xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision b62673c645752a78f649282cfa293e8da09e3bef)
1 /*
2  * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/cpus/cpu_ops.h>
23 #include <lib/cpus/errata.h>
24 #include <lib/el3_runtime/context_mgmt.h>
25 #include <lib/el3_runtime/cpu_data.h>
26 #include <lib/el3_runtime/pubsub_events.h>
27 #include <lib/extensions/amu.h>
28 #include <lib/extensions/brbe.h>
29 #include <lib/extensions/debug_v8p9.h>
30 #include <lib/extensions/fgt2.h>
31 #include <lib/extensions/fpmr.h>
32 #include <lib/extensions/mpam.h>
33 #include <lib/extensions/pmuv3.h>
34 #include <lib/extensions/sme.h>
35 #include <lib/extensions/spe.h>
36 #include <lib/extensions/sve.h>
37 #include <lib/extensions/sysreg128.h>
38 #include <lib/extensions/sys_reg_trace.h>
39 #include <lib/extensions/tcr2.h>
40 #include <lib/extensions/trbe.h>
41 #include <lib/extensions/trf.h>
42 #include <lib/utils.h>
43 
44 #if ENABLE_FEAT_TWED
45 /* Make sure delay value fits within the range(0-15) */
46 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
47 #endif /* ENABLE_FEAT_TWED */
48 
49 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
50 static bool has_secure_perworld_init;
51 
52 static void manage_extensions_nonsecure(cpu_context_t *ctx);
53 static void manage_extensions_secure(cpu_context_t *ctx);
54 static void manage_extensions_secure_per_world(void);
55 
56 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
57 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
58 {
59 	u_register_t sctlr_elx, actlr_elx;
60 
61 	/*
62 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
63 	 * execution state setting all fields rather than relying on the hw.
64 	 * Some fields have architecturally UNKNOWN reset values and these are
65 	 * set to zero.
66 	 *
67 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
68 	 *
69 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
70 	 * required by PSCI specification)
71 	 */
72 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
73 	if (GET_RW(ep->spsr) == MODE_RW_64) {
74 		sctlr_elx |= SCTLR_EL1_RES1;
75 	} else {
76 		/*
77 		 * If the target execution state is AArch32 then the following
78 		 * fields need to be set.
79 		 *
80 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
81 		 *  instructions are not trapped to EL1.
82 		 *
83 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
84 		 *  instructions are not trapped to EL1.
85 		 *
86 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
87 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
88 		 */
89 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
90 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
91 	}
92 
93 	/*
94 	 * If workaround of errata 764081 for Cortex-A75 is used then set
95 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
96 	 */
97 	if (errata_a75_764081_applies()) {
98 		sctlr_elx |= SCTLR_IESB_BIT;
99 	}
100 
101 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
102 	write_ctx_sctlr_el1_reg_errata(ctx, sctlr_elx);
103 
104 	/*
105 	 * Base the context ACTLR_EL1 on the current value, as it is
106 	 * implementation defined. The context restore process will write
107 	 * the value from the context to the actual register and can cause
108 	 * problems for processor cores that don't expect certain bits to
109 	 * be zero.
110 	 */
111 	actlr_elx = read_actlr_el1();
112 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx);
113 }
114 #endif /* (IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)) */
115 
116 /******************************************************************************
117  * This function performs initializations that are specific to SECURE state
118  * and updates the cpu context specified by 'ctx'.
119  *****************************************************************************/
120 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
121 {
122 	u_register_t scr_el3;
123 	el3_state_t *state;
124 
125 	state = get_el3state_ctx(ctx);
126 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
127 
128 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
129 	/*
130 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
131 	 * indicated by the interrupt routing model for BL31.
132 	 */
133 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
134 #endif
135 
136 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
137 	if (is_feat_mte2_supported()) {
138 		scr_el3 |= SCR_ATA_BIT;
139 	}
140 
141 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
142 
143 	/*
144 	 * Initialize EL1 context registers unless SPMC is running
145 	 * at S-EL2.
146 	 */
147 #if (!SPMD_SPM_AT_SEL2)
148 	setup_el1_context(ctx, ep);
149 #endif
150 
151 	manage_extensions_secure(ctx);
152 
153 	/**
154 	 * manage_extensions_secure_per_world api has to be executed once,
155 	 * as the registers getting initialised, maintain constant value across
156 	 * all the cpus for the secure world.
157 	 * Henceforth, this check ensures that the registers are initialised once
158 	 * and avoids re-initialization from multiple cores.
159 	 */
160 	if (!has_secure_perworld_init) {
161 		manage_extensions_secure_per_world();
162 	}
163 }
164 
165 #if ENABLE_RME
166 /******************************************************************************
167  * This function performs initializations that are specific to REALM state
168  * and updates the cpu context specified by 'ctx'.
169  *****************************************************************************/
170 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
171 {
172 	u_register_t scr_el3;
173 	el3_state_t *state;
174 
175 	state = get_el3state_ctx(ctx);
176 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
177 
178 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
179 
180 	/* CSV2 version 2 and above */
181 	if (is_feat_csv2_2_supported()) {
182 		/* Enable access to the SCXTNUM_ELx registers. */
183 		scr_el3 |= SCR_EnSCXT_BIT;
184 	}
185 
186 	if (is_feat_sctlr2_supported()) {
187 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
188 		 * SCTLR2_ELx registers.
189 		 */
190 		scr_el3 |= SCR_SCTLR2En_BIT;
191 	}
192 
193 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
194 
195 	if (is_feat_fgt2_supported()) {
196 		fgt2_enable(ctx);
197 	}
198 
199 	if (is_feat_debugv8p9_supported()) {
200 		debugv8p9_extended_bp_wp_enable(ctx);
201 	}
202 
203 
204 }
205 #endif /* ENABLE_RME */
206 
207 /******************************************************************************
208  * This function performs initializations that are specific to NON-SECURE state
209  * and updates the cpu context specified by 'ctx'.
210  *****************************************************************************/
211 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
212 {
213 	u_register_t scr_el3;
214 	el3_state_t *state;
215 
216 	state = get_el3state_ctx(ctx);
217 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
218 
219 	/* SCR_NS: Set the NS bit */
220 	scr_el3 |= SCR_NS_BIT;
221 
222 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
223 	if (is_feat_mte2_supported()) {
224 		scr_el3 |= SCR_ATA_BIT;
225 	}
226 
227 #if !CTX_INCLUDE_PAUTH_REGS
228 	/*
229 	 * Pointer Authentication feature, if present, is always enabled by default
230 	 * for Non secure lower exception levels. We do not have an explicit
231 	 * flag to set it.
232 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
233 	 * exception levels of secure and realm worlds.
234 	 *
235 	 * To prevent the leakage between the worlds during world switch,
236 	 * we enable it only for the non-secure world.
237 	 *
238 	 * If the Secure/realm world wants to use pointer authentication,
239 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
240 	 * it will be enabled globally for all the contexts.
241 	 *
242 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
243 	 *  other than EL3
244 	 *
245 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
246 	 *  than EL3
247 	 */
248 	if (is_armv8_3_pauth_present()) {
249 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
250 	}
251 #endif /* CTX_INCLUDE_PAUTH_REGS */
252 
253 #if HANDLE_EA_EL3_FIRST_NS
254 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
255 	scr_el3 |= SCR_EA_BIT;
256 #endif
257 
258 #if RAS_TRAP_NS_ERR_REC_ACCESS
259 	/*
260 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
261 	 * and RAS ERX registers from EL1 and EL2(from any security state)
262 	 * are trapped to EL3.
263 	 * Set here to trap only for NS EL1/EL2
264 	 */
265 	scr_el3 |= SCR_TERR_BIT;
266 #endif
267 
268 	/* CSV2 version 2 and above */
269 	if (is_feat_csv2_2_supported()) {
270 		/* Enable access to the SCXTNUM_ELx registers. */
271 		scr_el3 |= SCR_EnSCXT_BIT;
272 	}
273 
274 #ifdef IMAGE_BL31
275 	/*
276 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
277 	 *  indicated by the interrupt routing model for BL31.
278 	 */
279 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
280 #endif
281 
282 	if (is_feat_the_supported()) {
283 		/* Set the RCWMASKEn bit in SCR_EL3 to enable access to
284 		 * RCWMASK_EL1 and RCWSMASK_EL1 registers.
285 		 */
286 		scr_el3 |= SCR_RCWMASKEn_BIT;
287 	}
288 
289 	if (is_feat_sctlr2_supported()) {
290 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
291 		 * SCTLR2_ELx registers.
292 		 */
293 		scr_el3 |= SCR_SCTLR2En_BIT;
294 	}
295 
296 	if (is_feat_d128_supported()) {
297 		/* Set the D128En bit in SCR_EL3 to enable access to 128-bit
298 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
299 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
300 		 */
301 		scr_el3 |= SCR_D128En_BIT;
302 	}
303 
304 	if (is_feat_fpmr_supported()) {
305 		/* Set the EnFPM bit in SCR_EL3 to enable access to FPMR
306 		 * register.
307 		 */
308 		scr_el3 |= SCR_EnFPM_BIT;
309 	}
310 
311 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
312 
313 	/* Initialize EL2 context registers */
314 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
315 
316 	/*
317 	 * Initialize SCTLR_EL2 context register with reset value.
318 	 */
319 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
320 
321 	if (is_feat_hcx_supported()) {
322 		/*
323 		 * Initialize register HCRX_EL2 with its init value.
324 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
325 		 * chance that this can lead to unexpected behavior in lower
326 		 * ELs that have not been updated since the introduction of
327 		 * this feature if not properly initialized, especially when
328 		 * it comes to those bits that enable/disable traps.
329 		 */
330 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
331 			HCRX_EL2_INIT_VAL);
332 	}
333 
334 	if (is_feat_fgt_supported()) {
335 		/*
336 		 * Initialize HFG*_EL2 registers with a default value so legacy
337 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
338 		 * of initialization for this feature.
339 		 */
340 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
341 			HFGITR_EL2_INIT_VAL);
342 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
343 			HFGRTR_EL2_INIT_VAL);
344 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
345 			HFGWTR_EL2_INIT_VAL);
346 	}
347 #else
348 	/* Initialize EL1 context registers */
349 	setup_el1_context(ctx, ep);
350 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
351 
352 	manage_extensions_nonsecure(ctx);
353 }
354 
355 /*******************************************************************************
356  * The following function performs initialization of the cpu_context 'ctx'
357  * for first use that is common to all security states, and sets the
358  * initial entrypoint state as specified by the entry_point_info structure.
359  *
360  * The EE and ST attributes are used to configure the endianness and secure
361  * timer availability for the new execution context.
362  ******************************************************************************/
363 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
364 {
365 	u_register_t scr_el3;
366 	u_register_t mdcr_el3;
367 	el3_state_t *state;
368 	gp_regs_t *gp_regs;
369 
370 	state = get_el3state_ctx(ctx);
371 
372 	/* Clear any residual register values from the context */
373 	zeromem(ctx, sizeof(*ctx));
374 
375 	/*
376 	 * The lower-EL context is zeroed so that no stale values leak to a world.
377 	 * It is assumed that an all-zero lower-EL context is good enough for it
378 	 * to boot correctly. However, there are very few registers where this
379 	 * is not true and some values need to be recreated.
380 	 */
381 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
382 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
383 
384 	/*
385 	 * These bits are set in the gicv3 driver. Losing them (especially the
386 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
387 	 */
388 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
389 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
390 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
391 
392 	/*
393 	 * The actlr_el2 register can be initialized in platform's reset handler
394 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
395 	 */
396 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
397 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
398 
399 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
400 	scr_el3 = SCR_RESET_VAL;
401 
402 	/*
403 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
404 	 *  EL2, EL1 and EL0 are not trapped to EL3.
405 	 *
406 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
407 	 *  EL2, EL1 and EL0 are not trapped to EL3.
408 	 *
409 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
410 	 *  both Security states and both Execution states.
411 	 *
412 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
413 	 *  Non-secure memory.
414 	 */
415 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
416 
417 	scr_el3 |= SCR_SIF_BIT;
418 
419 	/*
420 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
421 	 *  Exception level as specified by SPSR.
422 	 */
423 	if (GET_RW(ep->spsr) == MODE_RW_64) {
424 		scr_el3 |= SCR_RW_BIT;
425 	}
426 
427 	/*
428 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
429 	 * Secure timer registers to EL3, from AArch64 state only, if specified
430 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
431 	 * bit always behaves as 1 (i.e. secure physical timer register access
432 	 * is not trapped)
433 	 */
434 	if (EP_GET_ST(ep->h.attr) != 0U) {
435 		scr_el3 |= SCR_ST_BIT;
436 	}
437 
438 	/*
439 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
440 	 * SCR_EL3.HXEn.
441 	 */
442 	if (is_feat_hcx_supported()) {
443 		scr_el3 |= SCR_HXEn_BIT;
444 	}
445 
446 	/*
447 	 * If FEAT_LS64_ACCDATA is enabled, enable access to ACCDATA_EL1 by
448 	 * setting SCR_EL3.ADEn and allow the ST64BV0 instruction by setting
449 	 * SCR_EL3.EnAS0.
450 	 */
451 	if (is_feat_ls64_accdata_supported()) {
452 		scr_el3 |= SCR_ADEn_BIT | SCR_EnAS0_BIT;
453 	}
454 
455 	/*
456 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
457 	 * registers are trapped to EL3.
458 	 */
459 	if (is_feat_rng_trap_supported()) {
460 		scr_el3 |= SCR_TRNDR_BIT;
461 	}
462 
463 #if FAULT_INJECTION_SUPPORT
464 	/* Enable fault injection from lower ELs */
465 	scr_el3 |= SCR_FIEN_BIT;
466 #endif
467 
468 #if CTX_INCLUDE_PAUTH_REGS
469 	/*
470 	 * Enable Pointer Authentication globally for all the worlds.
471 	 *
472 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
473 	 *  other than EL3
474 	 *
475 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
476 	 *  than EL3
477 	 */
478 	if (is_armv8_3_pauth_present()) {
479 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
480 	}
481 #endif /* CTX_INCLUDE_PAUTH_REGS */
482 
483 	/*
484 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
485 	 */
486 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
487 		scr_el3 |= SCR_TCR2EN_BIT;
488 	}
489 
490 	/*
491 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
492 	 * registers for AArch64 if present.
493 	 */
494 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
495 		scr_el3 |= SCR_PIEN_BIT;
496 	}
497 
498 	/*
499 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
500 	 */
501 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
502 		scr_el3 |= SCR_GCSEn_BIT;
503 	}
504 
505 	/*
506 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
507 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
508 	 * next mode is Hyp.
509 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
510 	 * same conditions as HVC instructions and when the processor supports
511 	 * ARMv8.6-FGT.
512 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
513 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
514 	 * and when the processor supports ECV.
515 	 */
516 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
517 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
518 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
519 		scr_el3 |= SCR_HCE_BIT;
520 
521 		if (is_feat_fgt_supported()) {
522 			scr_el3 |= SCR_FGTEN_BIT;
523 		}
524 
525 		if (is_feat_ecv_supported()) {
526 			scr_el3 |= SCR_ECVEN_BIT;
527 		}
528 	}
529 
530 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
531 	if (is_feat_twed_supported()) {
532 		/* Set delay in SCR_EL3 */
533 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
534 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
535 				<< SCR_TWEDEL_SHIFT);
536 
537 		/* Enable WFE delay */
538 		scr_el3 |= SCR_TWEDEn_BIT;
539 	}
540 
541 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
542 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
543 	if (is_feat_sel2_supported()) {
544 		scr_el3 |= SCR_EEL2_BIT;
545 	}
546 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
547 
548 	/*
549 	 * Populate EL3 state so that we've the right context
550 	 * before doing ERET
551 	 */
552 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
553 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
554 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
555 
556 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
557 	mdcr_el3 = MDCR_EL3_RESET_VAL;
558 
559 	/* ---------------------------------------------------------------------
560 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
561 	 * Some fields are architecturally UNKNOWN on reset.
562 	 *
563 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
564 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
565 	 *  disabled from all ELs in Secure state.
566 	 *
567 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
568 	 *  privileged debug from S-EL1.
569 	 *
570 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
571 	 *  access to the powerdown debug registers do not trap to EL3.
572 	 *
573 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
574 	 *  debug registers, other than those registers that are controlled by
575 	 *  MDCR_EL3.TDOSA.
576 	 */
577 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
578 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
579 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
580 
581 #if IMAGE_BL31
582 	/* Enable FEAT_TRF for Non-Secure and prohibit for Secure state. */
583 	if (is_feat_trf_supported()) {
584 		trf_enable(ctx);
585 	}
586 
587 	pmuv3_enable(ctx);
588 #endif /* IMAGE_BL31 */
589 
590 	/*
591 	 * Store the X0-X7 value from the entrypoint into the context
592 	 * Use memcpy as we are in control of the layout of the structures
593 	 */
594 	gp_regs = get_gpregs_ctx(ctx);
595 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
596 }
597 
598 /*******************************************************************************
599  * Context management library initialization routine. This library is used by
600  * runtime services to share pointers to 'cpu_context' structures for secure
601  * non-secure and realm states. Management of the structures and their associated
602  * memory is not done by the context management library e.g. the PSCI service
603  * manages the cpu context used for entry from and exit to the non-secure state.
604  * The Secure payload dispatcher service manages the context(s) corresponding to
605  * the secure state. It also uses this library to get access to the non-secure
606  * state cpu context pointers.
607  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
608  * which will be used for programming an entry into a lower EL. The same context
609  * will be used to save state upon exception entry from that EL.
610  ******************************************************************************/
611 void __init cm_init(void)
612 {
613 	/*
614 	 * The context management library has only global data to initialize, but
615 	 * that will be done when the BSS is zeroed out.
616 	 */
617 }
618 
619 /*******************************************************************************
620  * This is the high-level function used to initialize the cpu_context 'ctx' for
621  * first use. It performs initializations that are common to all security states
622  * and initializations specific to the security state specified in 'ep'
623  ******************************************************************************/
624 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
625 {
626 	unsigned int security_state;
627 
628 	assert(ctx != NULL);
629 
630 	/*
631 	 * Perform initializations that are common
632 	 * to all security states
633 	 */
634 	setup_context_common(ctx, ep);
635 
636 	security_state = GET_SECURITY_STATE(ep->h.attr);
637 
638 	/* Perform security state specific initializations */
639 	switch (security_state) {
640 	case SECURE:
641 		setup_secure_context(ctx, ep);
642 		break;
643 #if ENABLE_RME
644 	case REALM:
645 		setup_realm_context(ctx, ep);
646 		break;
647 #endif
648 	case NON_SECURE:
649 		setup_ns_context(ctx, ep);
650 		break;
651 	default:
652 		ERROR("Invalid security state\n");
653 		panic();
654 		break;
655 	}
656 }
657 
658 /*******************************************************************************
659  * Enable architecture extensions for EL3 execution. This function only updates
660  * registers in-place which are expected to either never change or be
661  * overwritten by el3_exit.
662  ******************************************************************************/
663 #if IMAGE_BL31
664 void cm_manage_extensions_el3(void)
665 {
666 	if (is_feat_amu_supported()) {
667 		amu_init_el3();
668 	}
669 
670 	if (is_feat_sme_supported()) {
671 		sme_init_el3();
672 	}
673 
674 	pmuv3_init_el3();
675 }
676 #endif /* IMAGE_BL31 */
677 
678 /******************************************************************************
679  * Function to initialise the registers with the RESET values in the context
680  * memory, which are maintained per world.
681  ******************************************************************************/
682 #if IMAGE_BL31
683 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
684 {
685 	/*
686 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
687 	 *
688 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
689 	 *  by Advanced SIMD, floating-point or SVE instructions (if
690 	 *  implemented) do not trap to EL3.
691 	 *
692 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
693 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
694 	 */
695 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
696 
697 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
698 
699 	/*
700 	 * Initialize MPAM3_EL3 to its default reset value
701 	 *
702 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
703 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
704 	 */
705 
706 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
707 }
708 #endif /* IMAGE_BL31 */
709 
710 /*******************************************************************************
711  * Initialise per_world_context for Non-Secure world.
712  * This function enables the architecture extensions, which have same value
713  * across the cores for the non-secure world.
714  ******************************************************************************/
715 #if IMAGE_BL31
716 void manage_extensions_nonsecure_per_world(void)
717 {
718 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
719 
720 	if (is_feat_sme_supported()) {
721 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
722 	}
723 
724 	if (is_feat_sve_supported()) {
725 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
726 	}
727 
728 	if (is_feat_amu_supported()) {
729 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
730 	}
731 
732 	if (is_feat_sys_reg_trace_supported()) {
733 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
734 	}
735 
736 	if (is_feat_mpam_supported()) {
737 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
738 	}
739 
740 	if (is_feat_fpmr_supported()) {
741 		fpmr_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
742 	}
743 }
744 #endif /* IMAGE_BL31 */
745 
746 /*******************************************************************************
747  * Initialise per_world_context for Secure world.
748  * This function enables the architecture extensions, which have same value
749  * across the cores for the secure world.
750  ******************************************************************************/
751 static void manage_extensions_secure_per_world(void)
752 {
753 #if IMAGE_BL31
754 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
755 
756 	if (is_feat_sme_supported()) {
757 
758 		if (ENABLE_SME_FOR_SWD) {
759 		/*
760 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
761 		 * SME, SVE, and FPU/SIMD context properly managed.
762 		 */
763 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
764 		} else {
765 		/*
766 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
767 		 * world can safely use the associated registers.
768 		 */
769 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
770 		}
771 	}
772 	if (is_feat_sve_supported()) {
773 		if (ENABLE_SVE_FOR_SWD) {
774 		/*
775 		 * Enable SVE and FPU in secure context, SPM must ensure
776 		 * that the SVE and FPU register contexts are properly managed.
777 		 */
778 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
779 		} else {
780 		/*
781 		 * Disable SVE and FPU in secure context so non-secure world
782 		 * can safely use them.
783 		 */
784 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
785 		}
786 	}
787 
788 	/* NS can access this but Secure shouldn't */
789 	if (is_feat_sys_reg_trace_supported()) {
790 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
791 	}
792 
793 	has_secure_perworld_init = true;
794 #endif /* IMAGE_BL31 */
795 }
796 
797 /*******************************************************************************
798  * Enable architecture extensions on first entry to Non-secure world.
799  ******************************************************************************/
800 static void manage_extensions_nonsecure(cpu_context_t *ctx)
801 {
802 #if IMAGE_BL31
803 	if (is_feat_amu_supported()) {
804 		amu_enable(ctx);
805 	}
806 
807 	if (is_feat_sme_supported()) {
808 		sme_enable(ctx);
809 	}
810 
811 	if (is_feat_fgt2_supported()) {
812 		fgt2_enable(ctx);
813 	}
814 
815 	if (is_feat_debugv8p9_supported()) {
816 		debugv8p9_extended_bp_wp_enable(ctx);
817 	}
818 
819 	/*
820 	 * SPE, TRBE, and BRBE have multi-field enables that affect which world
821 	 * they apply to. Despite this, it is useful to ignore these for
822 	 * simplicity in determining the feature's per world enablement status.
823 	 * This is only possible when context is written per-world. Relied on
824 	 * by SMCCC_ARCH_FEATURE_AVAILABILITY
825 	 */
826 	if (is_feat_spe_supported()) {
827 		spe_enable(ctx);
828 	}
829 
830 	if (is_feat_trbe_supported()) {
831 		trbe_enable(ctx);
832 	}
833 
834 	if (is_feat_brbe_supported()) {
835 		brbe_enable(ctx);
836 	}
837 #endif /* IMAGE_BL31 */
838 }
839 
840 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
841 static __unused void enable_pauth_el2(void)
842 {
843 	u_register_t hcr_el2 = read_hcr_el2();
844 	/*
845 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
846 	 *  accessing key registers or using pointer authentication instructions
847 	 *  from lower ELs.
848 	 */
849 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
850 
851 	write_hcr_el2(hcr_el2);
852 }
853 
854 #if INIT_UNUSED_NS_EL2
855 /*******************************************************************************
856  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
857  * world when EL2 is empty and unused.
858  ******************************************************************************/
859 static void manage_extensions_nonsecure_el2_unused(void)
860 {
861 #if IMAGE_BL31
862 	if (is_feat_spe_supported()) {
863 		spe_init_el2_unused();
864 	}
865 
866 	if (is_feat_amu_supported()) {
867 		amu_init_el2_unused();
868 	}
869 
870 	if (is_feat_mpam_supported()) {
871 		mpam_init_el2_unused();
872 	}
873 
874 	if (is_feat_trbe_supported()) {
875 		trbe_init_el2_unused();
876 	}
877 
878 	if (is_feat_sys_reg_trace_supported()) {
879 		sys_reg_trace_init_el2_unused();
880 	}
881 
882 	if (is_feat_trf_supported()) {
883 		trf_init_el2_unused();
884 	}
885 
886 	pmuv3_init_el2_unused();
887 
888 	if (is_feat_sve_supported()) {
889 		sve_init_el2_unused();
890 	}
891 
892 	if (is_feat_sme_supported()) {
893 		sme_init_el2_unused();
894 	}
895 
896 	if (is_feat_mops_supported()) {
897 		write_hcrx_el2(read_hcrx_el2() | HCRX_EL2_MSCEn_BIT);
898 	}
899 
900 #if ENABLE_PAUTH
901 	enable_pauth_el2();
902 #endif /* ENABLE_PAUTH */
903 #endif /* IMAGE_BL31 */
904 }
905 #endif /* INIT_UNUSED_NS_EL2 */
906 
907 /*******************************************************************************
908  * Enable architecture extensions on first entry to Secure world.
909  ******************************************************************************/
910 static void manage_extensions_secure(cpu_context_t *ctx)
911 {
912 #if IMAGE_BL31
913 	if (is_feat_sme_supported()) {
914 		if (ENABLE_SME_FOR_SWD) {
915 		/*
916 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
917 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
918 		 */
919 			sme_init_el3();
920 			sme_enable(ctx);
921 		} else {
922 		/*
923 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
924 		 * world can safely use the associated registers.
925 		 */
926 			sme_disable(ctx);
927 		}
928 	}
929 
930 	/*
931 	 * SPE and TRBE cannot be fully disabled from EL3 registers alone, only
932 	 * sysreg access can. In case the EL1 controls leave them active on
933 	 * context switch, we want the owning security state to be NS so Secure
934 	 * can't be DOSed.
935 	 */
936 	if (is_feat_spe_supported()) {
937 		spe_disable(ctx);
938 	}
939 
940 	if (is_feat_trbe_supported()) {
941 		trbe_disable(ctx);
942 	}
943 #endif /* IMAGE_BL31 */
944 }
945 
946 #if !IMAGE_BL1
947 /*******************************************************************************
948  * The following function initializes the cpu_context for a CPU specified by
949  * its `cpu_idx` for first use, and sets the initial entrypoint state as
950  * specified by the entry_point_info structure.
951  ******************************************************************************/
952 void cm_init_context_by_index(unsigned int cpu_idx,
953 			      const entry_point_info_t *ep)
954 {
955 	cpu_context_t *ctx;
956 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
957 	cm_setup_context(ctx, ep);
958 }
959 #endif /* !IMAGE_BL1 */
960 
961 /*******************************************************************************
962  * The following function initializes the cpu_context for the current CPU
963  * for first use, and sets the initial entrypoint state as specified by the
964  * entry_point_info structure.
965  ******************************************************************************/
966 void cm_init_my_context(const entry_point_info_t *ep)
967 {
968 	cpu_context_t *ctx;
969 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
970 	cm_setup_context(ctx, ep);
971 }
972 
973 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
974 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
975 {
976 #if INIT_UNUSED_NS_EL2
977 	u_register_t hcr_el2 = HCR_RESET_VAL;
978 	u_register_t mdcr_el2;
979 	u_register_t scr_el3;
980 
981 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
982 
983 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
984 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
985 		hcr_el2 |= HCR_RW_BIT;
986 	}
987 
988 	write_hcr_el2(hcr_el2);
989 
990 	/*
991 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
992 	 * All fields have architecturally UNKNOWN reset values.
993 	 */
994 	write_cptr_el2(CPTR_EL2_RESET_VAL);
995 
996 	/*
997 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
998 	 * reset and are set to zero except for field(s) listed below.
999 	 *
1000 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
1001 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
1002 	 *
1003 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
1004 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
1005 	 */
1006 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
1007 
1008 	/*
1009 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
1010 	 * UNKNOWN value.
1011 	 */
1012 	write_cntvoff_el2(0);
1013 
1014 	/*
1015 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
1016 	 * respectively.
1017 	 */
1018 	write_vpidr_el2(read_midr_el1());
1019 	write_vmpidr_el2(read_mpidr_el1());
1020 
1021 	/*
1022 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
1023 	 *
1024 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
1025 	 * translation is disabled, cache maintenance operations depend on the
1026 	 * VMID.
1027 	 *
1028 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
1029 	 * disabled.
1030 	 */
1031 	write_vttbr_el2(VTTBR_RESET_VAL &
1032 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
1033 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
1034 
1035 	/*
1036 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
1037 	 * Some fields are architecturally UNKNOWN on reset.
1038 	 *
1039 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
1040 	 * register accesses to the Debug ROM registers are not trapped to EL2.
1041 	 *
1042 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
1043 	 * accesses to the powerdown debug registers are not trapped to EL2.
1044 	 *
1045 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
1046 	 * debug registers do not trap to EL2.
1047 	 *
1048 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
1049 	 * EL2.
1050 	 */
1051 	mdcr_el2 = MDCR_EL2_RESET_VAL &
1052 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
1053 		   MDCR_EL2_TDE_BIT);
1054 
1055 	write_mdcr_el2(mdcr_el2);
1056 
1057 	/*
1058 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
1059 	 *
1060 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
1061 	 * EL1 accesses to System registers do not trap to EL2.
1062 	 */
1063 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
1064 
1065 	/*
1066 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
1067 	 * reset.
1068 	 *
1069 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1070 	 * and prevent timer interrupts.
1071 	 */
1072 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1073 
1074 	manage_extensions_nonsecure_el2_unused();
1075 #endif /* INIT_UNUSED_NS_EL2 */
1076 }
1077 
1078 /*******************************************************************************
1079  * Prepare the CPU system registers for first entry into realm, secure, or
1080  * normal world.
1081  *
1082  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1083  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1084  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1085  * For all entries, the EL1 registers are initialized from the cpu_context
1086  ******************************************************************************/
1087 void cm_prepare_el3_exit(uint32_t security_state)
1088 {
1089 	u_register_t sctlr_el2, scr_el3;
1090 	cpu_context_t *ctx = cm_get_context(security_state);
1091 
1092 	assert(ctx != NULL);
1093 
1094 	if (security_state == NON_SECURE) {
1095 		uint64_t el2_implemented = el_implemented(2);
1096 
1097 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1098 						 CTX_SCR_EL3);
1099 
1100 		if (el2_implemented != EL_IMPL_NONE) {
1101 
1102 			/*
1103 			 * If context is not being used for EL2, initialize
1104 			 * HCRX_EL2 with its init value here.
1105 			 */
1106 			if (is_feat_hcx_supported()) {
1107 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1108 			}
1109 
1110 			/*
1111 			 * Initialize Fine-grained trap registers introduced
1112 			 * by FEAT_FGT so all traps are initially disabled when
1113 			 * switching to EL2 or a lower EL, preventing undesired
1114 			 * behavior.
1115 			 */
1116 			if (is_feat_fgt_supported()) {
1117 				/*
1118 				 * Initialize HFG*_EL2 registers with a default
1119 				 * value so legacy systems unaware of FEAT_FGT
1120 				 * do not get trapped due to their lack of
1121 				 * initialization for this feature.
1122 				 */
1123 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1124 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1125 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1126 			}
1127 
1128 			/* Condition to ensure EL2 is being used. */
1129 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1130 				/* Initialize SCTLR_EL2 register with reset value. */
1131 				sctlr_el2 = SCTLR_EL2_RES1;
1132 
1133 				/*
1134 				 * If workaround of errata 764081 for Cortex-A75
1135 				 * is used then set SCTLR_EL2.IESB to enable
1136 				 * Implicit Error Synchronization Barrier.
1137 				 */
1138 				if (errata_a75_764081_applies()) {
1139 					sctlr_el2 |= SCTLR_IESB_BIT;
1140 				}
1141 
1142 				write_sctlr_el2(sctlr_el2);
1143 			} else {
1144 				/*
1145 				 * (scr_el3 & SCR_HCE_BIT==0)
1146 				 * EL2 implemented but unused.
1147 				 */
1148 				init_nonsecure_el2_unused(ctx);
1149 			}
1150 		}
1151 	}
1152 #if (!CTX_INCLUDE_EL2_REGS)
1153 	/* Restore EL1 system registers, only when CTX_INCLUDE_EL2_REGS=0 */
1154 	cm_el1_sysregs_context_restore(security_state);
1155 #endif
1156 	cm_set_next_eret_context(security_state);
1157 }
1158 
1159 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1160 
1161 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1162 {
1163 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1164 	if (is_feat_amu_supported()) {
1165 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1166 	}
1167 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1168 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1169 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1170 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1171 }
1172 
1173 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1174 {
1175 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1176 	if (is_feat_amu_supported()) {
1177 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1178 	}
1179 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1180 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1181 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1182 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1183 }
1184 
1185 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1186 {
1187 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1188 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1189 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1190 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1191 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1192 }
1193 
1194 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1195 {
1196 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1197 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1198 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1199 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1200 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1201 }
1202 
1203 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1204 {
1205 	u_register_t mpam_idr = read_mpamidr_el1();
1206 
1207 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1208 
1209 	/*
1210 	 * The context registers that we intend to save would be part of the
1211 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1212 	 */
1213 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1214 		return;
1215 	}
1216 
1217 	/*
1218 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1219 	 * MPAMIDR_HAS_HCR_BIT == 1.
1220 	 */
1221 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1222 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1223 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1224 
1225 	/*
1226 	 * The number of MPAMVPM registers is implementation defined, their
1227 	 * number is stored in the MPAMIDR_EL1 register.
1228 	 */
1229 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1230 	case 7:
1231 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1232 		__fallthrough;
1233 	case 6:
1234 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1235 		__fallthrough;
1236 	case 5:
1237 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1238 		__fallthrough;
1239 	case 4:
1240 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1241 		__fallthrough;
1242 	case 3:
1243 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1244 		__fallthrough;
1245 	case 2:
1246 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1247 		__fallthrough;
1248 	case 1:
1249 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1250 		break;
1251 	}
1252 }
1253 
1254 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1255 {
1256 	u_register_t mpam_idr = read_mpamidr_el1();
1257 
1258 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1259 
1260 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1261 		return;
1262 	}
1263 
1264 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1265 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1266 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1267 
1268 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1269 	case 7:
1270 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1271 		__fallthrough;
1272 	case 6:
1273 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1274 		__fallthrough;
1275 	case 5:
1276 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1277 		__fallthrough;
1278 	case 4:
1279 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1280 		__fallthrough;
1281 	case 3:
1282 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1283 		__fallthrough;
1284 	case 2:
1285 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1286 		__fallthrough;
1287 	case 1:
1288 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1289 		break;
1290 	}
1291 }
1292 
1293 /* ---------------------------------------------------------------------------
1294  * The following registers are not added:
1295  * ICH_AP0R<n>_EL2
1296  * ICH_AP1R<n>_EL2
1297  * ICH_LR<n>_EL2
1298  *
1299  * NOTE: For a system with S-EL2 present but not enabled, accessing
1300  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1301  * SCR_EL3.NS = 1 before accessing this register.
1302  * ---------------------------------------------------------------------------
1303  */
1304 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx, uint32_t security_state)
1305 {
1306 	u_register_t scr_el3 = read_scr_el3();
1307 
1308 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1309 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1310 #else
1311 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1312 	isb();
1313 
1314 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1315 
1316 	write_scr_el3(scr_el3);
1317 	isb();
1318 #endif
1319 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1320 
1321 	if (errata_ich_vmcr_el2_applies()) {
1322 		if (security_state == SECURE) {
1323 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1324 		} else {
1325 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1326 		}
1327 		isb();
1328 	}
1329 
1330 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1331 
1332 	if (errata_ich_vmcr_el2_applies()) {
1333 		write_scr_el3(scr_el3);
1334 		isb();
1335 	}
1336 }
1337 
1338 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx, uint32_t security_state)
1339 {
1340 	u_register_t scr_el3 = read_scr_el3();
1341 
1342 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1343 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1344 #else
1345 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1346 	isb();
1347 
1348 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1349 
1350 	write_scr_el3(scr_el3);
1351 	isb();
1352 #endif
1353 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1354 
1355 	if (errata_ich_vmcr_el2_applies()) {
1356 		if (security_state == SECURE) {
1357 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1358 		} else {
1359 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1360 		}
1361 		isb();
1362 	}
1363 
1364 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1365 
1366 	if (errata_ich_vmcr_el2_applies()) {
1367 		write_scr_el3(scr_el3);
1368 		isb();
1369 	}
1370 }
1371 
1372 /* -----------------------------------------------------
1373  * The following registers are not added:
1374  * AMEVCNTVOFF0<n>_EL2
1375  * AMEVCNTVOFF1<n>_EL2
1376  * -----------------------------------------------------
1377  */
1378 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1379 {
1380 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1381 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1382 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1383 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1384 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1385 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1386 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1387 	if (CTX_INCLUDE_AARCH32_REGS) {
1388 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1389 	}
1390 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1391 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1392 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1393 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1394 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1395 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1396 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1397 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1398 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1399 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1400 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1401 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1402 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1403 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1404 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1405 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1406 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1407 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1408 
1409 	write_el2_ctx_common_sysreg128(ctx, ttbr0_el2, read_ttbr0_el2());
1410 	write_el2_ctx_common_sysreg128(ctx, vttbr_el2, read_vttbr_el2());
1411 }
1412 
1413 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1414 {
1415 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1416 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1417 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1418 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1419 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1420 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1421 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1422 	if (CTX_INCLUDE_AARCH32_REGS) {
1423 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1424 	}
1425 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1426 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1427 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1428 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1429 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1430 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1431 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1432 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1433 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1434 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1435 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1436 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1437 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1438 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1439 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1440 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1441 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1442 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1443 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1444 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1445 }
1446 
1447 /*******************************************************************************
1448  * Save EL2 sysreg context
1449  ******************************************************************************/
1450 void cm_el2_sysregs_context_save(uint32_t security_state)
1451 {
1452 	cpu_context_t *ctx;
1453 	el2_sysregs_t *el2_sysregs_ctx;
1454 
1455 	ctx = cm_get_context(security_state);
1456 	assert(ctx != NULL);
1457 
1458 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1459 
1460 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1461 	el2_sysregs_context_save_gic(el2_sysregs_ctx, security_state);
1462 
1463 	if (is_feat_mte2_supported()) {
1464 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1465 	}
1466 
1467 	if (is_feat_mpam_supported()) {
1468 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1469 	}
1470 
1471 	if (is_feat_fgt_supported()) {
1472 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1473 	}
1474 
1475 	if (is_feat_fgt2_supported()) {
1476 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1477 	}
1478 
1479 	if (is_feat_ecv_v2_supported()) {
1480 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1481 	}
1482 
1483 	if (is_feat_vhe_supported()) {
1484 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1485 					read_contextidr_el2());
1486 		write_el2_ctx_vhe_sysreg128(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1487 	}
1488 
1489 	if (is_feat_ras_supported()) {
1490 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1491 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1492 	}
1493 
1494 	if (is_feat_nv2_supported()) {
1495 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1496 	}
1497 
1498 	if (is_feat_trf_supported()) {
1499 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1500 	}
1501 
1502 	if (is_feat_csv2_2_supported()) {
1503 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1504 					read_scxtnum_el2());
1505 	}
1506 
1507 	if (is_feat_hcx_supported()) {
1508 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1509 	}
1510 
1511 	if (is_feat_tcr2_supported()) {
1512 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1513 	}
1514 
1515 	if (is_feat_sxpie_supported()) {
1516 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1517 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1518 	}
1519 
1520 	if (is_feat_sxpoe_supported()) {
1521 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1522 	}
1523 
1524 	if (is_feat_s2pie_supported()) {
1525 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1526 	}
1527 
1528 	if (is_feat_gcs_supported()) {
1529 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1530 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1531 	}
1532 
1533 	if (is_feat_sctlr2_supported()) {
1534 		write_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2, read_sctlr2_el2());
1535 	}
1536 }
1537 
1538 /*******************************************************************************
1539  * Restore EL2 sysreg context
1540  ******************************************************************************/
1541 void cm_el2_sysregs_context_restore(uint32_t security_state)
1542 {
1543 	cpu_context_t *ctx;
1544 	el2_sysregs_t *el2_sysregs_ctx;
1545 
1546 	ctx = cm_get_context(security_state);
1547 	assert(ctx != NULL);
1548 
1549 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1550 
1551 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1552 	el2_sysregs_context_restore_gic(el2_sysregs_ctx, security_state);
1553 
1554 	if (is_feat_mte2_supported()) {
1555 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1556 	}
1557 
1558 	if (is_feat_mpam_supported()) {
1559 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1560 	}
1561 
1562 	if (is_feat_fgt_supported()) {
1563 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1564 	}
1565 
1566 	if (is_feat_fgt2_supported()) {
1567 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1568 	}
1569 
1570 	if (is_feat_ecv_v2_supported()) {
1571 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1572 	}
1573 
1574 	if (is_feat_vhe_supported()) {
1575 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1576 					contextidr_el2));
1577 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1578 	}
1579 
1580 	if (is_feat_ras_supported()) {
1581 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1582 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1583 	}
1584 
1585 	if (is_feat_nv2_supported()) {
1586 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1587 	}
1588 
1589 	if (is_feat_trf_supported()) {
1590 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1591 	}
1592 
1593 	if (is_feat_csv2_2_supported()) {
1594 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1595 					scxtnum_el2));
1596 	}
1597 
1598 	if (is_feat_hcx_supported()) {
1599 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1600 	}
1601 
1602 	if (is_feat_tcr2_supported()) {
1603 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1604 	}
1605 
1606 	if (is_feat_sxpie_supported()) {
1607 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1608 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1609 	}
1610 
1611 	if (is_feat_sxpoe_supported()) {
1612 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1613 	}
1614 
1615 	if (is_feat_s2pie_supported()) {
1616 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1617 	}
1618 
1619 	if (is_feat_gcs_supported()) {
1620 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1621 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1622 	}
1623 
1624 	if (is_feat_sctlr2_supported()) {
1625 		write_sctlr2_el2(read_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2));
1626 	}
1627 }
1628 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1629 
1630 #if IMAGE_BL31
1631 /*********************************************************************************
1632 * This function allows Architecture features asymmetry among cores.
1633 * TF-A assumes that all the cores in the platform has architecture feature parity
1634 * and hence the context is setup on different core (e.g. primary sets up the
1635 * context for secondary cores).This assumption may not be true for systems where
1636 * cores are not conforming to same Arch version or there is CPU Erratum which
1637 * requires certain feature to be be disabled only on a given core.
1638 *
1639 * This function is called on secondary cores to override any disparity in context
1640 * setup by primary, this would be called during warmboot path.
1641 *********************************************************************************/
1642 void cm_handle_asymmetric_features(void)
1643 {
1644 	cpu_context_t *ctx __maybe_unused = cm_get_context(NON_SECURE);
1645 
1646 	assert(ctx != NULL);
1647 
1648 #if ENABLE_SPE_FOR_NS == FEAT_STATE_CHECK_ASYMMETRIC
1649 	if (is_feat_spe_supported()) {
1650 		spe_enable(ctx);
1651 	} else {
1652 		spe_disable(ctx);
1653 	}
1654 #endif
1655 
1656 #if ERRATA_A520_2938996 || ERRATA_X4_2726228
1657 	if (check_if_affected_core() == ERRATA_APPLIES) {
1658 		if (is_feat_trbe_supported()) {
1659 			trbe_disable(ctx);
1660 		}
1661 	}
1662 #endif
1663 
1664 #if ENABLE_FEAT_TCR2 == FEAT_STATE_CHECK_ASYMMETRIC
1665 	el3_state_t *el3_state = get_el3state_ctx(ctx);
1666 	u_register_t spsr = read_ctx_reg(el3_state, CTX_SPSR_EL3);
1667 
1668 	if (is_feat_tcr2_supported() && (GET_RW(spsr) == MODE_RW_64)) {
1669 		tcr2_enable(ctx);
1670 	} else {
1671 		tcr2_disable(ctx);
1672 	}
1673 #endif
1674 
1675 }
1676 #endif
1677 
1678 /*******************************************************************************
1679  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1680  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1681  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1682  * cm_prepare_el3_exit function.
1683  ******************************************************************************/
1684 void cm_prepare_el3_exit_ns(void)
1685 {
1686 #if IMAGE_BL31
1687 	/*
1688 	 * Check and handle Architecture feature asymmetry among cores.
1689 	 *
1690 	 * In warmboot path secondary cores context is initialized on core which
1691 	 * did CPU_ON SMC call, if there is feature asymmetry in these cores handle
1692 	 * it in this function call.
1693 	 * For Symmetric cores this is an empty function.
1694 	 */
1695 	cm_handle_asymmetric_features();
1696 #endif
1697 
1698 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1699 #if ENABLE_ASSERTIONS
1700 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1701 	assert(ctx != NULL);
1702 
1703 	/* Assert that EL2 is used. */
1704 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1705 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1706 			(el_implemented(2U) != EL_IMPL_NONE));
1707 #endif /* ENABLE_ASSERTIONS */
1708 
1709 	/* Restore EL2 sysreg contexts */
1710 	cm_el2_sysregs_context_restore(NON_SECURE);
1711 	cm_set_next_eret_context(NON_SECURE);
1712 #else
1713 	cm_prepare_el3_exit(NON_SECURE);
1714 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1715 }
1716 
1717 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
1718 /*******************************************************************************
1719  * The next set of six functions are used by runtime services to save and restore
1720  * EL1 context on the 'cpu_context' structure for the specified security state.
1721  ******************************************************************************/
1722 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1723 {
1724 	write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1());
1725 	write_el1_ctx_common(ctx, elr_el1, read_elr_el1());
1726 
1727 #if (!ERRATA_SPECULATIVE_AT)
1728 	write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1());
1729 	write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1());
1730 #endif /* (!ERRATA_SPECULATIVE_AT) */
1731 
1732 	write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1());
1733 	write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1());
1734 	write_el1_ctx_common(ctx, sp_el1, read_sp_el1());
1735 	write_el1_ctx_common(ctx, esr_el1, read_esr_el1());
1736 	write_el1_ctx_common(ctx, mair_el1, read_mair_el1());
1737 	write_el1_ctx_common(ctx, amair_el1, read_amair_el1());
1738 	write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1());
1739 	write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1());
1740 	write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0());
1741 	write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0());
1742 	write_el1_ctx_common(ctx, far_el1, read_far_el1());
1743 	write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1());
1744 	write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1());
1745 	write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1());
1746 	write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1());
1747 	write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1());
1748 	write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1());
1749 
1750 	write_el1_ctx_common_sysreg128(ctx, par_el1, read_par_el1());
1751 	write_el1_ctx_common_sysreg128(ctx, ttbr0_el1, read_ttbr0_el1());
1752 	write_el1_ctx_common_sysreg128(ctx, ttbr1_el1, read_ttbr1_el1());
1753 
1754 	if (CTX_INCLUDE_AARCH32_REGS) {
1755 		/* Save Aarch32 registers */
1756 		write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt());
1757 		write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und());
1758 		write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq());
1759 		write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq());
1760 		write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2());
1761 		write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2());
1762 	}
1763 
1764 	if (NS_TIMER_SWITCH) {
1765 		/* Save NS Timer registers */
1766 		write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0());
1767 		write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0());
1768 		write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0());
1769 		write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0());
1770 		write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1());
1771 	}
1772 
1773 	if (is_feat_mte2_supported()) {
1774 		write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1());
1775 		write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1());
1776 		write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1());
1777 		write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1());
1778 	}
1779 
1780 	if (is_feat_ras_supported()) {
1781 		write_el1_ctx_ras(ctx, disr_el1, read_disr_el1());
1782 	}
1783 
1784 	if (is_feat_s1pie_supported()) {
1785 		write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1());
1786 		write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1());
1787 	}
1788 
1789 	if (is_feat_s1poe_supported()) {
1790 		write_el1_ctx_s1poe(ctx, por_el1, read_por_el1());
1791 	}
1792 
1793 	if (is_feat_s2poe_supported()) {
1794 		write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1());
1795 	}
1796 
1797 	if (is_feat_tcr2_supported()) {
1798 		write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1());
1799 	}
1800 
1801 	if (is_feat_trf_supported()) {
1802 		write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1());
1803 	}
1804 
1805 	if (is_feat_csv2_2_supported()) {
1806 		write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0());
1807 		write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1());
1808 	}
1809 
1810 	if (is_feat_gcs_supported()) {
1811 		write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1());
1812 		write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1());
1813 		write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1());
1814 		write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0());
1815 	}
1816 
1817 	if (is_feat_the_supported()) {
1818 		write_el1_ctx_the_sysreg128(ctx, rcwmask_el1, read_rcwmask_el1());
1819 		write_el1_ctx_the_sysreg128(ctx, rcwsmask_el1, read_rcwsmask_el1());
1820 	}
1821 
1822 	if (is_feat_sctlr2_supported()) {
1823 		write_el1_ctx_sctlr2(ctx, sctlr2_el1, read_sctlr2_el1());
1824 	}
1825 
1826 	if (is_feat_ls64_accdata_supported()) {
1827 		write_el1_ctx_ls64(ctx, accdata_el1, read_accdata_el1());
1828 	}
1829 }
1830 
1831 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1832 {
1833 	write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1));
1834 	write_elr_el1(read_el1_ctx_common(ctx, elr_el1));
1835 
1836 #if (!ERRATA_SPECULATIVE_AT)
1837 	write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1));
1838 	write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1));
1839 #endif /* (!ERRATA_SPECULATIVE_AT) */
1840 
1841 	write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1));
1842 	write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1));
1843 	write_sp_el1(read_el1_ctx_common(ctx, sp_el1));
1844 	write_esr_el1(read_el1_ctx_common(ctx, esr_el1));
1845 	write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1));
1846 	write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1));
1847 	write_mair_el1(read_el1_ctx_common(ctx, mair_el1));
1848 	write_amair_el1(read_el1_ctx_common(ctx, amair_el1));
1849 	write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1));
1850 	write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1));
1851 	write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0));
1852 	write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0));
1853 	write_par_el1(read_el1_ctx_common(ctx, par_el1));
1854 	write_far_el1(read_el1_ctx_common(ctx, far_el1));
1855 	write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1));
1856 	write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1));
1857 	write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1));
1858 	write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1));
1859 	write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1));
1860 	write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1));
1861 
1862 	if (CTX_INCLUDE_AARCH32_REGS) {
1863 		/* Restore Aarch32 registers */
1864 		write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt));
1865 		write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und));
1866 		write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq));
1867 		write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq));
1868 		write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2));
1869 		write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2));
1870 	}
1871 
1872 	if (NS_TIMER_SWITCH) {
1873 		/* Restore NS Timer registers */
1874 		write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0));
1875 		write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0));
1876 		write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0));
1877 		write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0));
1878 		write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1));
1879 	}
1880 
1881 	if (is_feat_mte2_supported()) {
1882 		write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1));
1883 		write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1));
1884 		write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1));
1885 		write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1));
1886 	}
1887 
1888 	if (is_feat_ras_supported()) {
1889 		write_disr_el1(read_el1_ctx_ras(ctx, disr_el1));
1890 	}
1891 
1892 	if (is_feat_s1pie_supported()) {
1893 		write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1));
1894 		write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1));
1895 	}
1896 
1897 	if (is_feat_s1poe_supported()) {
1898 		write_por_el1(read_el1_ctx_s1poe(ctx, por_el1));
1899 	}
1900 
1901 	if (is_feat_s2poe_supported()) {
1902 		write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1));
1903 	}
1904 
1905 	if (is_feat_tcr2_supported()) {
1906 		write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1));
1907 	}
1908 
1909 	if (is_feat_trf_supported()) {
1910 		write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1));
1911 	}
1912 
1913 	if (is_feat_csv2_2_supported()) {
1914 		write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0));
1915 		write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1));
1916 	}
1917 
1918 	if (is_feat_gcs_supported()) {
1919 		write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1));
1920 		write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1));
1921 		write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1));
1922 		write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0));
1923 	}
1924 
1925 	if (is_feat_the_supported()) {
1926 		write_rcwmask_el1(read_el1_ctx_the(ctx, rcwmask_el1));
1927 		write_rcwsmask_el1(read_el1_ctx_the(ctx, rcwsmask_el1));
1928 	}
1929 
1930 	if (is_feat_sctlr2_supported()) {
1931 		write_sctlr2_el1(read_el1_ctx_sctlr2(ctx, sctlr2_el1));
1932 	}
1933 
1934 	if (is_feat_ls64_accdata_supported()) {
1935 		write_accdata_el1(read_el1_ctx_ls64(ctx, accdata_el1));
1936 	}
1937 }
1938 
1939 /*******************************************************************************
1940  * The next couple of functions are used by runtime services to save and restore
1941  * EL1 context on the 'cpu_context' structure for the specified security state.
1942  ******************************************************************************/
1943 void cm_el1_sysregs_context_save(uint32_t security_state)
1944 {
1945 	cpu_context_t *ctx;
1946 
1947 	ctx = cm_get_context(security_state);
1948 	assert(ctx != NULL);
1949 
1950 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1951 
1952 #if IMAGE_BL31
1953 	if (security_state == SECURE)
1954 		PUBLISH_EVENT(cm_exited_secure_world);
1955 	else
1956 		PUBLISH_EVENT(cm_exited_normal_world);
1957 #endif
1958 }
1959 
1960 void cm_el1_sysregs_context_restore(uint32_t security_state)
1961 {
1962 	cpu_context_t *ctx;
1963 
1964 	ctx = cm_get_context(security_state);
1965 	assert(ctx != NULL);
1966 
1967 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1968 
1969 #if IMAGE_BL31
1970 	if (security_state == SECURE)
1971 		PUBLISH_EVENT(cm_entering_secure_world);
1972 	else
1973 		PUBLISH_EVENT(cm_entering_normal_world);
1974 #endif
1975 }
1976 
1977 #endif /* ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) */
1978 
1979 /*******************************************************************************
1980  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1981  * given security state with the given entrypoint
1982  ******************************************************************************/
1983 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1984 {
1985 	cpu_context_t *ctx;
1986 	el3_state_t *state;
1987 
1988 	ctx = cm_get_context(security_state);
1989 	assert(ctx != NULL);
1990 
1991 	/* Populate EL3 state so that ERET jumps to the correct entry */
1992 	state = get_el3state_ctx(ctx);
1993 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1994 }
1995 
1996 /*******************************************************************************
1997  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1998  * pertaining to the given security state
1999  ******************************************************************************/
2000 void cm_set_elr_spsr_el3(uint32_t security_state,
2001 			uintptr_t entrypoint, uint32_t spsr)
2002 {
2003 	cpu_context_t *ctx;
2004 	el3_state_t *state;
2005 
2006 	ctx = cm_get_context(security_state);
2007 	assert(ctx != NULL);
2008 
2009 	/* Populate EL3 state so that ERET jumps to the correct entry */
2010 	state = get_el3state_ctx(ctx);
2011 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
2012 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
2013 }
2014 
2015 /*******************************************************************************
2016  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
2017  * pertaining to the given security state using the value and bit position
2018  * specified in the parameters. It preserves all other bits.
2019  ******************************************************************************/
2020 void cm_write_scr_el3_bit(uint32_t security_state,
2021 			  uint32_t bit_pos,
2022 			  uint32_t value)
2023 {
2024 	cpu_context_t *ctx;
2025 	el3_state_t *state;
2026 	u_register_t scr_el3;
2027 
2028 	ctx = cm_get_context(security_state);
2029 	assert(ctx != NULL);
2030 
2031 	/* Ensure that the bit position is a valid one */
2032 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
2033 
2034 	/* Ensure that the 'value' is only a bit wide */
2035 	assert(value <= 1U);
2036 
2037 	/*
2038 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
2039 	 * and set it to its new value.
2040 	 */
2041 	state = get_el3state_ctx(ctx);
2042 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
2043 	scr_el3 &= ~(1UL << bit_pos);
2044 	scr_el3 |= (u_register_t)value << bit_pos;
2045 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
2046 }
2047 
2048 /*******************************************************************************
2049  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
2050  * given security state.
2051  ******************************************************************************/
2052 u_register_t cm_get_scr_el3(uint32_t security_state)
2053 {
2054 	cpu_context_t *ctx;
2055 	el3_state_t *state;
2056 
2057 	ctx = cm_get_context(security_state);
2058 	assert(ctx != NULL);
2059 
2060 	/* Populate EL3 state so that ERET jumps to the correct entry */
2061 	state = get_el3state_ctx(ctx);
2062 	return read_ctx_reg(state, CTX_SCR_EL3);
2063 }
2064 
2065 /*******************************************************************************
2066  * This function is used to program the context that's used for exception
2067  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
2068  * the required security state
2069  ******************************************************************************/
2070 void cm_set_next_eret_context(uint32_t security_state)
2071 {
2072 	cpu_context_t *ctx;
2073 
2074 	ctx = cm_get_context(security_state);
2075 	assert(ctx != NULL);
2076 
2077 	cm_set_next_context(ctx);
2078 }
2079