xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision b3bcfd12c8469df79b212647b9eb2743d7dbb070)
1 /*
2  * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/cpus/cpu_ops.h>
23 #include <lib/cpus/errata.h>
24 #include <lib/el3_runtime/context_mgmt.h>
25 #include <lib/el3_runtime/cpu_data.h>
26 #include <lib/el3_runtime/pubsub_events.h>
27 #include <lib/extensions/amu.h>
28 #include <lib/extensions/brbe.h>
29 #include <lib/extensions/cpa2.h>
30 #include <lib/extensions/debug_v8p9.h>
31 #include <lib/extensions/fgt2.h>
32 #include <lib/extensions/fpmr.h>
33 #include <lib/extensions/mpam.h>
34 #include <lib/extensions/pauth.h>
35 #include <lib/extensions/pmuv3.h>
36 #include <lib/extensions/sme.h>
37 #include <lib/extensions/spe.h>
38 #include <lib/extensions/sve.h>
39 #include <lib/extensions/sysreg128.h>
40 #include <lib/extensions/sys_reg_trace.h>
41 #include <lib/extensions/tcr2.h>
42 #include <lib/extensions/trbe.h>
43 #include <lib/extensions/trf.h>
44 #include <lib/utils.h>
45 
46 #if ENABLE_FEAT_TWED
47 /* Make sure delay value fits within the range(0-15) */
48 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
49 #endif /* ENABLE_FEAT_TWED */
50 
51 per_world_context_t per_world_context[CPU_CONTEXT_NUM];
52 
53 static void manage_extensions_nonsecure(cpu_context_t *ctx);
54 static void manage_extensions_secure(cpu_context_t *ctx);
55 
56 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
57 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
58 {
59 	u_register_t sctlr_elx, actlr_elx;
60 
61 	/*
62 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
63 	 * execution state setting all fields rather than relying on the hw.
64 	 * Some fields have architecturally UNKNOWN reset values and these are
65 	 * set to zero.
66 	 *
67 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
68 	 *
69 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
70 	 * required by PSCI specification)
71 	 */
72 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
73 	if (GET_RW(ep->spsr) == MODE_RW_64) {
74 		sctlr_elx |= SCTLR_EL1_RES1;
75 	} else {
76 		/*
77 		 * If the target execution state is AArch32 then the following
78 		 * fields need to be set.
79 		 *
80 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
81 		 *  instructions are not trapped to EL1.
82 		 *
83 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
84 		 *  instructions are not trapped to EL1.
85 		 *
86 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
87 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
88 		 */
89 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
90 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
91 	}
92 
93 	/*
94 	 * If workaround of errata 764081 for Cortex-A75 is used then set
95 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
96 	 */
97 	if (errata_a75_764081_applies()) {
98 		sctlr_elx |= SCTLR_IESB_BIT;
99 	}
100 
101 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
102 	write_ctx_sctlr_el1_reg_errata(ctx, sctlr_elx);
103 
104 	/*
105 	 * Base the context ACTLR_EL1 on the current value, as it is
106 	 * implementation defined. The context restore process will write
107 	 * the value from the context to the actual register and can cause
108 	 * problems for processor cores that don't expect certain bits to
109 	 * be zero.
110 	 */
111 	actlr_elx = read_actlr_el1();
112 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx);
113 }
114 #endif /* (IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)) */
115 
116 /******************************************************************************
117  * This function performs initializations that are specific to SECURE state
118  * and updates the cpu context specified by 'ctx'.
119  *****************************************************************************/
120 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
121 {
122 	u_register_t scr_el3;
123 	el3_state_t *state;
124 
125 	state = get_el3state_ctx(ctx);
126 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
127 
128 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
129 	/*
130 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
131 	 * indicated by the interrupt routing model for BL31.
132 	 */
133 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
134 #endif
135 
136 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
137 	if (is_feat_mte2_supported()) {
138 		scr_el3 |= SCR_ATA_BIT;
139 	}
140 
141 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
142 
143 	/*
144 	 * Initialize EL1 context registers unless SPMC is running
145 	 * at S-EL2.
146 	 */
147 #if (!SPMD_SPM_AT_SEL2)
148 	setup_el1_context(ctx, ep);
149 #endif
150 
151 	manage_extensions_secure(ctx);
152 }
153 
154 #if ENABLE_RME && IMAGE_BL31
155 /******************************************************************************
156  * This function performs initializations that are specific to REALM state
157  * and updates the cpu context specified by 'ctx'.
158  *
159  * NOTE: any changes to this function must be verified by an RMMD maintainer.
160  *****************************************************************************/
161 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
162 {
163 	u_register_t scr_el3;
164 	el3_state_t *state;
165 	el2_sysregs_t *el2_ctx;
166 
167 	state = get_el3state_ctx(ctx);
168 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
169 	el2_ctx = get_el2_sysregs_ctx(ctx);
170 
171 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
172 
173 	write_el2_ctx_common(el2_ctx, spsr_el2, SPSR_EL2_REALM);
174 
175 	/* CSV2 version 2 and above */
176 	if (is_feat_csv2_2_supported()) {
177 		/* Enable access to the SCXTNUM_ELx registers. */
178 		scr_el3 |= SCR_EnSCXT_BIT;
179 	}
180 
181 	if (is_feat_sctlr2_supported()) {
182 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
183 		 * SCTLR2_ELx registers.
184 		 */
185 		scr_el3 |= SCR_SCTLR2En_BIT;
186 	}
187 
188 	if (is_feat_d128_supported()) {
189 		/*
190 		 * Set the D128En bit in SCR_EL3 to enable access to 128-bit
191 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
192 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
193 		 */
194 		scr_el3 |= SCR_D128En_BIT;
195 	}
196 
197 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
198 
199 	if (is_feat_fgt2_supported()) {
200 		fgt2_enable(ctx);
201 	}
202 
203 	if (is_feat_debugv8p9_supported()) {
204 		debugv8p9_extended_bp_wp_enable(ctx);
205 	}
206 
207 	if (is_feat_brbe_supported()) {
208 		brbe_enable(ctx);
209 	}
210 
211 	/*
212 	 * Enable access to TPIDR2_EL0 if SME/SME2 is enabled for Non Secure world.
213 	 */
214 	if (is_feat_sme_supported()) {
215 		sme_enable(ctx);
216 	}
217 
218 	if (is_feat_spe_supported()) {
219 		spe_disable_realm(ctx);
220 	}
221 
222 	if (is_feat_trbe_supported()) {
223 		trbe_disable_realm(ctx);
224 	}
225 }
226 #endif /* ENABLE_RME && IMAGE_BL31 */
227 
228 /******************************************************************************
229  * This function performs initializations that are specific to NON-SECURE state
230  * and updates the cpu context specified by 'ctx'.
231  *****************************************************************************/
232 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
233 {
234 	u_register_t scr_el3;
235 	el3_state_t *state;
236 
237 	state = get_el3state_ctx(ctx);
238 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
239 
240 	/* SCR_NS: Set the NS bit */
241 	scr_el3 |= SCR_NS_BIT;
242 
243 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
244 	if (is_feat_mte2_supported()) {
245 		scr_el3 |= SCR_ATA_BIT;
246 	}
247 
248 	/*
249 	 * Pointer Authentication feature, if present, is always enabled by
250 	 * default for Non secure lower exception levels. We do not have an
251 	 * explicit flag to set it. To prevent the leakage between the worlds
252 	 * during world switch, we enable it only for the non-secure world.
253 	 *
254 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
255 	 * exception levels of secure and realm worlds.
256 	 *
257 	 * If the Secure/realm world wants to use pointer authentication,
258 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
259 	 * it will be enabled globally for all the contexts.
260 	 *
261 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
262 	 *  other than EL3
263 	 *
264 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
265 	 *  than EL3
266 	 */
267 	if (!is_ctx_pauth_supported()) {
268 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
269 	}
270 
271 #if HANDLE_EA_EL3_FIRST_NS
272 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
273 	scr_el3 |= SCR_EA_BIT;
274 #endif
275 
276 #if RAS_TRAP_NS_ERR_REC_ACCESS
277 	/*
278 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
279 	 * and RAS ERX registers from EL1 and EL2(from any security state)
280 	 * are trapped to EL3.
281 	 * Set here to trap only for NS EL1/EL2
282 	 */
283 	scr_el3 |= SCR_TERR_BIT;
284 #endif
285 
286 	/* CSV2 version 2 and above */
287 	if (is_feat_csv2_2_supported()) {
288 		/* Enable access to the SCXTNUM_ELx registers. */
289 		scr_el3 |= SCR_EnSCXT_BIT;
290 	}
291 
292 #ifdef IMAGE_BL31
293 	/*
294 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
295 	 *  indicated by the interrupt routing model for BL31.
296 	 */
297 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
298 #endif
299 
300 	if (is_feat_the_supported()) {
301 		/* Set the RCWMASKEn bit in SCR_EL3 to enable access to
302 		 * RCWMASK_EL1 and RCWSMASK_EL1 registers.
303 		 */
304 		scr_el3 |= SCR_RCWMASKEn_BIT;
305 	}
306 
307 	if (is_feat_sctlr2_supported()) {
308 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
309 		 * SCTLR2_ELx registers.
310 		 */
311 		scr_el3 |= SCR_SCTLR2En_BIT;
312 	}
313 
314 	if (is_feat_d128_supported()) {
315 		/* Set the D128En bit in SCR_EL3 to enable access to 128-bit
316 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
317 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
318 		 */
319 		scr_el3 |= SCR_D128En_BIT;
320 	}
321 
322 	if (is_feat_fpmr_supported()) {
323 		/* Set the EnFPM bit in SCR_EL3 to enable access to FPMR
324 		 * register.
325 		 */
326 		scr_el3 |= SCR_EnFPM_BIT;
327 	}
328 
329 	if (is_feat_aie_supported()) {
330 		/* Set the AIEn bit in SCR_EL3 to enable access to (A)MAIR2
331 		 * system registers from NS world.
332 		 */
333 		scr_el3 |= SCR_AIEn_BIT;
334 	}
335 
336 	if (is_feat_pfar_supported()) {
337 		/* Set the PFAREn bit in SCR_EL3 to enable access to the PFAR
338 		 * system registers from NS world.
339 		 */
340 		scr_el3 |= SCR_PFAREn_BIT;
341 	}
342 
343 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
344 
345 	/* Initialize EL2 context registers */
346 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
347 	if (is_feat_hcx_supported()) {
348 		/*
349 		 * Initialize register HCRX_EL2 with its init value.
350 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
351 		 * chance that this can lead to unexpected behavior in lower
352 		 * ELs that have not been updated since the introduction of
353 		 * this feature if not properly initialized, especially when
354 		 * it comes to those bits that enable/disable traps.
355 		 */
356 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
357 			HCRX_EL2_INIT_VAL);
358 	}
359 
360 	if (is_feat_fgt_supported()) {
361 		/*
362 		 * Initialize HFG*_EL2 registers with a default value so legacy
363 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
364 		 * of initialization for this feature.
365 		 */
366 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
367 			HFGITR_EL2_INIT_VAL);
368 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
369 			HFGRTR_EL2_INIT_VAL);
370 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
371 			HFGWTR_EL2_INIT_VAL);
372 	}
373 #else
374 	/* Initialize EL1 context registers */
375 	setup_el1_context(ctx, ep);
376 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
377 
378 	manage_extensions_nonsecure(ctx);
379 }
380 
381 /*******************************************************************************
382  * The following function performs initialization of the cpu_context 'ctx'
383  * for first use that is common to all security states, and sets the
384  * initial entrypoint state as specified by the entry_point_info structure.
385  *
386  * The EE and ST attributes are used to configure the endianness and secure
387  * timer availability for the new execution context.
388  ******************************************************************************/
389 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
390 {
391 	u_register_t scr_el3;
392 	u_register_t mdcr_el3;
393 	el3_state_t *state;
394 	gp_regs_t *gp_regs;
395 
396 	state = get_el3state_ctx(ctx);
397 
398 	/* Clear any residual register values from the context */
399 	zeromem(ctx, sizeof(*ctx));
400 
401 	/*
402 	 * The lower-EL context is zeroed so that no stale values leak to a world.
403 	 * It is assumed that an all-zero lower-EL context is good enough for it
404 	 * to boot correctly. However, there are very few registers where this
405 	 * is not true and some values need to be recreated.
406 	 */
407 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
408 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
409 
410 	/*
411 	 * These bits are set in the gicv3 driver. Losing them (especially the
412 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
413 	 */
414 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
415 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
416 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
417 
418 	/*
419 	 * The actlr_el2 register can be initialized in platform's reset handler
420 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
421 	 */
422 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
423 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
424 
425 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
426 	scr_el3 = SCR_RESET_VAL;
427 
428 	/*
429 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
430 	 *  EL2, EL1 and EL0 are not trapped to EL3.
431 	 *
432 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
433 	 *  EL2, EL1 and EL0 are not trapped to EL3.
434 	 *
435 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
436 	 *  both Security states and both Execution states.
437 	 *
438 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
439 	 *  Non-secure memory.
440 	 */
441 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
442 
443 	scr_el3 |= SCR_SIF_BIT;
444 
445 	/*
446 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
447 	 *  Exception level as specified by SPSR.
448 	 */
449 	if (GET_RW(ep->spsr) == MODE_RW_64) {
450 		scr_el3 |= SCR_RW_BIT;
451 	}
452 
453 	/*
454 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
455 	 * Secure timer registers to EL3, from AArch64 state only, if specified
456 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
457 	 * bit always behaves as 1 (i.e. secure physical timer register access
458 	 * is not trapped)
459 	 */
460 	if (EP_GET_ST(ep->h.attr) != 0U) {
461 		scr_el3 |= SCR_ST_BIT;
462 	}
463 
464 	/*
465 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
466 	 * SCR_EL3.HXEn.
467 	 */
468 	if (is_feat_hcx_supported()) {
469 		scr_el3 |= SCR_HXEn_BIT;
470 	}
471 
472 	/*
473 	 * If FEAT_LS64_ACCDATA is enabled, enable access to ACCDATA_EL1 by
474 	 * setting SCR_EL3.ADEn and allow the ST64BV0 instruction by setting
475 	 * SCR_EL3.EnAS0.
476 	 */
477 	if (is_feat_ls64_accdata_supported()) {
478 		scr_el3 |= SCR_ADEn_BIT | SCR_EnAS0_BIT;
479 	}
480 
481 	/*
482 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
483 	 * registers are trapped to EL3.
484 	 */
485 	if (is_feat_rng_trap_supported()) {
486 		scr_el3 |= SCR_TRNDR_BIT;
487 	}
488 
489 #if FAULT_INJECTION_SUPPORT
490 	/* Enable fault injection from lower ELs */
491 	scr_el3 |= SCR_FIEN_BIT;
492 #endif
493 
494 	/*
495 	 * Enable Pointer Authentication globally for all the worlds.
496 	 *
497 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
498 	 *  other than EL3
499 	 *
500 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
501 	 *  than EL3
502 	 */
503 	if (is_ctx_pauth_supported()) {
504 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
505 	}
506 
507 	/*
508 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
509 	 * registers for AArch64 if present.
510 	 */
511 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
512 		scr_el3 |= SCR_PIEN_BIT;
513 	}
514 
515 	/*
516 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
517 	 */
518 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
519 		scr_el3 |= SCR_GCSEn_BIT;
520 	}
521 
522 	/*
523 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
524 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
525 	 * next mode is Hyp.
526 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
527 	 * same conditions as HVC instructions and when the processor supports
528 	 * ARMv8.6-FGT.
529 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
530 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
531 	 * and when the processor supports ECV.
532 	 */
533 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
534 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
535 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
536 		scr_el3 |= SCR_HCE_BIT;
537 
538 		if (is_feat_fgt_supported()) {
539 			scr_el3 |= SCR_FGTEN_BIT;
540 		}
541 
542 		if (is_feat_ecv_supported()) {
543 			scr_el3 |= SCR_ECVEN_BIT;
544 		}
545 	}
546 
547 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
548 	if (is_feat_twed_supported()) {
549 		/* Set delay in SCR_EL3 */
550 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
551 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
552 				<< SCR_TWEDEL_SHIFT);
553 
554 		/* Enable WFE delay */
555 		scr_el3 |= SCR_TWEDEn_BIT;
556 	}
557 
558 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
559 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
560 	if (is_feat_sel2_supported()) {
561 		scr_el3 |= SCR_EEL2_BIT;
562 	}
563 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
564 
565 	if (is_feat_mec_supported()) {
566 		scr_el3 |= SCR_MECEn_BIT;
567 	}
568 
569 	/*
570 	 * Populate EL3 state so that we've the right context
571 	 * before doing ERET
572 	 */
573 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
574 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
575 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
576 
577 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
578 	mdcr_el3 = MDCR_EL3_RESET_VAL;
579 
580 	/* ---------------------------------------------------------------------
581 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
582 	 * Some fields are architecturally UNKNOWN on reset.
583 	 *
584 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
585 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
586 	 *  disabled from all ELs in Secure state.
587 	 *
588 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
589 	 *  privileged debug from S-EL1.
590 	 *
591 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
592 	 *  access to the powerdown debug registers do not trap to EL3.
593 	 *
594 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
595 	 *  debug registers, other than those registers that are controlled by
596 	 *  MDCR_EL3.TDOSA.
597 	 */
598 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
599 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
600 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
601 
602 #if IMAGE_BL31
603 	/* Enable FEAT_TRF for Non-Secure and prohibit for Secure state. */
604 	if (is_feat_trf_supported()) {
605 		trf_enable(ctx);
606 	}
607 
608 	if (is_feat_tcr2_supported()) {
609 		tcr2_enable(ctx);
610 	}
611 
612 	pmuv3_enable(ctx);
613 
614 #if CTX_INCLUDE_EL2_REGS
615 	/*
616 	 * Initialize SCTLR_EL2 context register with reset value.
617 	 */
618 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
619 #endif /* CTX_INCLUDE_EL2_REGS */
620 #endif /* IMAGE_BL31 */
621 
622 	/*
623 	 * Store the X0-X7 value from the entrypoint into the context
624 	 * Use memcpy as we are in control of the layout of the structures
625 	 */
626 	gp_regs = get_gpregs_ctx(ctx);
627 	memcpy((void *)gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
628 }
629 
630 /*******************************************************************************
631  * Context management library initialization routine. This library is used by
632  * runtime services to share pointers to 'cpu_context' structures for secure
633  * non-secure and realm states. Management of the structures and their associated
634  * memory is not done by the context management library e.g. the PSCI service
635  * manages the cpu context used for entry from and exit to the non-secure state.
636  * The Secure payload dispatcher service manages the context(s) corresponding to
637  * the secure state. It also uses this library to get access to the non-secure
638  * state cpu context pointers.
639  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
640  * which will be used for programming an entry into a lower EL. The same context
641  * will be used to save state upon exception entry from that EL.
642  ******************************************************************************/
643 void __init cm_init(void)
644 {
645 	/*
646 	 * The context management library has only global data to initialize, but
647 	 * that will be done when the BSS is zeroed out.
648 	 */
649 }
650 
651 /*******************************************************************************
652  * This is the high-level function used to initialize the cpu_context 'ctx' for
653  * first use. It performs initializations that are common to all security states
654  * and initializations specific to the security state specified in 'ep'
655  ******************************************************************************/
656 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
657 {
658 	size_t security_state;
659 
660 	assert(ctx != NULL);
661 
662 	/*
663 	 * Perform initializations that are common
664 	 * to all security states
665 	 */
666 	setup_context_common(ctx, ep);
667 
668 	security_state = GET_SECURITY_STATE(ep->h.attr);
669 
670 	/* Perform security state specific initializations */
671 	switch (security_state) {
672 	case SECURE:
673 		setup_secure_context(ctx, ep);
674 		break;
675 #if ENABLE_RME && IMAGE_BL31
676 	case REALM:
677 		setup_realm_context(ctx, ep);
678 		break;
679 #endif
680 	case NON_SECURE:
681 		setup_ns_context(ctx, ep);
682 		break;
683 	default:
684 		ERROR("Invalid security state\n");
685 		panic();
686 		break;
687 	}
688 }
689 
690 /*******************************************************************************
691  * Enable architecture extensions for EL3 execution. This function only updates
692  * registers in-place which are expected to either never change or be
693  * overwritten by el3_exit. Expects the core_pos of the current core as argument.
694  ******************************************************************************/
695 #if IMAGE_BL31
696 void __no_pauth cm_manage_extensions_el3(unsigned int my_idx)
697 {
698 	if (is_feat_pauth_supported()) {
699 		pauth_init_enable_el3();
700 	}
701 
702 	if (is_feat_sve_supported()) {
703 		sve_init_el3();
704 	}
705 
706 	if (is_feat_amu_supported()) {
707 		amu_init_el3(my_idx);
708 	}
709 
710 	if (is_feat_sme_supported()) {
711 		sme_init_el3();
712 	}
713 
714 	if (is_feat_fgwte3_supported()) {
715 		write_fgwte3_el3(FGWTE3_EL3_EARLY_INIT_VAL);
716 	}
717 
718 	if (is_feat_mpam_supported()) {
719 		mpam_init_el3();
720 	}
721 
722 	if (is_feat_cpa2_supported()) {
723 		cpa2_enable_el3();
724 	}
725 
726 	pmuv3_init_el3();
727 }
728 
729 /******************************************************************************
730  * Function to initialise the registers with the RESET values in the context
731  * memory, which are maintained per world.
732  ******************************************************************************/
733 static void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
734 {
735 	/*
736 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
737 	 *
738 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
739 	 *  by Advanced SIMD, floating-point or SVE instructions (if
740 	 *  implemented) do not trap to EL3.
741 	 *
742 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
743 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
744 	 */
745 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
746 
747 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
748 
749 	/*
750 	 * Initialize MPAM3_EL3 to its default reset value
751 	 *
752 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
753 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
754 	 */
755 
756 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
757 }
758 
759 /*******************************************************************************
760  * Initialise per_world_context for Non-Secure world.
761  * This function enables the architecture extensions, which have same value
762  * across the cores for the non-secure world.
763  ******************************************************************************/
764 static void manage_extensions_nonsecure_per_world(void)
765 {
766 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
767 
768 	if (is_feat_sme_supported()) {
769 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
770 	}
771 
772 	if (is_feat_sve_supported()) {
773 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
774 	}
775 
776 	if (is_feat_amu_supported()) {
777 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
778 	}
779 
780 	if (is_feat_sys_reg_trace_supported()) {
781 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
782 	}
783 
784 	if (is_feat_mpam_supported()) {
785 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
786 	}
787 
788 	if (is_feat_fpmr_supported()) {
789 		fpmr_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
790 	}
791 }
792 
793 /*******************************************************************************
794  * Initialise per_world_context for Secure world.
795  * This function enables the architecture extensions, which have same value
796  * across the cores for the secure world.
797  ******************************************************************************/
798 static void manage_extensions_secure_per_world(void)
799 {
800 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
801 
802 	if (is_feat_sme_supported()) {
803 
804 		if (ENABLE_SME_FOR_SWD) {
805 		/*
806 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
807 		 * SME, SVE, and FPU/SIMD context properly managed.
808 		 */
809 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
810 		} else {
811 		/*
812 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
813 		 * world can safely use the associated registers.
814 		 */
815 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
816 		}
817 	}
818 	if (is_feat_sve_supported()) {
819 		if (ENABLE_SVE_FOR_SWD) {
820 		/*
821 		 * Enable SVE and FPU in secure context, SPM must ensure
822 		 * that the SVE and FPU register contexts are properly managed.
823 		 */
824 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
825 		} else {
826 		/*
827 		 * Disable SVE and FPU in secure context so non-secure world
828 		 * can safely use them.
829 		 */
830 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
831 		}
832 	}
833 
834 	/* NS can access this but Secure shouldn't */
835 	if (is_feat_sys_reg_trace_supported()) {
836 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
837 	}
838 }
839 
840 static void manage_extensions_realm_per_world(void)
841 {
842 #if ENABLE_RME
843 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_REALM]);
844 
845 	if (is_feat_sve_supported()) {
846 	/*
847 	 * Enable SVE and FPU in realm context when it is enabled for NS.
848 	 * Realm manager must ensure that the SVE and FPU register
849 	 * contexts are properly managed.
850 	 */
851 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
852 	}
853 
854 	/* NS can access this but Realm shouldn't */
855 	if (is_feat_sys_reg_trace_supported()) {
856 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
857 	}
858 
859 	/*
860 	 * If SME/SME2 is supported and enabled for NS world, then disable trapping
861 	 * of SME instructions for Realm world. RMM will save/restore required
862 	 * registers that are shared with SVE/FPU so that Realm can use FPU or SVE.
863 	 */
864 	if (is_feat_sme_supported()) {
865 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
866 	}
867 
868 	/*
869 	 * If FEAT_MPAM is supported and enabled, then disable trapping access
870 	 * to the MPAM registers for Realm world. Instead, RMM will configure
871 	 * the access to be trapped by itself so it can inject undefined aborts
872 	 * back to the Realm.
873 	 */
874 	if (is_feat_mpam_supported()) {
875 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
876 	}
877 #endif /* ENABLE_RME */
878 }
879 
880 void cm_manage_extensions_per_world(void)
881 {
882 	manage_extensions_nonsecure_per_world();
883 	manage_extensions_secure_per_world();
884 	manage_extensions_realm_per_world();
885 }
886 #endif /* IMAGE_BL31 */
887 
888 /*******************************************************************************
889  * Enable architecture extensions on first entry to Non-secure world.
890  ******************************************************************************/
891 static void manage_extensions_nonsecure(cpu_context_t *ctx)
892 {
893 #if IMAGE_BL31
894 	/* NOTE: registers are not context switched */
895 	if (is_feat_amu_supported()) {
896 		amu_enable(ctx);
897 	}
898 
899 	if (is_feat_sme_supported()) {
900 		sme_enable(ctx);
901 	}
902 
903 	if (is_feat_fgt2_supported()) {
904 		fgt2_enable(ctx);
905 	}
906 
907 	if (is_feat_debugv8p9_supported()) {
908 		debugv8p9_extended_bp_wp_enable(ctx);
909 	}
910 
911 	if (is_feat_spe_supported()) {
912 		spe_enable_ns(ctx);
913 	}
914 
915 	if (is_feat_trbe_supported()) {
916 		if (check_if_trbe_disable_affected_core()) {
917 			trbe_disable_ns(ctx);
918 		} else {
919 			trbe_enable_ns(ctx);
920 		}
921 	}
922 
923 	if (is_feat_brbe_supported()) {
924 		brbe_enable(ctx);
925 	}
926 #endif /* IMAGE_BL31 */
927 }
928 
929 #if INIT_UNUSED_NS_EL2
930 /*******************************************************************************
931  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
932  * world when EL2 is empty and unused.
933  ******************************************************************************/
934 static void manage_extensions_nonsecure_el2_unused(void)
935 {
936 #if IMAGE_BL31
937 	if (is_feat_spe_supported()) {
938 		spe_init_el2_unused();
939 	}
940 
941 	if (is_feat_amu_supported()) {
942 		amu_init_el2_unused();
943 	}
944 
945 	if (is_feat_mpam_supported()) {
946 		mpam_init_el2_unused();
947 	}
948 
949 	if (is_feat_trbe_supported()) {
950 		trbe_init_el2_unused();
951 	}
952 
953 	if (is_feat_sys_reg_trace_supported()) {
954 		sys_reg_trace_init_el2_unused();
955 	}
956 
957 	if (is_feat_trf_supported()) {
958 		trf_init_el2_unused();
959 	}
960 
961 	pmuv3_init_el2_unused();
962 
963 	if (is_feat_sve_supported()) {
964 		sve_init_el2_unused();
965 	}
966 
967 	if (is_feat_sme_supported()) {
968 		sme_init_el2_unused();
969 	}
970 
971 	if (is_feat_mops_supported() && is_feat_hcx_supported()) {
972 		write_hcrx_el2(read_hcrx_el2() | HCRX_EL2_MSCEn_BIT);
973 	}
974 
975 	if (is_feat_pauth_supported()) {
976 		pauth_enable_el2();
977 	}
978 #endif /* IMAGE_BL31 */
979 }
980 #endif /* INIT_UNUSED_NS_EL2 */
981 
982 /*******************************************************************************
983  * Enable architecture extensions on first entry to Secure world.
984  ******************************************************************************/
985 static void manage_extensions_secure(cpu_context_t *ctx)
986 {
987 #if IMAGE_BL31
988 	if (is_feat_sme_supported()) {
989 		if (ENABLE_SME_FOR_SWD) {
990 		/*
991 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
992 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
993 		 */
994 			sme_init_el3();
995 			sme_enable(ctx);
996 		} else {
997 		/*
998 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
999 		 * world can safely use the associated registers.
1000 		 */
1001 			sme_disable(ctx);
1002 		}
1003 	}
1004 
1005 	if (is_feat_spe_supported()) {
1006 		spe_disable_secure(ctx);
1007 	}
1008 
1009 	if (is_feat_trbe_supported()) {
1010 		trbe_disable_secure(ctx);
1011 	}
1012 #endif /* IMAGE_BL31 */
1013 }
1014 
1015 /*******************************************************************************
1016  * The following function initializes the cpu_context for the current CPU
1017  * for first use, and sets the initial entrypoint state as specified by the
1018  * entry_point_info structure.
1019  ******************************************************************************/
1020 void cm_init_my_context(const entry_point_info_t *ep)
1021 {
1022 	cpu_context_t *ctx;
1023 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
1024 	cm_setup_context(ctx, ep);
1025 }
1026 
1027 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
1028 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
1029 {
1030 #if INIT_UNUSED_NS_EL2
1031 	u_register_t hcr_el2 = HCR_RESET_VAL;
1032 	u_register_t mdcr_el2;
1033 	u_register_t scr_el3;
1034 
1035 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1036 
1037 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
1038 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
1039 		hcr_el2 |= HCR_RW_BIT;
1040 	}
1041 
1042 	write_hcr_el2(hcr_el2);
1043 
1044 	/*
1045 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
1046 	 * All fields have architecturally UNKNOWN reset values.
1047 	 */
1048 	write_cptr_el2(CPTR_EL2_RESET_VAL);
1049 
1050 	/*
1051 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
1052 	 * reset and are set to zero except for field(s) listed below.
1053 	 *
1054 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
1055 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
1056 	 *
1057 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
1058 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
1059 	 */
1060 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
1061 
1062 	/*
1063 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
1064 	 * UNKNOWN value.
1065 	 */
1066 	write_cntvoff_el2(0);
1067 
1068 	/*
1069 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
1070 	 * respectively.
1071 	 */
1072 	write_vpidr_el2(read_midr_el1());
1073 	write_vmpidr_el2(read_mpidr_el1());
1074 
1075 	/*
1076 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
1077 	 *
1078 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
1079 	 * translation is disabled, cache maintenance operations depend on the
1080 	 * VMID.
1081 	 *
1082 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
1083 	 * disabled.
1084 	 */
1085 	write_vttbr_el2(VTTBR_RESET_VAL &
1086 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
1087 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
1088 
1089 	/*
1090 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
1091 	 * Some fields are architecturally UNKNOWN on reset.
1092 	 *
1093 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
1094 	 * register accesses to the Debug ROM registers are not trapped to EL2.
1095 	 *
1096 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
1097 	 * accesses to the powerdown debug registers are not trapped to EL2.
1098 	 *
1099 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
1100 	 * debug registers do not trap to EL2.
1101 	 *
1102 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
1103 	 * EL2.
1104 	 */
1105 	mdcr_el2 = MDCR_EL2_RESET_VAL &
1106 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
1107 		   MDCR_EL2_TDE_BIT);
1108 
1109 	write_mdcr_el2(mdcr_el2);
1110 
1111 	/*
1112 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
1113 	 *
1114 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
1115 	 * EL1 accesses to System registers do not trap to EL2.
1116 	 */
1117 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
1118 
1119 	/*
1120 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
1121 	 * reset.
1122 	 *
1123 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1124 	 * and prevent timer interrupts.
1125 	 */
1126 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1127 
1128 	manage_extensions_nonsecure_el2_unused();
1129 #endif /* INIT_UNUSED_NS_EL2 */
1130 }
1131 
1132 /*******************************************************************************
1133  * Prepare the CPU system registers for first entry into realm, secure, or
1134  * normal world.
1135  *
1136  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1137  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1138  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1139  * For all entries, the EL1 registers are initialized from the cpu_context
1140  ******************************************************************************/
1141 void cm_prepare_el3_exit(size_t security_state)
1142 {
1143 	u_register_t sctlr_el2, scr_el3;
1144 	cpu_context_t *ctx = cm_get_context(security_state);
1145 
1146 	assert(ctx != NULL);
1147 
1148 	if (security_state == NON_SECURE) {
1149 		uint64_t el2_implemented = el_implemented(2);
1150 
1151 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1152 						 CTX_SCR_EL3);
1153 
1154 		if (el2_implemented != EL_IMPL_NONE) {
1155 
1156 			/*
1157 			 * If context is not being used for EL2, initialize
1158 			 * HCRX_EL2 with its init value here.
1159 			 */
1160 			if (is_feat_hcx_supported()) {
1161 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1162 			}
1163 
1164 			/*
1165 			 * Initialize Fine-grained trap registers introduced
1166 			 * by FEAT_FGT so all traps are initially disabled when
1167 			 * switching to EL2 or a lower EL, preventing undesired
1168 			 * behavior.
1169 			 */
1170 			if (is_feat_fgt_supported()) {
1171 				/*
1172 				 * Initialize HFG*_EL2 registers with a default
1173 				 * value so legacy systems unaware of FEAT_FGT
1174 				 * do not get trapped due to their lack of
1175 				 * initialization for this feature.
1176 				 */
1177 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1178 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1179 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1180 			}
1181 
1182 			/* Condition to ensure EL2 is being used. */
1183 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1184 				/* Initialize SCTLR_EL2 register with reset value. */
1185 				sctlr_el2 = SCTLR_EL2_RES1;
1186 
1187 				/*
1188 				 * If workaround of errata 764081 for Cortex-A75
1189 				 * is used then set SCTLR_EL2.IESB to enable
1190 				 * Implicit Error Synchronization Barrier.
1191 				 */
1192 				if (errata_a75_764081_applies()) {
1193 					sctlr_el2 |= SCTLR_IESB_BIT;
1194 				}
1195 
1196 				write_sctlr_el2(sctlr_el2);
1197 			} else {
1198 				/*
1199 				 * (scr_el3 & SCR_HCE_BIT==0)
1200 				 * EL2 implemented but unused.
1201 				 */
1202 				init_nonsecure_el2_unused(ctx);
1203 			}
1204 		}
1205 
1206 		if (is_feat_fgwte3_supported()) {
1207 			/*
1208 			 * TCR_EL3 and ACTLR_EL3 could be overwritten
1209 			 * by platforms and hence is locked a bit late.
1210 			 */
1211 			write_fgwte3_el3(FGWTE3_EL3_LATE_INIT_VAL);
1212 		}
1213 	}
1214 #if (!CTX_INCLUDE_EL2_REGS)
1215 	/* Restore EL1 system registers, only when CTX_INCLUDE_EL2_REGS=0 */
1216 	cm_el1_sysregs_context_restore(security_state);
1217 #endif
1218 	cm_set_next_eret_context(security_state);
1219 }
1220 
1221 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1222 
1223 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1224 {
1225 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1226 	if (is_feat_amu_supported()) {
1227 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1228 	}
1229 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1230 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1231 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1232 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1233 }
1234 
1235 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1236 {
1237 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1238 	if (is_feat_amu_supported()) {
1239 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1240 	}
1241 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1242 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1243 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1244 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1245 }
1246 
1247 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1248 {
1249 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1250 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1251 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1252 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1253 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1254 }
1255 
1256 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1257 {
1258 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1259 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1260 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1261 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1262 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1263 }
1264 
1265 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1266 {
1267 	u_register_t mpam_idr = read_mpamidr_el1();
1268 
1269 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1270 
1271 	/*
1272 	 * The context registers that we intend to save would be part of the
1273 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1274 	 */
1275 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1276 		return;
1277 	}
1278 
1279 	/*
1280 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1281 	 * MPAMIDR_HAS_HCR_BIT == 1.
1282 	 */
1283 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1284 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1285 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1286 
1287 	/*
1288 	 * The number of MPAMVPM registers is implementation defined, their
1289 	 * number is stored in the MPAMIDR_EL1 register.
1290 	 */
1291 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1292 	case 7:
1293 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1294 		__fallthrough;
1295 	case 6:
1296 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1297 		__fallthrough;
1298 	case 5:
1299 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1300 		__fallthrough;
1301 	case 4:
1302 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1303 		__fallthrough;
1304 	case 3:
1305 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1306 		__fallthrough;
1307 	case 2:
1308 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1309 		__fallthrough;
1310 	case 1:
1311 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1312 		break;
1313 	}
1314 }
1315 
1316 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1317 {
1318 	u_register_t mpam_idr = read_mpamidr_el1();
1319 
1320 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1321 
1322 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1323 		return;
1324 	}
1325 
1326 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1327 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1328 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1329 
1330 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1331 	case 7:
1332 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1333 		__fallthrough;
1334 	case 6:
1335 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1336 		__fallthrough;
1337 	case 5:
1338 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1339 		__fallthrough;
1340 	case 4:
1341 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1342 		__fallthrough;
1343 	case 3:
1344 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1345 		__fallthrough;
1346 	case 2:
1347 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1348 		__fallthrough;
1349 	case 1:
1350 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1351 		break;
1352 	}
1353 }
1354 
1355 /* ---------------------------------------------------------------------------
1356  * The following registers are not added:
1357  * ICH_AP0R<n>_EL2
1358  * ICH_AP1R<n>_EL2
1359  * ICH_LR<n>_EL2
1360  *
1361  * NOTE: For a system with S-EL2 present but not enabled, accessing
1362  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1363  * SCR_EL3.NS = 1 before accessing this register.
1364  * ---------------------------------------------------------------------------
1365  */
1366 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx, uint32_t security_state)
1367 {
1368 	u_register_t scr_el3 = read_scr_el3();
1369 
1370 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1371 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1372 #else
1373 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1374 	isb();
1375 
1376 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1377 
1378 	write_scr_el3(scr_el3);
1379 	isb();
1380 #endif
1381 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1382 
1383 	if (errata_ich_vmcr_el2_applies()) {
1384 		if (security_state == SECURE) {
1385 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1386 		} else {
1387 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1388 		}
1389 		isb();
1390 	}
1391 
1392 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1393 
1394 	if (errata_ich_vmcr_el2_applies()) {
1395 		write_scr_el3(scr_el3);
1396 		isb();
1397 	}
1398 }
1399 
1400 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx, uint32_t security_state)
1401 {
1402 	u_register_t scr_el3 = read_scr_el3();
1403 
1404 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1405 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1406 #else
1407 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1408 	isb();
1409 
1410 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1411 
1412 	write_scr_el3(scr_el3);
1413 	isb();
1414 #endif
1415 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1416 
1417 	if (errata_ich_vmcr_el2_applies()) {
1418 		if (security_state == SECURE) {
1419 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1420 		} else {
1421 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1422 		}
1423 		isb();
1424 	}
1425 
1426 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1427 
1428 	if (errata_ich_vmcr_el2_applies()) {
1429 		write_scr_el3(scr_el3);
1430 		isb();
1431 	}
1432 }
1433 
1434 /* -----------------------------------------------------
1435  * The following registers are not added:
1436  * AMEVCNTVOFF0<n>_EL2
1437  * AMEVCNTVOFF1<n>_EL2
1438  * -----------------------------------------------------
1439  */
1440 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1441 {
1442 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1443 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1444 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1445 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1446 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1447 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1448 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1449 	if (CTX_INCLUDE_AARCH32_REGS) {
1450 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1451 	}
1452 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1453 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1454 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1455 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1456 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1457 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1458 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1459 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1460 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1461 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1462 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1463 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1464 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1465 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1466 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1467 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1468 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1469 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1470 
1471 	write_el2_ctx_common_sysreg128(ctx, ttbr0_el2, read_ttbr0_el2());
1472 	write_el2_ctx_common_sysreg128(ctx, vttbr_el2, read_vttbr_el2());
1473 }
1474 
1475 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1476 {
1477 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1478 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1479 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1480 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1481 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1482 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1483 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1484 	if (CTX_INCLUDE_AARCH32_REGS) {
1485 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1486 	}
1487 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1488 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1489 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1490 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1491 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1492 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1493 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1494 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1495 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1496 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1497 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1498 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1499 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1500 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1501 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1502 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1503 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1504 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1505 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1506 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1507 }
1508 
1509 /*******************************************************************************
1510  * Save EL2 sysreg context
1511  ******************************************************************************/
1512 void cm_el2_sysregs_context_save(uint32_t security_state)
1513 {
1514 	cpu_context_t *ctx;
1515 	el2_sysregs_t *el2_sysregs_ctx;
1516 
1517 	ctx = cm_get_context(security_state);
1518 	assert(ctx != NULL);
1519 
1520 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1521 
1522 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1523 	el2_sysregs_context_save_gic(el2_sysregs_ctx, security_state);
1524 
1525 	if (is_feat_mte2_supported()) {
1526 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1527 	}
1528 
1529 	if (is_feat_mpam_supported()) {
1530 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1531 	}
1532 
1533 	if (is_feat_fgt_supported()) {
1534 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1535 	}
1536 
1537 	if (is_feat_fgt2_supported()) {
1538 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1539 	}
1540 
1541 	if (is_feat_ecv_v2_supported()) {
1542 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1543 	}
1544 
1545 	if (is_feat_vhe_supported()) {
1546 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1547 					read_contextidr_el2());
1548 		write_el2_ctx_vhe_sysreg128(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1549 	}
1550 
1551 	if (is_feat_ras_supported()) {
1552 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1553 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1554 	}
1555 
1556 	if (is_feat_nv2_supported()) {
1557 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1558 	}
1559 
1560 	if (is_feat_trf_supported()) {
1561 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1562 	}
1563 
1564 	if (is_feat_csv2_2_supported()) {
1565 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1566 					read_scxtnum_el2());
1567 	}
1568 
1569 	if (is_feat_hcx_supported()) {
1570 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1571 	}
1572 
1573 	if (is_feat_tcr2_supported()) {
1574 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1575 	}
1576 
1577 	if (is_feat_sxpie_supported()) {
1578 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1579 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1580 	}
1581 
1582 	if (is_feat_sxpoe_supported()) {
1583 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1584 	}
1585 
1586 	if (is_feat_brbe_supported()) {
1587 		write_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2, read_brbcr_el2());
1588 	}
1589 
1590 	if (is_feat_s2pie_supported()) {
1591 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1592 	}
1593 
1594 	if (is_feat_gcs_supported()) {
1595 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1596 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1597 	}
1598 
1599 	if (is_feat_sctlr2_supported()) {
1600 		write_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2, read_sctlr2_el2());
1601 	}
1602 }
1603 
1604 /*******************************************************************************
1605  * Restore EL2 sysreg context
1606  ******************************************************************************/
1607 void cm_el2_sysregs_context_restore(uint32_t security_state)
1608 {
1609 	cpu_context_t *ctx;
1610 	el2_sysregs_t *el2_sysregs_ctx;
1611 
1612 	ctx = cm_get_context(security_state);
1613 	assert(ctx != NULL);
1614 
1615 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1616 
1617 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1618 	el2_sysregs_context_restore_gic(el2_sysregs_ctx, security_state);
1619 
1620 	if (is_feat_mte2_supported()) {
1621 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1622 	}
1623 
1624 	if (is_feat_mpam_supported()) {
1625 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1626 	}
1627 
1628 	if (is_feat_fgt_supported()) {
1629 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1630 	}
1631 
1632 	if (is_feat_fgt2_supported()) {
1633 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1634 	}
1635 
1636 	if (is_feat_ecv_v2_supported()) {
1637 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1638 	}
1639 
1640 	if (is_feat_vhe_supported()) {
1641 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1642 					contextidr_el2));
1643 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1644 	}
1645 
1646 	if (is_feat_ras_supported()) {
1647 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1648 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1649 	}
1650 
1651 	if (is_feat_nv2_supported()) {
1652 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1653 	}
1654 
1655 	if (is_feat_trf_supported()) {
1656 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1657 	}
1658 
1659 	if (is_feat_csv2_2_supported()) {
1660 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1661 					scxtnum_el2));
1662 	}
1663 
1664 	if (is_feat_hcx_supported()) {
1665 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1666 	}
1667 
1668 	if (is_feat_tcr2_supported()) {
1669 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1670 	}
1671 
1672 	if (is_feat_sxpie_supported()) {
1673 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1674 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1675 	}
1676 
1677 	if (is_feat_sxpoe_supported()) {
1678 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1679 	}
1680 
1681 	if (is_feat_s2pie_supported()) {
1682 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1683 	}
1684 
1685 	if (is_feat_gcs_supported()) {
1686 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1687 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1688 	}
1689 
1690 	if (is_feat_sctlr2_supported()) {
1691 		write_sctlr2_el2(read_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2));
1692 	}
1693 
1694 	if (is_feat_brbe_supported()) {
1695 		write_brbcr_el2(read_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2));
1696 	}
1697 }
1698 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1699 
1700 /*******************************************************************************
1701  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1702  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1703  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1704  * cm_prepare_el3_exit function.
1705  ******************************************************************************/
1706 void cm_prepare_el3_exit_ns(void)
1707 {
1708 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1709 #if ENABLE_ASSERTIONS
1710 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1711 	assert(ctx != NULL);
1712 
1713 	/* Assert that EL2 is used. */
1714 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1715 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1716 			(el_implemented(2U) != EL_IMPL_NONE));
1717 #endif /* ENABLE_ASSERTIONS */
1718 
1719 	/* Restore EL2 sysreg contexts */
1720 	cm_el2_sysregs_context_restore(NON_SECURE);
1721 	cm_set_next_eret_context(NON_SECURE);
1722 #else
1723 	cm_prepare_el3_exit(NON_SECURE);
1724 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1725 }
1726 
1727 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
1728 /*******************************************************************************
1729  * The next set of six functions are used by runtime services to save and restore
1730  * EL1 context on the 'cpu_context' structure for the specified security state.
1731  ******************************************************************************/
1732 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1733 {
1734 	write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1());
1735 	write_el1_ctx_common(ctx, elr_el1, read_elr_el1());
1736 
1737 #if (!ERRATA_SPECULATIVE_AT)
1738 	write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1());
1739 	write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1());
1740 #endif /* (!ERRATA_SPECULATIVE_AT) */
1741 
1742 	write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1());
1743 	write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1());
1744 	write_el1_ctx_common(ctx, sp_el1, read_sp_el1());
1745 	write_el1_ctx_common(ctx, esr_el1, read_esr_el1());
1746 	write_el1_ctx_common(ctx, mair_el1, read_mair_el1());
1747 	write_el1_ctx_common(ctx, amair_el1, read_amair_el1());
1748 	write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1());
1749 	write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1());
1750 	write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0());
1751 	write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0());
1752 	write_el1_ctx_common(ctx, far_el1, read_far_el1());
1753 	write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1());
1754 	write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1());
1755 	write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1());
1756 	write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1());
1757 	write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1());
1758 	write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1());
1759 
1760 	write_el1_ctx_common_sysreg128(ctx, par_el1, read_par_el1());
1761 	write_el1_ctx_common_sysreg128(ctx, ttbr0_el1, read_ttbr0_el1());
1762 	write_el1_ctx_common_sysreg128(ctx, ttbr1_el1, read_ttbr1_el1());
1763 
1764 	if (CTX_INCLUDE_AARCH32_REGS) {
1765 		/* Save Aarch32 registers */
1766 		write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt());
1767 		write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und());
1768 		write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq());
1769 		write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq());
1770 		write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2());
1771 		write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2());
1772 	}
1773 
1774 	/* Save counter-timer kernel control register */
1775 	write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1());
1776 #if NS_TIMER_SWITCH
1777 	/* Save NS Timer registers */
1778 	write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0());
1779 	write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0());
1780 	write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0());
1781 	write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0());
1782 #endif
1783 
1784 	if (is_feat_mte2_supported()) {
1785 		write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1());
1786 		write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1());
1787 		write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1());
1788 		write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1());
1789 	}
1790 
1791 	if (is_feat_ras_supported()) {
1792 		write_el1_ctx_ras(ctx, disr_el1, read_disr_el1());
1793 	}
1794 
1795 	if (is_feat_s1pie_supported()) {
1796 		write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1());
1797 		write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1());
1798 	}
1799 
1800 	if (is_feat_s1poe_supported()) {
1801 		write_el1_ctx_s1poe(ctx, por_el1, read_por_el1());
1802 	}
1803 
1804 	if (is_feat_s2poe_supported()) {
1805 		write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1());
1806 	}
1807 
1808 	if (is_feat_tcr2_supported()) {
1809 		write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1());
1810 	}
1811 
1812 	if (is_feat_trf_supported()) {
1813 		write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1());
1814 	}
1815 
1816 	if (is_feat_csv2_2_supported()) {
1817 		write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0());
1818 		write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1());
1819 	}
1820 
1821 	if (is_feat_gcs_supported()) {
1822 		write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1());
1823 		write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1());
1824 		write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1());
1825 		write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0());
1826 	}
1827 
1828 	if (is_feat_the_supported()) {
1829 		write_el1_ctx_the_sysreg128(ctx, rcwmask_el1, read_rcwmask_el1());
1830 		write_el1_ctx_the_sysreg128(ctx, rcwsmask_el1, read_rcwsmask_el1());
1831 	}
1832 
1833 	if (is_feat_sctlr2_supported()) {
1834 		write_el1_ctx_sctlr2(ctx, sctlr2_el1, read_sctlr2_el1());
1835 	}
1836 
1837 	if (is_feat_ls64_accdata_supported()) {
1838 		write_el1_ctx_ls64(ctx, accdata_el1, read_accdata_el1());
1839 	}
1840 }
1841 
1842 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1843 {
1844 	write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1));
1845 	write_elr_el1(read_el1_ctx_common(ctx, elr_el1));
1846 
1847 #if (!ERRATA_SPECULATIVE_AT)
1848 	write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1));
1849 	write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1));
1850 #endif /* (!ERRATA_SPECULATIVE_AT) */
1851 
1852 	write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1));
1853 	write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1));
1854 	write_sp_el1(read_el1_ctx_common(ctx, sp_el1));
1855 	write_esr_el1(read_el1_ctx_common(ctx, esr_el1));
1856 	write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1));
1857 	write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1));
1858 	write_mair_el1(read_el1_ctx_common(ctx, mair_el1));
1859 	write_amair_el1(read_el1_ctx_common(ctx, amair_el1));
1860 	write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1));
1861 	write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1));
1862 	write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0));
1863 	write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0));
1864 	write_par_el1(read_el1_ctx_common(ctx, par_el1));
1865 	write_far_el1(read_el1_ctx_common(ctx, far_el1));
1866 	write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1));
1867 	write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1));
1868 	write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1));
1869 	write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1));
1870 	write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1));
1871 	write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1));
1872 
1873 	if (CTX_INCLUDE_AARCH32_REGS) {
1874 		/* Restore Aarch32 registers */
1875 		write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt));
1876 		write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und));
1877 		write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq));
1878 		write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq));
1879 		write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2));
1880 		write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2));
1881 	}
1882 
1883 	/* Restore counter-timer kernel control register */
1884 	write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1));
1885 #if NS_TIMER_SWITCH
1886 	/* Restore NS Timer registers */
1887 	write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0));
1888 	write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0));
1889 	write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0));
1890 	write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0));
1891 #endif
1892 
1893 	if (is_feat_mte2_supported()) {
1894 		write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1));
1895 		write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1));
1896 		write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1));
1897 		write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1));
1898 	}
1899 
1900 	if (is_feat_ras_supported()) {
1901 		write_disr_el1(read_el1_ctx_ras(ctx, disr_el1));
1902 	}
1903 
1904 	if (is_feat_s1pie_supported()) {
1905 		write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1));
1906 		write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1));
1907 	}
1908 
1909 	if (is_feat_s1poe_supported()) {
1910 		write_por_el1(read_el1_ctx_s1poe(ctx, por_el1));
1911 	}
1912 
1913 	if (is_feat_s2poe_supported()) {
1914 		write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1));
1915 	}
1916 
1917 	if (is_feat_tcr2_supported()) {
1918 		write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1));
1919 	}
1920 
1921 	if (is_feat_trf_supported()) {
1922 		write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1));
1923 	}
1924 
1925 	if (is_feat_csv2_2_supported()) {
1926 		write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0));
1927 		write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1));
1928 	}
1929 
1930 	if (is_feat_gcs_supported()) {
1931 		write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1));
1932 		write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1));
1933 		write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1));
1934 		write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0));
1935 	}
1936 
1937 	if (is_feat_the_supported()) {
1938 		write_rcwmask_el1(read_el1_ctx_the(ctx, rcwmask_el1));
1939 		write_rcwsmask_el1(read_el1_ctx_the(ctx, rcwsmask_el1));
1940 	}
1941 
1942 	if (is_feat_sctlr2_supported()) {
1943 		write_sctlr2_el1(read_el1_ctx_sctlr2(ctx, sctlr2_el1));
1944 	}
1945 
1946 	if (is_feat_ls64_accdata_supported()) {
1947 		write_accdata_el1(read_el1_ctx_ls64(ctx, accdata_el1));
1948 	}
1949 }
1950 
1951 /*******************************************************************************
1952  * The next couple of functions are used by runtime services to save and restore
1953  * EL1 context on the 'cpu_context' structure for the specified security state.
1954  ******************************************************************************/
1955 void cm_el1_sysregs_context_save(uint32_t security_state)
1956 {
1957 	cpu_context_t *ctx;
1958 
1959 	ctx = cm_get_context(security_state);
1960 	assert(ctx != NULL);
1961 
1962 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1963 
1964 #if IMAGE_BL31
1965 	if (security_state == SECURE) {
1966 		PUBLISH_EVENT(cm_exited_secure_world);
1967 	} else {
1968 		PUBLISH_EVENT(cm_exited_normal_world);
1969 	}
1970 #endif
1971 }
1972 
1973 void cm_el1_sysregs_context_restore(uint32_t security_state)
1974 {
1975 	cpu_context_t *ctx;
1976 
1977 	ctx = cm_get_context(security_state);
1978 	assert(ctx != NULL);
1979 
1980 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1981 
1982 #if IMAGE_BL31
1983 	if (security_state == SECURE) {
1984 		PUBLISH_EVENT(cm_entering_secure_world);
1985 	} else {
1986 		PUBLISH_EVENT(cm_entering_normal_world);
1987 	}
1988 #endif
1989 }
1990 
1991 #endif /* ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) */
1992 
1993 /*******************************************************************************
1994  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1995  * given security state with the given entrypoint
1996  ******************************************************************************/
1997 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1998 {
1999 	cpu_context_t *ctx;
2000 	el3_state_t *state;
2001 
2002 	ctx = cm_get_context(security_state);
2003 	assert(ctx != NULL);
2004 
2005 	/* Populate EL3 state so that ERET jumps to the correct entry */
2006 	state = get_el3state_ctx(ctx);
2007 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
2008 }
2009 
2010 /*******************************************************************************
2011  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
2012  * pertaining to the given security state
2013  ******************************************************************************/
2014 void cm_set_elr_spsr_el3(uint32_t security_state,
2015 			uintptr_t entrypoint, uint32_t spsr)
2016 {
2017 	cpu_context_t *ctx;
2018 	el3_state_t *state;
2019 
2020 	ctx = cm_get_context(security_state);
2021 	assert(ctx != NULL);
2022 
2023 	/* Populate EL3 state so that ERET jumps to the correct entry */
2024 	state = get_el3state_ctx(ctx);
2025 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
2026 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
2027 }
2028 
2029 /*******************************************************************************
2030  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
2031  * pertaining to the given security state using the value and bit position
2032  * specified in the parameters. It preserves all other bits.
2033  ******************************************************************************/
2034 void cm_write_scr_el3_bit(uint32_t security_state,
2035 			  uint32_t bit_pos,
2036 			  uint32_t value)
2037 {
2038 	cpu_context_t *ctx;
2039 	el3_state_t *state;
2040 	u_register_t scr_el3;
2041 
2042 	ctx = cm_get_context(security_state);
2043 	assert(ctx != NULL);
2044 
2045 	/* Ensure that the bit position is a valid one */
2046 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
2047 
2048 	/* Ensure that the 'value' is only a bit wide */
2049 	assert(value <= 1U);
2050 
2051 	/*
2052 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
2053 	 * and set it to its new value.
2054 	 */
2055 	state = get_el3state_ctx(ctx);
2056 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
2057 	scr_el3 &= ~(1UL << bit_pos);
2058 	scr_el3 |= (u_register_t)value << bit_pos;
2059 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
2060 }
2061 
2062 /*******************************************************************************
2063  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
2064  * given security state.
2065  ******************************************************************************/
2066 u_register_t cm_get_scr_el3(uint32_t security_state)
2067 {
2068 	const cpu_context_t *ctx;
2069 	const el3_state_t *state;
2070 
2071 	ctx = cm_get_context(security_state);
2072 	assert(ctx != NULL);
2073 
2074 	/* Populate EL3 state so that ERET jumps to the correct entry */
2075 	state = get_el3state_ctx(ctx);
2076 	return read_ctx_reg(state, CTX_SCR_EL3);
2077 }
2078 
2079 /*******************************************************************************
2080  * This function is used to program the context that's used for exception
2081  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
2082  * the required security state
2083  ******************************************************************************/
2084 void cm_set_next_eret_context(uint32_t security_state)
2085 {
2086 	cpu_context_t *ctx;
2087 
2088 	ctx = cm_get_context(security_state);
2089 	assert(ctx != NULL);
2090 
2091 	cm_set_next_context(ctx);
2092 }
2093