1 /* 2 * Copyright (c) 2013-2018, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7 #include <amu.h> 8 #include <arch.h> 9 #include <arch_helpers.h> 10 #include <assert.h> 11 #include <bl_common.h> 12 #include <context.h> 13 #include <context_mgmt.h> 14 #include <interrupt_mgmt.h> 15 #include <mpam.h> 16 #include <platform.h> 17 #include <platform_def.h> 18 #include <pubsub_events.h> 19 #include <smccc_helpers.h> 20 #include <spe.h> 21 #include <stdbool.h> 22 #include <string.h> 23 #include <sve.h> 24 #include <utils.h> 25 26 27 /******************************************************************************* 28 * Context management library initialisation routine. This library is used by 29 * runtime services to share pointers to 'cpu_context' structures for the secure 30 * and non-secure states. Management of the structures and their associated 31 * memory is not done by the context management library e.g. the PSCI service 32 * manages the cpu context used for entry from and exit to the non-secure state. 33 * The Secure payload dispatcher service manages the context(s) corresponding to 34 * the secure state. It also uses this library to get access to the non-secure 35 * state cpu context pointers. 36 * Lastly, this library provides the api to make SP_EL3 point to the cpu context 37 * which will used for programming an entry into a lower EL. The same context 38 * will used to save state upon exception entry from that EL. 39 ******************************************************************************/ 40 void __init cm_init(void) 41 { 42 /* 43 * The context management library has only global data to intialize, but 44 * that will be done when the BSS is zeroed out 45 */ 46 } 47 48 /******************************************************************************* 49 * The following function initializes the cpu_context 'ctx' for 50 * first use, and sets the initial entrypoint state as specified by the 51 * entry_point_info structure. 52 * 53 * The security state to initialize is determined by the SECURE attribute 54 * of the entry_point_info. 55 * 56 * The EE and ST attributes are used to configure the endianess and secure 57 * timer availability for the new execution context. 58 * 59 * To prepare the register state for entry call cm_prepare_el3_exit() and 60 * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to 61 * cm_e1_sysreg_context_restore(). 62 ******************************************************************************/ 63 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep) 64 { 65 unsigned int security_state; 66 uint32_t scr_el3, pmcr_el0; 67 el3_state_t *state; 68 gp_regs_t *gp_regs; 69 unsigned long sctlr_elx, actlr_elx; 70 71 assert(ctx != NULL); 72 73 security_state = GET_SECURITY_STATE(ep->h.attr); 74 75 /* Clear any residual register values from the context */ 76 zeromem(ctx, sizeof(*ctx)); 77 78 /* 79 * SCR_EL3 was initialised during reset sequence in macro 80 * el3_arch_init_common. This code modifies the SCR_EL3 fields that 81 * affect the next EL. 82 * 83 * The following fields are initially set to zero and then updated to 84 * the required value depending on the state of the SPSR_EL3 and the 85 * Security state and entrypoint attributes of the next EL. 86 */ 87 scr_el3 = (uint32_t)read_scr(); 88 scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT | 89 SCR_ST_BIT | SCR_HCE_BIT); 90 /* 91 * SCR_NS: Set the security state of the next EL. 92 */ 93 if (security_state != SECURE) 94 scr_el3 |= SCR_NS_BIT; 95 /* 96 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next 97 * Exception level as specified by SPSR. 98 */ 99 if (GET_RW(ep->spsr) == MODE_RW_64) 100 scr_el3 |= SCR_RW_BIT; 101 /* 102 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical 103 * Secure timer registers to EL3, from AArch64 state only, if specified 104 * by the entrypoint attributes. 105 */ 106 if (EP_GET_ST(ep->h.attr) != 0U) 107 scr_el3 |= SCR_ST_BIT; 108 109 #if !HANDLE_EA_EL3_FIRST 110 /* 111 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External 112 * to EL3 when executing at a lower EL. When executing at EL3, External 113 * Aborts are taken to EL3. 114 */ 115 scr_el3 &= ~SCR_EA_BIT; 116 #endif 117 118 #if FAULT_INJECTION_SUPPORT 119 /* Enable fault injection from lower ELs */ 120 scr_el3 |= SCR_FIEN_BIT; 121 #endif 122 123 #ifdef IMAGE_BL31 124 /* 125 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as 126 * indicated by the interrupt routing model for BL31. 127 */ 128 scr_el3 |= get_scr_el3_from_routing_model(security_state); 129 #endif 130 131 /* 132 * SCR_EL3.HCE: Enable HVC instructions if next execution state is 133 * AArch64 and next EL is EL2, or if next execution state is AArch32 and 134 * next mode is Hyp. 135 */ 136 if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2)) 137 || ((GET_RW(ep->spsr) != MODE_RW_64) 138 && (GET_M32(ep->spsr) == MODE32_hyp))) { 139 scr_el3 |= SCR_HCE_BIT; 140 } 141 142 /* 143 * Initialise SCTLR_EL1 to the reset value corresponding to the target 144 * execution state setting all fields rather than relying of the hw. 145 * Some fields have architecturally UNKNOWN reset values and these are 146 * set to zero. 147 * 148 * SCTLR.EE: Endianness is taken from the entrypoint attributes. 149 * 150 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as 151 * required by PSCI specification) 152 */ 153 sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U; 154 if (GET_RW(ep->spsr) == MODE_RW_64) 155 sctlr_elx |= SCTLR_EL1_RES1; 156 else { 157 /* 158 * If the target execution state is AArch32 then the following 159 * fields need to be set. 160 * 161 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE 162 * instructions are not trapped to EL1. 163 * 164 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI 165 * instructions are not trapped to EL1. 166 * 167 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the 168 * CP15DMB, CP15DSB, and CP15ISB instructions. 169 */ 170 sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT 171 | SCTLR_NTWI_BIT | SCTLR_NTWE_BIT; 172 } 173 174 /* 175 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2 176 * and other EL2 registers are set up by cm_preapre_ns_entry() as they 177 * are not part of the stored cpu_context. 178 */ 179 write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx); 180 181 /* 182 * Base the context ACTLR_EL1 on the current value, as it is 183 * implementation defined. The context restore process will write 184 * the value from the context to the actual register and can cause 185 * problems for processor cores that don't expect certain bits to 186 * be zero. 187 */ 188 actlr_elx = read_actlr_el1(); 189 write_ctx_reg((get_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx)); 190 191 if (security_state == SECURE) { 192 /* 193 * Initialise PMCR_EL0 for secure context only, setting all 194 * fields rather than relying on hw. Some fields are 195 * architecturally UNKNOWN on reset. 196 * 197 * PMCR_EL0.LC: Set to one so that cycle counter overflow, that 198 * is recorded in PMOVSCLR_EL0[31], occurs on the increment 199 * that changes PMCCNTR_EL0[63] from 1 to 0. 200 * 201 * PMCR_EL0.DP: Set to one so that the cycle counter, 202 * PMCCNTR_EL0 does not count when event counting is prohibited. 203 * 204 * PMCR_EL0.X: Set to zero to disable export of events. 205 * 206 * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0 207 * counts on every clock cycle. 208 */ 209 pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT 210 | PMCR_EL0_DP_BIT) 211 & ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT)); 212 write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0); 213 } 214 215 /* Populate EL3 state so that we've the right context before doing ERET */ 216 state = get_el3state_ctx(ctx); 217 write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 218 write_ctx_reg(state, CTX_ELR_EL3, ep->pc); 219 write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); 220 221 /* 222 * Store the X0-X7 value from the entrypoint into the context 223 * Use memcpy as we are in control of the layout of the structures 224 */ 225 gp_regs = get_gpregs_ctx(ctx); 226 memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); 227 } 228 229 /******************************************************************************* 230 * Enable architecture extensions on first entry to Non-secure world. 231 * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise 232 * it is zero. 233 ******************************************************************************/ 234 static void enable_extensions_nonsecure(bool el2_unused) 235 { 236 #if IMAGE_BL31 237 #if ENABLE_SPE_FOR_LOWER_ELS 238 spe_enable(el2_unused); 239 #endif 240 241 #if ENABLE_AMU 242 amu_enable(el2_unused); 243 #endif 244 245 #if ENABLE_SVE_FOR_NS 246 sve_enable(el2_unused); 247 #endif 248 249 #if ENABLE_MPAM_FOR_LOWER_ELS 250 mpam_enable(el2_unused); 251 #endif 252 #endif 253 } 254 255 /******************************************************************************* 256 * The following function initializes the cpu_context for a CPU specified by 257 * its `cpu_idx` for first use, and sets the initial entrypoint state as 258 * specified by the entry_point_info structure. 259 ******************************************************************************/ 260 void cm_init_context_by_index(unsigned int cpu_idx, 261 const entry_point_info_t *ep) 262 { 263 cpu_context_t *ctx; 264 ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); 265 cm_setup_context(ctx, ep); 266 } 267 268 /******************************************************************************* 269 * The following function initializes the cpu_context for the current CPU 270 * for first use, and sets the initial entrypoint state as specified by the 271 * entry_point_info structure. 272 ******************************************************************************/ 273 void cm_init_my_context(const entry_point_info_t *ep) 274 { 275 cpu_context_t *ctx; 276 ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); 277 cm_setup_context(ctx, ep); 278 } 279 280 /******************************************************************************* 281 * Prepare the CPU system registers for first entry into secure or normal world 282 * 283 * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized 284 * If execution is requested to non-secure EL1 or svc mode, and the CPU supports 285 * EL2 then EL2 is disabled by configuring all necessary EL2 registers. 286 * For all entries, the EL1 registers are initialized from the cpu_context 287 ******************************************************************************/ 288 void cm_prepare_el3_exit(uint32_t security_state) 289 { 290 uint32_t sctlr_elx, scr_el3, mdcr_el2; 291 cpu_context_t *ctx = cm_get_context(security_state); 292 bool el2_unused = false; 293 uint64_t hcr_el2 = 0U; 294 295 assert(ctx != NULL); 296 297 if (security_state == NON_SECURE) { 298 scr_el3 = (uint32_t)read_ctx_reg(get_el3state_ctx(ctx), 299 CTX_SCR_EL3); 300 if ((scr_el3 & SCR_HCE_BIT) != 0U) { 301 /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */ 302 sctlr_elx = (uint32_t)read_ctx_reg(get_sysregs_ctx(ctx), 303 CTX_SCTLR_EL1); 304 sctlr_elx &= SCTLR_EE_BIT; 305 sctlr_elx |= SCTLR_EL2_RES1; 306 write_sctlr_el2(sctlr_elx); 307 } else if (el_implemented(2) != EL_IMPL_NONE) { 308 el2_unused = true; 309 310 /* 311 * EL2 present but unused, need to disable safely. 312 * SCTLR_EL2 can be ignored in this case. 313 * 314 * Set EL2 register width appropriately: Set HCR_EL2 315 * field to match SCR_EL3.RW. 316 */ 317 if ((scr_el3 & SCR_RW_BIT) != 0U) 318 hcr_el2 |= HCR_RW_BIT; 319 320 /* 321 * For Armv8.3 pointer authentication feature, disable 322 * traps to EL2 when accessing key registers or using 323 * pointer authentication instructions from lower ELs. 324 */ 325 hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT); 326 327 write_hcr_el2(hcr_el2); 328 329 /* 330 * Initialise CPTR_EL2 setting all fields rather than 331 * relying on the hw. All fields have architecturally 332 * UNKNOWN reset values. 333 * 334 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1 335 * accesses to the CPACR_EL1 or CPACR from both 336 * Execution states do not trap to EL2. 337 * 338 * CPTR_EL2.TTA: Set to zero so that Non-secure System 339 * register accesses to the trace registers from both 340 * Execution states do not trap to EL2. 341 * 342 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses 343 * to SIMD and floating-point functionality from both 344 * Execution states do not trap to EL2. 345 */ 346 write_cptr_el2(CPTR_EL2_RESET_VAL & 347 ~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT 348 | CPTR_EL2_TFP_BIT)); 349 350 /* 351 * Initiliase CNTHCTL_EL2. All fields are 352 * architecturally UNKNOWN on reset and are set to zero 353 * except for field(s) listed below. 354 * 355 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to 356 * Hyp mode of Non-secure EL0 and EL1 accesses to the 357 * physical timer registers. 358 * 359 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to 360 * Hyp mode of Non-secure EL0 and EL1 accesses to the 361 * physical counter registers. 362 */ 363 write_cnthctl_el2(CNTHCTL_RESET_VAL | 364 EL1PCEN_BIT | EL1PCTEN_BIT); 365 366 /* 367 * Initialise CNTVOFF_EL2 to zero as it resets to an 368 * architecturally UNKNOWN value. 369 */ 370 write_cntvoff_el2(0); 371 372 /* 373 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and 374 * MPIDR_EL1 respectively. 375 */ 376 write_vpidr_el2(read_midr_el1()); 377 write_vmpidr_el2(read_mpidr_el1()); 378 379 /* 380 * Initialise VTTBR_EL2. All fields are architecturally 381 * UNKNOWN on reset. 382 * 383 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 384 * 2 address translation is disabled, cache maintenance 385 * operations depend on the VMID. 386 * 387 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address 388 * translation is disabled. 389 */ 390 write_vttbr_el2(VTTBR_RESET_VAL & 391 ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) 392 | (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT))); 393 394 /* 395 * Initialise MDCR_EL2, setting all fields rather than 396 * relying on hw. Some fields are architecturally 397 * UNKNOWN on reset. 398 * 399 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and 400 * EL1 System register accesses to the Debug ROM 401 * registers are not trapped to EL2. 402 * 403 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 404 * System register accesses to the powerdown debug 405 * registers are not trapped to EL2. 406 * 407 * MDCR_EL2.TDA: Set to zero so that System register 408 * accesses to the debug registers do not trap to EL2. 409 * 410 * MDCR_EL2.TDE: Set to zero so that debug exceptions 411 * are not routed to EL2. 412 * 413 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance 414 * Monitors. 415 * 416 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and 417 * EL1 accesses to all Performance Monitors registers 418 * are not trapped to EL2. 419 * 420 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0 421 * and EL1 accesses to the PMCR_EL0 or PMCR are not 422 * trapped to EL2. 423 * 424 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the 425 * architecturally-defined reset value. 426 */ 427 mdcr_el2 = ((MDCR_EL2_RESET_VAL | 428 ((read_pmcr_el0() & PMCR_EL0_N_BITS) 429 >> PMCR_EL0_N_SHIFT)) & 430 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT 431 | MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT 432 | MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT 433 | MDCR_EL2_TPMCR_BIT)); 434 435 write_mdcr_el2(mdcr_el2); 436 437 /* 438 * Initialise HSTR_EL2. All fields are architecturally 439 * UNKNOWN on reset. 440 * 441 * HSTR_EL2.T<n>: Set all these fields to zero so that 442 * Non-secure EL0 or EL1 accesses to System registers 443 * do not trap to EL2. 444 */ 445 write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK)); 446 /* 447 * Initialise CNTHP_CTL_EL2. All fields are 448 * architecturally UNKNOWN on reset. 449 * 450 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 451 * physical timer and prevent timer interrupts. 452 */ 453 write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & 454 ~(CNTHP_CTL_ENABLE_BIT)); 455 } 456 enable_extensions_nonsecure(el2_unused); 457 } 458 459 cm_el1_sysregs_context_restore(security_state); 460 cm_set_next_eret_context(security_state); 461 } 462 463 /******************************************************************************* 464 * The next four functions are used by runtime services to save and restore 465 * EL1 context on the 'cpu_context' structure for the specified security 466 * state. 467 ******************************************************************************/ 468 void cm_el1_sysregs_context_save(uint32_t security_state) 469 { 470 cpu_context_t *ctx; 471 472 ctx = cm_get_context(security_state); 473 assert(ctx != NULL); 474 475 el1_sysregs_context_save(get_sysregs_ctx(ctx)); 476 477 #if IMAGE_BL31 478 if (security_state == SECURE) 479 PUBLISH_EVENT(cm_exited_secure_world); 480 else 481 PUBLISH_EVENT(cm_exited_normal_world); 482 #endif 483 } 484 485 void cm_el1_sysregs_context_restore(uint32_t security_state) 486 { 487 cpu_context_t *ctx; 488 489 ctx = cm_get_context(security_state); 490 assert(ctx != NULL); 491 492 el1_sysregs_context_restore(get_sysregs_ctx(ctx)); 493 494 #if IMAGE_BL31 495 if (security_state == SECURE) 496 PUBLISH_EVENT(cm_entering_secure_world); 497 else 498 PUBLISH_EVENT(cm_entering_normal_world); 499 #endif 500 } 501 502 /******************************************************************************* 503 * This function populates ELR_EL3 member of 'cpu_context' pertaining to the 504 * given security state with the given entrypoint 505 ******************************************************************************/ 506 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint) 507 { 508 cpu_context_t *ctx; 509 el3_state_t *state; 510 511 ctx = cm_get_context(security_state); 512 assert(ctx != NULL); 513 514 /* Populate EL3 state so that ERET jumps to the correct entry */ 515 state = get_el3state_ctx(ctx); 516 write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 517 } 518 519 /******************************************************************************* 520 * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' 521 * pertaining to the given security state 522 ******************************************************************************/ 523 void cm_set_elr_spsr_el3(uint32_t security_state, 524 uintptr_t entrypoint, uint32_t spsr) 525 { 526 cpu_context_t *ctx; 527 el3_state_t *state; 528 529 ctx = cm_get_context(security_state); 530 assert(ctx != NULL); 531 532 /* Populate EL3 state so that ERET jumps to the correct entry */ 533 state = get_el3state_ctx(ctx); 534 write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 535 write_ctx_reg(state, CTX_SPSR_EL3, spsr); 536 } 537 538 /******************************************************************************* 539 * This function updates a single bit in the SCR_EL3 member of the 'cpu_context' 540 * pertaining to the given security state using the value and bit position 541 * specified in the parameters. It preserves all other bits. 542 ******************************************************************************/ 543 void cm_write_scr_el3_bit(uint32_t security_state, 544 uint32_t bit_pos, 545 uint32_t value) 546 { 547 cpu_context_t *ctx; 548 el3_state_t *state; 549 uint32_t scr_el3; 550 551 ctx = cm_get_context(security_state); 552 assert(ctx != NULL); 553 554 /* Ensure that the bit position is a valid one */ 555 assert(((1U << bit_pos) & SCR_VALID_BIT_MASK) != 0U); 556 557 /* Ensure that the 'value' is only a bit wide */ 558 assert(value <= 1U); 559 560 /* 561 * Get the SCR_EL3 value from the cpu context, clear the desired bit 562 * and set it to its new value. 563 */ 564 state = get_el3state_ctx(ctx); 565 scr_el3 = (uint32_t)read_ctx_reg(state, CTX_SCR_EL3); 566 scr_el3 &= ~(1U << bit_pos); 567 scr_el3 |= value << bit_pos; 568 write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 569 } 570 571 /******************************************************************************* 572 * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the 573 * given security state. 574 ******************************************************************************/ 575 uint32_t cm_get_scr_el3(uint32_t security_state) 576 { 577 cpu_context_t *ctx; 578 el3_state_t *state; 579 580 ctx = cm_get_context(security_state); 581 assert(ctx != NULL); 582 583 /* Populate EL3 state so that ERET jumps to the correct entry */ 584 state = get_el3state_ctx(ctx); 585 return (uint32_t)read_ctx_reg(state, CTX_SCR_EL3); 586 } 587 588 /******************************************************************************* 589 * This function is used to program the context that's used for exception 590 * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for 591 * the required security state 592 ******************************************************************************/ 593 void cm_set_next_eret_context(uint32_t security_state) 594 { 595 cpu_context_t *ctx; 596 597 ctx = cm_get_context(security_state); 598 assert(ctx != NULL); 599 600 cm_set_next_context(ctx); 601 } 602