {
968 		if (ENABLE_SME_FOR_SWD) {
969 		/*
970 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
971 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
972 		 */
973 			sme_init_el3();
974 			sme_enable(ctx);
975 		} else {
976 		/*
977 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
978 		 * world can safely use the associated registers.
979 		 */
980 			sme_disable(ctx);
981 		}
982 	}
983 
984 	if (is_feat_spe_supported()) {
985 		spe_disable_secure(ctx);
986 	}
987 
988 	if (is_feat_trbe_supported()) {
989 		trbe_disable_secure(ctx);
990 	}
991 #endif /* IMAGE_BL31 */
992 }
993 
994 /*******************************************************************************
995  * The following function initializes the cpu_context for the current CPU
996  * for first use, and sets the initial entrypoint state as specified by the
997  * entry_point_info structure.
998  ******************************************************************************/
999 void cm_init_my_context(const entry_point_info_t *ep)
1000 {
1001 	cpu_context_t *ctx;
1002 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
1003 	cm_setup_context(ctx, ep);
1004 }
1005 
1006 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
1007 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
1008 {
1009 #if INIT_UNUSED_NS_EL2
1010 	u_register_t hcr_el2 = HCR_RESET_VAL;
1011 	u_register_t mdcr_el2;
1012 	u_register_t scr_el3;
1013 
1014 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1015 
1016 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
1017 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
1018 		hcr_el2 |= HCR_RW_BIT;
1019 	}
1020 
1021 	write_hcr_el2(hcr_el2);
1022 
1023 	/*
1024 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
1025 	 * All fields have architecturally UNKNOWN reset values.
1026 	 */
1027 	write_cptr_el2(CPTR_EL2_RESET_VAL);
1028 
1029 	/*
1030 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
1031 	 * reset and are set to zero except for field(s) listed below.
1032 	 *
1033 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
1034 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
1035 	 *
1036 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
1037 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
1038 	 */
1039 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
1040 
1041 	/*
1042 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
1043 	 * UNKNOWN value.
1044 	 */
1045 	write_cntvoff_el2(0);
1046 
1047 	/*
1048 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
1049 	 * respectively.
1050 	 */
1051 	write_vpidr_el2(read_midr_el1());
1052 	write_vmpidr_el2(read_mpidr_el1());
1053 
1054 	/*
1055 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
1056 	 *
1057 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
1058 	 * translation is disabled, cache maintenance operations depend on the
1059 	 * VMID.
1060 	 *
1061 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
1062 	 * disabled.
1063 	 */
1064 	write_vttbr_el2(VTTBR_RESET_VAL &
1065 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
1066 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
1067 
1068 	/*
1069 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
1070 	 * Some fields are architecturally UNKNOWN on reset.
1071 	 *
1072 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
1073 	 * register accesses to the Debug ROM registers are not trapped to EL2.
1074 	 *
1075 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
1076 	 * accesses to the powerdown debug registers are not trapped to EL2.
1077 	 *
1078 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
1079 	 * debug registers do not trap to EL2.
1080 	 *
1081 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
1082 	 * EL2.
1083 	 */
1084 	mdcr_el2 = MDCR_EL2_RESET_VAL &
1085 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
1086 		   MDCR_EL2_TDE_BIT);
1087 
1088 	write_mdcr_el2(mdcr_el2);
1089 
1090 	/*
1091 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
1092 	 *
1093 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
1094 	 * EL1 accesses to System registers do not trap to EL2.
1095 	 */
1096 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
1097 
1098 	/*
1099 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
1100 	 * reset.
1101 	 *
1102 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1103 	 * and prevent timer interrupts.
1104 	 */
1105 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1106 
1107 	manage_extensions_nonsecure_el2_unused();
1108 #endif /* INIT_UNUSED_NS_EL2 */
1109 }
1110 
1111 /*******************************************************************************
1112  * Prepare the CPU system registers for first entry into realm, secure, or
1113  * normal world.
1114  *
1115  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1116  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1117  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1118  * For all entries, the EL1 registers are initialized from the cpu_context
1119  ******************************************************************************/
1120 void cm_prepare_el3_exit(size_t security_state)
1121 {
1122 	u_register_t sctlr_el2, scr_el3;
1123 	cpu_context_t *ctx = cm_get_context(security_state);
1124 
1125 	assert(ctx != NULL);
1126 
1127 	if (security_state == NON_SECURE) {
1128 		uint64_t el2_implemented = el_implemented(2);
1129 
1130 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1131 						 CTX_SCR_EL3);
1132 
1133 		if (el2_implemented != EL_IMPL_NONE) {
1134 
1135 			/*
1136 			 * If context is not being used for EL2, initialize
1137 			 * HCRX_EL2 with its init value here.
1138 			 */
1139 			if (is_feat_hcx_supported()) {
1140 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1141 			}
1142 
1143 			/*
1144 			 * Initialize Fine-grained trap registers introduced
1145 			 * by FEAT_FGT so all traps are initially disabled when
1146 			 * switching to EL2 or a lower EL, preventing undesired
1147 			 * behavior.
1148 			 */
1149 			if (is_feat_fgt_supported()) {
1150 				/*
1151 				 * Initialize HFG*_EL2 registers with a default
1152 				 * value so legacy systems unaware of FEAT_FGT
1153 				 * do not get trapped due to their lack of
1154 				 * initialization for this feature.
1155 				 */
1156 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1157 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1158 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1159 			}
1160 
1161 			/* Condition to ensure EL2 is being used. */
1162 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1163 				/* Initialize SCTLR_EL2 register with reset value. */
1164 				sctlr_el2 = SCTLR_EL2_RES1;
1165 
1166 				/*
1167 				 * If workaround of errata 764081 for Cortex-A75
1168 				 * is used then set SCTLR_EL2.IESB to enable
1169 				 * Implicit Error Synchronization Barrier.
1170 				 */
1171 				if (errata_a75_764081_applies()) {
1172 					sctlr_el2 |= SCTLR_IESB_BIT;
1173 				}
1174 
1175 				write_sctlr_el2(sctlr_el2);
1176 			} else {
1177 				/*
1178 				 * (scr_el3 & SCR_HCE_BIT==0)
1179 				 * EL2 implemented but unused.
1180 				 */
1181 				init_nonsecure_el2_unused(ctx);
1182 			}
1183 		}
1184 
1185 		if (is_feat_fgwte3_supported()) {
1186 			/*
1187 			 * TCR_EL3 and ACTLR_EL3 could be overwritten
1188 			 * by platforms and hence is locked a bit late.
1189 			 */
1190 			write_fgwte3_el3(FGWTE3_EL3_LATE_INIT_VAL);
1191 		}
1192 	}
1193 #if !CTX_INCLUDE_EL2_REGS || IMAGE_BL1
1194 	/* Restore EL1 system registers, only when CTX_INCLUDE_EL2_REGS=0 */
1195 	cm_el1_sysregs_context_restore(security_state);
1196 #endif
1197 	cm_set_next_eret_context(security_state);
1198 }
1199 
1200 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1201 
1202 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1203 {
1204 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1205 	if (is_feat_amu_supported()) {
1206 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1207 	}
1208 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1209 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1210 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1211 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1212 }
1213 
1214 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1215 {
1216 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1217 	if (is_feat_amu_supported()) {
1218 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1219 	}
1220 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1221 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1222 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1223 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1224 }
1225 
1226 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1227 {
1228 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1229 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1230 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1231 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1232 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1233 }
1234 
1235 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1236 {
1237 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1238 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1239 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1240 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1241 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1242 }
1243 
1244 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1245 {
1246 	u_register_t mpam_idr = read_mpamidr_el1();
1247 
1248 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1249 
1250 	/*
1251 	 * The context registers that we intend to save would be part of the
1252 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1253 	 */
1254 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1255 		return;
1256 	}
1257 
1258 	/*
1259 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1260 	 * MPAMIDR_HAS_HCR_BIT == 1.
1261 	 */
1262 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1263 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1264 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1265 
1266 	/*
1267 	 * The number of MPAMVPM registers is implementation defined, their
1268 	 * number is stored in the MPAMIDR_EL1 register.
1269 	 */
1270 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1271 	case 7:
1272 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1273 		__fallthrough;
1274 	case 6:
1275 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1276 		__fallthrough;
1277 	case 5:
1278 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1279 		__fallthrough;
1280 	case 4:
1281 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1282 		__fallthrough;
1283 	case 3:
1284 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1285 		__fallthrough;
1286 	case 2:
1287 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1288 		__fallthrough;
1289 	case 1:
1290 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1291 		break;
1292 	}
1293 }
1294 
1295 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1296 {
1297 	u_register_t mpam_idr = read_mpamidr_el1();
1298 
1299 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1300 
1301 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1302 		return;
1303 	}
1304 
1305 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1306 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1307 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1308 
1309 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1310 	case 7:
1311 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1312 		__fallthrough;
1313 	case 6:
1314 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1315 		__fallthrough;
1316 	case 5:
1317 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1318 		__fallthrough;
1319 	case 4:
1320 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1321 		__fallthrough;
1322 	case 3:
1323 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1324 		__fallthrough;
1325 	case 2:
1326 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1327 		__fallthrough;
1328 	case 1:
1329 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1330 		break;
1331 	}
1332 }
1333 
1334 /* ---------------------------------------------------------------------------
1335  * The following registers are not added:
1336  * ICH_AP0R<n>_EL2
1337  * ICH_AP1R<n>_EL2
1338  * ICH_LR<n>_EL2
1339  *
1340  * NOTE: For a system with S-EL2 present but not enabled, accessing
1341  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1342  * SCR_EL3.NS = 1 before accessing this register.
1343  * ---------------------------------------------------------------------------
1344  */
1345 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx, uint32_t security_state)
1346 {
1347 	u_register_t scr_el3 = read_scr_el3();
1348 
1349 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1350 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1351 #else
1352 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1353 	isb();
1354 
1355 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1356 
1357 	write_scr_el3(scr_el3);
1358 	isb();
1359 #endif
1360 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1361 
1362 	if (errata_ich_vmcr_el2_applies()) {
1363 		if (security_state == SECURE) {
1364 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1365 		} else {
1366 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1367 		}
1368 		isb();
1369 	}
1370 
1371 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1372 
1373 	if (errata_ich_vmcr_el2_applies()) {
1374 		write_scr_el3(scr_el3);
1375 		isb();
1376 	}
1377 }
1378 
1379 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx, uint32_t security_state)
1380 {
1381 	u_register_t scr_el3 = read_scr_el3();
1382 
1383 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1384 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1385 #else
1386 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1387 	isb();
1388 
1389 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1390 
1391 	write_scr_el3(scr_el3);
1392 	isb();
1393 #endif
1394 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1395 
1396 	if (errata_ich_vmcr_el2_applies()) {
1397 		if (security_state == SECURE) {
1398 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1399 		} else {
1400 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1401 		}
1402 		isb();
1403 	}
1404 
1405 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1406 
1407 	if (errata_ich_vmcr_el2_applies()) {
1408 		write_scr_el3(scr_el3);
1409 		isb();
1410 	}
1411 }
1412 
1413 /* -----------------------------------------------------
1414  * The following registers are not added:
1415  * AMEVCNTVOFF0<n>_EL2
1416  * AMEVCNTVOFF1<n>_EL2
1417  * -----------------------------------------------------
1418  */
1419 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1420 {
1421 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1422 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1423 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1424 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1425 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1426 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1427 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1428 	if (CTX_INCLUDE_AARCH32_REGS) {
1429 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1430 	}
1431 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1432 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1433 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1434 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1435 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1436 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1437 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1438 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1439 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1440 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1441 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1442 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1443 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1444 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1445 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1446 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1447 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1448 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1449 
1450 	write_el2_ctx_common_sysreg128(ctx, ttbr0_el2, read_ttbr0_el2());
1451 	write_el2_ctx_common_sysreg128(ctx, vttbr_el2, read_vttbr_el2());
1452 }
1453 
1454 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1455 {
1456 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1457 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1458 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1459 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1460 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1461 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1462 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1463 	if (CTX_INCLUDE_AARCH32_REGS) {
1464 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1465 	}
1466 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1467 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1468 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1469 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1470 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1471 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1472 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1473 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1474 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1475 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1476 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1477 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1478 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1479 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1480 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1481 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1482 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1483 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1484 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1485 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1486 }
1487 
1488 /*******************************************************************************
1489  * Save EL2 sysreg context
1490  ******************************************************************************/
1491 void cm_el2_sysregs_context_save(uint32_t security_state)
1492 {
1493 	cpu_context_t *ctx;
1494 	el2_sysregs_t *el2_sysregs_ctx;
1495 
1496 	ctx = cm_get_context(security_state);
1497 	assert(ctx != NULL);
1498 
1499 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1500 
1501 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1502 	el2_sysregs_context_save_gic(el2_sysregs_ctx, security_state);
1503 
1504 	if (is_feat_mte2_supported()) {
1505 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1506 	}
1507 
1508 	if (is_feat_mpam_supported()) {
1509 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1510 	}
1511 
1512 	if (is_feat_fgt_supported()) {
1513 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1514 	}
1515 
1516 	if (is_feat_fgt2_supported()) {
1517 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1518 	}
1519 
1520 	if (is_feat_ecv_v2_supported()) {
1521 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1522 	}
1523 
1524 	if (is_feat_vhe_supported()) {
1525 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1526 					read_contextidr_el2());
1527 		write_el2_ctx_vhe_sysreg128(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1528 	}
1529 
1530 	if (is_feat_ras_supported()) {
1531 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1532 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1533 	}
1534 
1535 	if (is_feat_nv2_supported()) {
1536 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1537 	}
1538 
1539 	if (is_feat_trf_supported()) {
1540 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1541 	}
1542 
1543 	if (is_feat_csv2_2_supported()) {
1544 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1545 					read_scxtnum_el2());
1546 	}
1547 
1548 	if (is_feat_hcx_supported()) {
1549 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1550 	}
1551 
1552 	if (is_feat_tcr2_supported()) {
1553 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1554 	}
1555 
1556 	if (is_feat_s1pie_supported()) {
1557 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1558 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1559 	}
1560 
1561 	if (is_feat_s1poe_supported()) {
1562 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1563 	}
1564 
1565 	if (is_feat_brbe_supported()) {
1566 		write_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2, read_brbcr_el2());
1567 	}
1568 
1569 	if (is_feat_s2pie_supported()) {
1570 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1571 	}
1572 
1573 	if (is_feat_gcs_supported()) {
1574 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1575 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1576 	}
1577 
1578 	if (is_feat_sctlr2_supported()) {
1579 		write_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2, read_sctlr2_el2());
1580 	}
1581 }
1582 
1583 /*******************************************************************************
1584  * Restore EL2 sysreg context
1585  ******************************************************************************/
1586 void cm_el2_sysregs_context_restore(uint32_t security_state)
1587 {
1588 	cpu_context_t *ctx;
1589 	el2_sysregs_t *el2_sysregs_ctx;
1590 
1591 	ctx = cm_get_context(security_state);
1592 	assert(ctx != NULL);
1593 
1594 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1595 
1596 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1597 	el2_sysregs_context_restore_gic(el2_sysregs_ctx, security_state);
1598 
1599 	if (is_feat_mte2_supported()) {
1600 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1601 	}
1602 
1603 	if (is_feat_mpam_supported()) {
1604 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1605 	}
1606 
1607 	if (is_feat_fgt_supported()) {
1608 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1609 	}
1610 
1611 	if (is_feat_fgt2_supported()) {
1612 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1613 	}
1614 
1615 	if (is_feat_ecv_v2_supported()) {
1616 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1617 	}
1618 
1619 	if (is_feat_vhe_supported()) {
1620 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1621 					contextidr_el2));
1622 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1623 	}
1624 
1625 	if (is_feat_ras_supported()) {
1626 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1627 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1628 	}
1629 
1630 	if (is_feat_nv2_supported()) {
1631 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1632 	}
1633 
1634 	if (is_feat_trf_supported()) {
1635 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1636 	}
1637 
1638 	if (is_feat_csv2_2_supported()) {
1639 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1640 					scxtnum_el2));
1641 	}
1642 
1643 	if (is_feat_hcx_supported()) {
1644 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1645 	}
1646 
1647 	if (is_feat_tcr2_supported()) {
1648 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1649 	}
1650 
1651 	if (is_feat_s1pie_supported()) {
1652 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1653 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1654 	}
1655 
1656 	if (is_feat_s1poe_supported()) {
1657 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1658 	}
1659 
1660 	if (is_feat_s2pie_supported()) {
1661 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1662 	}
1663 
1664 	if (is_feat_gcs_supported()) {
1665 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1666 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1667 	}
1668 
1669 	if (is_feat_sctlr2_supported()) {
1670 		write_sctlr2_el2(read_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2));
1671 	}
1672 
1673 	if (is_feat_brbe_supported()) {
1674 		write_brbcr_el2(read_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2));
1675 	}
1676 }
1677 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1678 
1679 /*******************************************************************************
1680  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1681  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1682  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1683  * cm_prepare_el3_exit function.
1684  ******************************************************************************/
1685 void cm_prepare_el3_exit_ns(void)
1686 {
1687 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1688 #if ENABLE_ASSERTIONS
1689 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1690 	assert(ctx != NULL);
1691 
1692 	/* Assert that EL2 is used. */
1693 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1694 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1695 			(el_implemented(2U) != EL_IMPL_NONE));
1696 #endif /* ENABLE_ASSERTIONS */
1697 
1698 	/* Restore EL2 sysreg contexts */
1699 	cm_el2_sysregs_context_restore(NON_SECURE);
1700 	cm_set_next_eret_context(NON_SECURE);
1701 #else
1702 	cm_prepare_el3_exit(NON_SECURE);
1703 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1704 }
1705 
1706 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
1707 /*******************************************************************************
1708  * The next set of six functions are used by runtime services to save and restore
1709  * EL1 context on the 'cpu_context' structure for the specified security state.
1710  ******************************************************************************/
1711 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1712 {
1713 	write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1());
1714 	write_el1_ctx_common(ctx, elr_el1, read_elr_el1());
1715 
1716 #if (!ERRATA_SPECULATIVE_AT)
1717 	write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1());
1718 	write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1());
1719 #endif /* (!ERRATA_SPECULATIVE_AT) */
1720 
1721 	write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1());
1722 	write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1());
1723 	write_el1_ctx_common(ctx, sp_el1, read_sp_el1());
1724 	write_el1_ctx_common(ctx, esr_el1, read_esr_el1());
1725 	write_el1_ctx_common(ctx, mair_el1, read_mair_el1());
1726 	write_el1_ctx_common(ctx, amair_el1, read_amair_el1());
1727 	write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1());
1728 	write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1());
1729 	write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0());
1730 	write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0());
1731 	write_el1_ctx_common(ctx, far_el1, read_far_el1());
1732 	write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1());
1733 	write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1());
1734 	write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1());
1735 	write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1());
1736 	write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1());
1737 	write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1());
1738 
1739 	write_el1_ctx_common_sysreg128(ctx, par_el1, read_par_el1());
1740 	write_el1_ctx_common_sysreg128(ctx, ttbr0_el1, read_ttbr0_el1());
1741 	write_el1_ctx_common_sysreg128(ctx, ttbr1_el1, read_ttbr1_el1());
1742 
1743 	if (CTX_INCLUDE_AARCH32_REGS) {
1744 		/* Save Aarch32 registers */
1745 		write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt());
1746 		write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und());
1747 		write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq());
1748 		write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq());
1749 		write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2());
1750 		write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2());
1751 	}
1752 
1753 	/* Save counter-timer kernel control register */
1754 	write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1());
1755 #if NS_TIMER_SWITCH
1756 	/* Save NS Timer registers */
1757 	write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0());
1758 	write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0());
1759 	write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0());
1760 	write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0());
1761 #endif
1762 
1763 	if (is_feat_mte2_supported()) {
1764 		write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1());
1765 		write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1());
1766 		write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1());
1767 		write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1());
1768 	}
1769 
1770 	if (is_feat_ras_supported()) {
1771 		write_el1_ctx_ras(ctx, disr_el1, read_disr_el1());
1772 	}
1773 
1774 	if (is_feat_s1pie_supported()) {
1775 		write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1());
1776 		write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1());
1777 	}
1778 
1779 	if (is_feat_s1poe_supported()) {
1780 		write_el1_ctx_s1poe(ctx, por_el1, read_por_el1());
1781 	}
1782 
1783 	if (is_feat_s2poe_supported()) {
1784 		write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1());
1785 	}
1786 
1787 	if (is_feat_tcr2_supported()) {
1788 		write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1());
1789 	}
1790 
1791 	if (is_feat_trf_supported()) {
1792 		write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1());
1793 	}
1794 
1795 	if (is_feat_csv2_2_supported()) {
1796 		write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0());
1797 		write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1());
1798 	}
1799 
1800 	if (is_feat_gcs_supported()) {
1801 		write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1());
1802 		write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1());
1803 		write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1());
1804 		write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0());
1805 	}
1806 
1807 	if (is_feat_the_supported()) {
1808 		write_el1_ctx_the_sysreg128(ctx, rcwmask_el1, read_rcwmask_el1());
1809 		write_el1_ctx_the_sysreg128(ctx, rcwsmask_el1, read_rcwsmask_el1());
1810 	}
1811 
1812 	if (is_feat_sctlr2_supported()) {
1813 		write_el1_ctx_sctlr2(ctx, sctlr2_el1, read_sctlr2_el1());
1814 	}
1815 
1816 	if (is_feat_ls64_accdata_supported()) {
1817 		write_el1_ctx_ls64(ctx, accdata_el1, read_accdata_el1());
1818 	}
1819 }
1820 
1821 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1822 {
1823 	write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1));
1824 	write_elr_el1(read_el1_ctx_common(ctx, elr_el1));
1825 
1826 #if (!ERRATA_SPECULATIVE_AT)
1827 	write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1));
1828 	write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1));
1829 #endif /* (!ERRATA_SPECULATIVE_AT) */
1830 
1831 	write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1));
1832 	write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1));
1833 	write_sp_el1(read_el1_ctx_common(ctx, sp_el1));
1834 	write_esr_el1(read_el1_ctx_common(ctx, esr_el1));
1835 	write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1));
1836 	write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1));
1837 	write_mair_el1(read_el1_ctx_common(ctx, mair_el1));
1838 	write_amair_el1(read_el1_ctx_common(ctx, amair_el1));
1839 	write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1));
1840 	write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1));
1841 	write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0));
1842 	write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0));
1843 	write_par_el1(read_el1_ctx_common(ctx, par_el1));
1844 	write_far_el1(read_el1_ctx_common(ctx, far_el1));
1845 	write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1));
1846 	write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1));
1847 	write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1));
1848 	write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1));
1849 	write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1));
1850 	write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1));
1851 
1852 	if (CTX_INCLUDE_AARCH32_REGS) {
1853 		/* Restore Aarch32 registers */
1854 		write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt));
1855 		write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und));
1856 		write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq));
1857 		write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq));
1858 		write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2));
1859 		write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2));
1860 	}
1861 
1862 	/* Restore counter-timer kernel control register */
1863 	write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1));
1864 #if NS_TIMER_SWITCH
1865 	/* Restore NS Timer registers */
1866 	write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0));
1867 	write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0));
1868 	write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0));
1869 	write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0));
1870 #endif
1871 
1872 	if (is_feat_mte2_supported()) {
1873 		write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1));
1874 		write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1));
1875 		write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1));
1876 		write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1));
1877 	}
1878 
1879 	if (is_feat_ras_supported()) {
1880 		write_disr_el1(read_el1_ctx_ras(ctx, disr_el1));
1881 	}
1882 
1883 	if (is_feat_s1pie_supported()) {
1884 		write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1));
1885 		write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1));
1886 	}
1887 
1888 	if (is_feat_s1poe_supported()) {
1889 		write_por_el1(read_el1_ctx_s1poe(ctx, por_el1));
1890 	}
1891 
1892 	if (is_feat_s2poe_supported()) {
1893 		write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1));
1894 	}
1895 
1896 	if (is_feat_tcr2_supported()) {
1897 		write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1));
1898 	}
1899 
1900 	if (is_feat_trf_supported()) {
1901 		write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1));
1902 	}
1903 
1904 	if (is_feat_csv2_2_supported()) {
1905 		write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0));
1906 		write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1));
1907 	}
1908 
1909 	if (is_feat_gcs_supported()) {
1910 		write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1));
1911 		write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1));
1912 		write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1));
1913 		write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0));
1914 	}
1915 
1916 	if (is_feat_the_supported()) {
1917 		write_rcwmask_el1(read_el1_ctx_the(ctx, rcwmask_el1));
1918 		write_rcwsmask_el1(read_el1_ctx_the(ctx, rcwsmask_el1));
1919 	}
1920 
1921 	if (is_feat_sctlr2_supported()) {
1922 		write_sctlr2_el1(read_el1_ctx_sctlr2(ctx, sctlr2_el1));
1923 	}
1924 
1925 	if (is_feat_ls64_accdata_supported()) {
1926 		write_accdata_el1(read_el1_ctx_ls64(ctx, accdata_el1));
1927 	}
1928 }
1929 
1930 /*******************************************************************************
1931  * The next couple of functions are used by runtime services to save and restore
1932  * EL1 context on the 'cpu_context' structure for the specified security state.
1933  ******************************************************************************/
1934 void cm_el1_sysregs_context_save(uint32_t security_state)
1935 {
1936 	cpu_context_t *ctx;
1937 
1938 	ctx = cm_get_context(security_state);
1939 	assert(ctx != NULL);
1940 
1941 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1942 
1943 #if IMAGE_BL31
1944 	if (security_state == SECURE) {
1945 		PUBLISH_EVENT(cm_exited_secure_world);
1946 	} else {
1947 		PUBLISH_EVENT(cm_exited_normal_world);
1948 	}
1949 #endif
1950 }
1951 
1952 void cm_el1_sysregs_context_restore(uint32_t security_state)
1953 {
1954 	cpu_context_t *ctx;
1955 
1956 	ctx = cm_get_context(security_state);
1957 	assert(ctx != NULL);
1958 
1959 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1960 
1961 #if IMAGE_BL31
1962 	if (security_state == SECURE) {
1963 		PUBLISH_EVENT(cm_entering_secure_world);
1964 	} else {
1965 		PUBLISH_EVENT(cm_entering_normal_world);
1966 	}
1967 #endif
1968 }
1969 
1970 #endif /* ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) */
1971 
1972 /*******************************************************************************
1973  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1974  * given security state with the given entrypoint
1975  ******************************************************************************/
1976 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1977 {
1978 	cpu_context_t *ctx;
1979 	el3_state_t *state;
1980 
1981 	ctx = cm_get_context(security_state);
1982 	assert(ctx != NULL);
1983 
1984 	/* Populate EL3 state so that ERET jumps to the correct entry */
1985 	state = get_el3state_ctx(ctx);
1986 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1987 }
1988 
1989 /*******************************************************************************
1990  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1991  * pertaining to the given security state
1992  ******************************************************************************/
1993 void cm_set_elr_spsr_el3(uint32_t security_state,
1994 			uintptr_t entrypoint, uint32_t spsr)
1995 {
1996 	cpu_context_t *ctx;
1997 	el3_state_t *state;
1998 
1999 	ctx = cm_get_context(security_state);
2000 	assert(ctx != NULL);
2001 
2002 	/* Populate EL3 state so that ERET jumps to the correct entry */
2003 	state = get_el3state_ctx(ctx);
2004 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
2005 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
2006 }
2007 
2008 /*******************************************************************************
2009  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
2010  * pertaining to the given security state using the value and bit position
2011  * specified in the parameters. It preserves all other bits.
2012  ******************************************************************************/
2013 void cm_write_scr_el3_bit(uint32_t security_state,
2014 			  uint32_t bit_pos,
2015 			  uint32_t value)
2016 {
2017 	cpu_context_t *ctx;
2018 	el3_state_t *state;
2019 	u_register_t scr_el3;
2020 
2021 	ctx = cm_get_context(security_state);
2022 	assert(ctx != NULL);
2023 
2024 	/* Ensure that the bit position is a valid one */
2025 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
2026 
2027 	/* Ensure that the 'value' is only a bit wide */
2028 	assert(value <= 1U);
2029 
2030 	/*
2031 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
2032 	 * and set it to its new value.
2033 	 */
2034 	state = get_el3state_ctx(ctx);
2035 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
2036 	scr_el3 &= ~(1UL << bit_pos);
2037 	scr_el3 |= (u_register_t)value << bit_pos;
2038 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
2039 }
2040 
2041 /*******************************************************************************
2042  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
2043  * given security state.
2044  ******************************************************************************/
2045 u_register_t cm_get_scr_el3(uint32_t security_state)
2046 {
2047 	const cpu_context_t *ctx;
2048 	const el3_state_t *state;
2049 
2050 	ctx = cm_get_context(security_state);
2051 	assert(ctx != NULL);
2052 
2053 	/* Populate EL3 state so that ERET jumps to the correct entry */
2054 	state = get_el3state_ctx(ctx);
2055 	return read_ctx_reg(state, CTX_SCR_EL3);
2056 }
2057 
2058 /*******************************************************************************
2059  * This function is used to program the context that's used for exception
2060  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
2061  * the required security state
2062  ******************************************************************************/
2063 void cm_set_next_eret_context(uint32_t security_state)
2064 {
2065 	cpu_context_t *ctx;
2066 
2067 	ctx = cm_get_context(security_state);
2068 	assert(ctx != NULL);
2069 
2070 	cm_set_next_context(ctx);
2071 }
2072