xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision b226357bdb2e60285d79df977b3b177359af443c)
1 /*
2  * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/cpus/cpu_ops.h>
23 #include <lib/cpus/errata.h>
24 #include <lib/el3_runtime/context_mgmt.h>
25 #include <lib/el3_runtime/cpu_data.h>
26 #include <lib/el3_runtime/pubsub_events.h>
27 #include <lib/extensions/amu.h>
28 #include <lib/extensions/brbe.h>
29 #include <lib/extensions/debug_v8p9.h>
30 #include <lib/extensions/fgt2.h>
31 #include <lib/extensions/mpam.h>
32 #include <lib/extensions/pmuv3.h>
33 #include <lib/extensions/sme.h>
34 #include <lib/extensions/spe.h>
35 #include <lib/extensions/sve.h>
36 #include <lib/extensions/sysreg128.h>
37 #include <lib/extensions/sys_reg_trace.h>
38 #include <lib/extensions/tcr2.h>
39 #include <lib/extensions/trbe.h>
40 #include <lib/extensions/trf.h>
41 #include <lib/utils.h>
42 
43 #if ENABLE_FEAT_TWED
44 /* Make sure delay value fits within the range(0-15) */
45 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
46 #endif /* ENABLE_FEAT_TWED */
47 
48 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
49 static bool has_secure_perworld_init;
50 
51 static void manage_extensions_common(cpu_context_t *ctx);
52 static void manage_extensions_nonsecure(cpu_context_t *ctx);
53 static void manage_extensions_secure(cpu_context_t *ctx);
54 static void manage_extensions_secure_per_world(void);
55 
56 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
57 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
58 {
59 	u_register_t sctlr_elx, actlr_elx;
60 
61 	/*
62 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
63 	 * execution state setting all fields rather than relying on the hw.
64 	 * Some fields have architecturally UNKNOWN reset values and these are
65 	 * set to zero.
66 	 *
67 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
68 	 *
69 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
70 	 * required by PSCI specification)
71 	 */
72 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
73 	if (GET_RW(ep->spsr) == MODE_RW_64) {
74 		sctlr_elx |= SCTLR_EL1_RES1;
75 	} else {
76 		/*
77 		 * If the target execution state is AArch32 then the following
78 		 * fields need to be set.
79 		 *
80 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
81 		 *  instructions are not trapped to EL1.
82 		 *
83 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
84 		 *  instructions are not trapped to EL1.
85 		 *
86 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
87 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
88 		 */
89 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
90 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
91 	}
92 
93 	/*
94 	 * If workaround of errata 764081 for Cortex-A75 is used then set
95 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
96 	 */
97 	if (errata_a75_764081_applies()) {
98 		sctlr_elx |= SCTLR_IESB_BIT;
99 	}
100 
101 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
102 	write_ctx_sctlr_el1_reg_errata(ctx, sctlr_elx);
103 
104 	/*
105 	 * Base the context ACTLR_EL1 on the current value, as it is
106 	 * implementation defined. The context restore process will write
107 	 * the value from the context to the actual register and can cause
108 	 * problems for processor cores that don't expect certain bits to
109 	 * be zero.
110 	 */
111 	actlr_elx = read_actlr_el1();
112 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx);
113 }
114 #endif /* (IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)) */
115 
116 /******************************************************************************
117  * This function performs initializations that are specific to SECURE state
118  * and updates the cpu context specified by 'ctx'.
119  *****************************************************************************/
120 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
121 {
122 	u_register_t scr_el3;
123 	el3_state_t *state;
124 
125 	state = get_el3state_ctx(ctx);
126 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
127 
128 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
129 	/*
130 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
131 	 * indicated by the interrupt routing model for BL31.
132 	 */
133 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
134 #endif
135 
136 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
137 	if (is_feat_mte2_supported()) {
138 		scr_el3 |= SCR_ATA_BIT;
139 	}
140 
141 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
142 
143 	/*
144 	 * Initialize EL1 context registers unless SPMC is running
145 	 * at S-EL2.
146 	 */
147 #if (!SPMD_SPM_AT_SEL2)
148 	setup_el1_context(ctx, ep);
149 #endif
150 
151 	manage_extensions_secure(ctx);
152 
153 	/**
154 	 * manage_extensions_secure_per_world api has to be executed once,
155 	 * as the registers getting initialised, maintain constant value across
156 	 * all the cpus for the secure world.
157 	 * Henceforth, this check ensures that the registers are initialised once
158 	 * and avoids re-initialization from multiple cores.
159 	 */
160 	if (!has_secure_perworld_init) {
161 		manage_extensions_secure_per_world();
162 	}
163 }
164 
165 #if ENABLE_RME
166 /******************************************************************************
167  * This function performs initializations that are specific to REALM state
168  * and updates the cpu context specified by 'ctx'.
169  *****************************************************************************/
170 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
171 {
172 	u_register_t scr_el3;
173 	el3_state_t *state;
174 
175 	state = get_el3state_ctx(ctx);
176 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
177 
178 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
179 
180 	/* CSV2 version 2 and above */
181 	if (is_feat_csv2_2_supported()) {
182 		/* Enable access to the SCXTNUM_ELx registers. */
183 		scr_el3 |= SCR_EnSCXT_BIT;
184 	}
185 
186 	if (is_feat_sctlr2_supported()) {
187 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
188 		 * SCTLR2_ELx registers.
189 		 */
190 		scr_el3 |= SCR_SCTLR2En_BIT;
191 	}
192 
193 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
194 }
195 #endif /* ENABLE_RME */
196 
197 /******************************************************************************
198  * This function performs initializations that are specific to NON-SECURE state
199  * and updates the cpu context specified by 'ctx'.
200  *****************************************************************************/
201 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
202 {
203 	u_register_t scr_el3;
204 	el3_state_t *state;
205 
206 	state = get_el3state_ctx(ctx);
207 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
208 
209 	/* SCR_NS: Set the NS bit */
210 	scr_el3 |= SCR_NS_BIT;
211 
212 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
213 	if (is_feat_mte2_supported()) {
214 		scr_el3 |= SCR_ATA_BIT;
215 	}
216 
217 #if !CTX_INCLUDE_PAUTH_REGS
218 	/*
219 	 * Pointer Authentication feature, if present, is always enabled by default
220 	 * for Non secure lower exception levels. We do not have an explicit
221 	 * flag to set it.
222 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
223 	 * exception levels of secure and realm worlds.
224 	 *
225 	 * To prevent the leakage between the worlds during world switch,
226 	 * we enable it only for the non-secure world.
227 	 *
228 	 * If the Secure/realm world wants to use pointer authentication,
229 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
230 	 * it will be enabled globally for all the contexts.
231 	 *
232 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
233 	 *  other than EL3
234 	 *
235 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
236 	 *  than EL3
237 	 */
238 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
239 
240 #endif /* CTX_INCLUDE_PAUTH_REGS */
241 
242 #if HANDLE_EA_EL3_FIRST_NS
243 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
244 	scr_el3 |= SCR_EA_BIT;
245 #endif
246 
247 #if RAS_TRAP_NS_ERR_REC_ACCESS
248 	/*
249 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
250 	 * and RAS ERX registers from EL1 and EL2(from any security state)
251 	 * are trapped to EL3.
252 	 * Set here to trap only for NS EL1/EL2
253 	 *
254 	 */
255 	scr_el3 |= SCR_TERR_BIT;
256 #endif
257 
258 	/* CSV2 version 2 and above */
259 	if (is_feat_csv2_2_supported()) {
260 		/* Enable access to the SCXTNUM_ELx registers. */
261 		scr_el3 |= SCR_EnSCXT_BIT;
262 	}
263 
264 #ifdef IMAGE_BL31
265 	/*
266 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
267 	 *  indicated by the interrupt routing model for BL31.
268 	 */
269 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
270 #endif
271 
272 	if (is_feat_the_supported()) {
273 		/* Set the RCWMASKEn bit in SCR_EL3 to enable access to
274 		 * RCWMASK_EL1 and RCWSMASK_EL1 registers.
275 		 */
276 		scr_el3 |= SCR_RCWMASKEn_BIT;
277 	}
278 
279 	if (is_feat_sctlr2_supported()) {
280 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
281 		 * SCTLR2_ELx registers.
282 		 */
283 		scr_el3 |= SCR_SCTLR2En_BIT;
284 	}
285 
286 	if (is_feat_d128_supported()) {
287 		/* Set the D128En bit in SCR_EL3 to enable access to 128-bit
288 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
289 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
290 		 */
291 		scr_el3 |= SCR_D128En_BIT;
292 	}
293 
294 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
295 
296 	/* Initialize EL2 context registers */
297 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
298 
299 	/*
300 	 * Initialize SCTLR_EL2 context register with reset value.
301 	 */
302 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
303 
304 	if (is_feat_hcx_supported()) {
305 		/*
306 		 * Initialize register HCRX_EL2 with its init value.
307 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
308 		 * chance that this can lead to unexpected behavior in lower
309 		 * ELs that have not been updated since the introduction of
310 		 * this feature if not properly initialized, especially when
311 		 * it comes to those bits that enable/disable traps.
312 		 */
313 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
314 			HCRX_EL2_INIT_VAL);
315 	}
316 
317 	if (is_feat_fgt_supported()) {
318 		/*
319 		 * Initialize HFG*_EL2 registers with a default value so legacy
320 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
321 		 * of initialization for this feature.
322 		 */
323 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
324 			HFGITR_EL2_INIT_VAL);
325 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
326 			HFGRTR_EL2_INIT_VAL);
327 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
328 			HFGWTR_EL2_INIT_VAL);
329 	}
330 #else
331 	/* Initialize EL1 context registers */
332 	setup_el1_context(ctx, ep);
333 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
334 
335 	manage_extensions_nonsecure(ctx);
336 }
337 
338 /*******************************************************************************
339  * The following function performs initialization of the cpu_context 'ctx'
340  * for first use that is common to all security states, and sets the
341  * initial entrypoint state as specified by the entry_point_info structure.
342  *
343  * The EE and ST attributes are used to configure the endianness and secure
344  * timer availability for the new execution context.
345  ******************************************************************************/
346 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
347 {
348 	u_register_t scr_el3;
349 	u_register_t mdcr_el3;
350 	el3_state_t *state;
351 	gp_regs_t *gp_regs;
352 
353 	state = get_el3state_ctx(ctx);
354 
355 	/* Clear any residual register values from the context */
356 	zeromem(ctx, sizeof(*ctx));
357 
358 	/*
359 	 * The lower-EL context is zeroed so that no stale values leak to a world.
360 	 * It is assumed that an all-zero lower-EL context is good enough for it
361 	 * to boot correctly. However, there are very few registers where this
362 	 * is not true and some values need to be recreated.
363 	 */
364 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
365 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
366 
367 	/*
368 	 * These bits are set in the gicv3 driver. Losing them (especially the
369 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
370 	 */
371 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
372 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
373 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
374 
375 	/*
376 	 * The actlr_el2 register can be initialized in platform's reset handler
377 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
378 	 */
379 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
380 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
381 
382 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
383 	scr_el3 = SCR_RESET_VAL;
384 
385 	/*
386 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
387 	 *  EL2, EL1 and EL0 are not trapped to EL3.
388 	 *
389 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
390 	 *  EL2, EL1 and EL0 are not trapped to EL3.
391 	 *
392 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
393 	 *  both Security states and both Execution states.
394 	 *
395 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
396 	 *  Non-secure memory.
397 	 */
398 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
399 
400 	scr_el3 |= SCR_SIF_BIT;
401 
402 	/*
403 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
404 	 *  Exception level as specified by SPSR.
405 	 */
406 	if (GET_RW(ep->spsr) == MODE_RW_64) {
407 		scr_el3 |= SCR_RW_BIT;
408 	}
409 
410 	/*
411 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
412 	 * Secure timer registers to EL3, from AArch64 state only, if specified
413 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
414 	 * bit always behaves as 1 (i.e. secure physical timer register access
415 	 * is not trapped)
416 	 */
417 	if (EP_GET_ST(ep->h.attr) != 0U) {
418 		scr_el3 |= SCR_ST_BIT;
419 	}
420 
421 	/*
422 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
423 	 * SCR_EL3.HXEn.
424 	 */
425 	if (is_feat_hcx_supported()) {
426 		scr_el3 |= SCR_HXEn_BIT;
427 	}
428 
429 	/*
430 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
431 	 * registers are trapped to EL3.
432 	 */
433 #if ENABLE_FEAT_RNG_TRAP
434 	scr_el3 |= SCR_TRNDR_BIT;
435 #endif
436 
437 #if FAULT_INJECTION_SUPPORT
438 	/* Enable fault injection from lower ELs */
439 	scr_el3 |= SCR_FIEN_BIT;
440 #endif
441 
442 #if CTX_INCLUDE_PAUTH_REGS
443 	/*
444 	 * Enable Pointer Authentication globally for all the worlds.
445 	 *
446 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
447 	 *  other than EL3
448 	 *
449 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
450 	 *  than EL3
451 	 */
452 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
453 #endif /* CTX_INCLUDE_PAUTH_REGS */
454 
455 	/*
456 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
457 	 */
458 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
459 		scr_el3 |= SCR_TCR2EN_BIT;
460 	}
461 
462 	/*
463 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
464 	 * registers for AArch64 if present.
465 	 */
466 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
467 		scr_el3 |= SCR_PIEN_BIT;
468 	}
469 
470 	/*
471 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
472 	 */
473 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
474 		scr_el3 |= SCR_GCSEn_BIT;
475 	}
476 
477 	/*
478 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
479 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
480 	 * next mode is Hyp.
481 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
482 	 * same conditions as HVC instructions and when the processor supports
483 	 * ARMv8.6-FGT.
484 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
485 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
486 	 * and when the processor supports ECV.
487 	 */
488 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
489 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
490 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
491 		scr_el3 |= SCR_HCE_BIT;
492 
493 		if (is_feat_fgt_supported()) {
494 			scr_el3 |= SCR_FGTEN_BIT;
495 		}
496 
497 		if (is_feat_ecv_supported()) {
498 			scr_el3 |= SCR_ECVEN_BIT;
499 		}
500 	}
501 
502 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
503 	if (is_feat_twed_supported()) {
504 		/* Set delay in SCR_EL3 */
505 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
506 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
507 				<< SCR_TWEDEL_SHIFT);
508 
509 		/* Enable WFE delay */
510 		scr_el3 |= SCR_TWEDEn_BIT;
511 	}
512 
513 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
514 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
515 	if (is_feat_sel2_supported()) {
516 		scr_el3 |= SCR_EEL2_BIT;
517 	}
518 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
519 
520 	/*
521 	 * Populate EL3 state so that we've the right context
522 	 * before doing ERET
523 	 */
524 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
525 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
526 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
527 
528 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
529 	mdcr_el3 = MDCR_EL3_RESET_VAL;
530 
531 	/* ---------------------------------------------------------------------
532 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
533 	 * Some fields are architecturally UNKNOWN on reset.
534 	 *
535 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
536 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
537 	 *  disabled from all ELs in Secure state.
538 	 *
539 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
540 	 *  privileged debug from S-EL1.
541 	 *
542 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
543 	 *  access to the powerdown debug registers do not trap to EL3.
544 	 *
545 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
546 	 *  debug registers, other than those registers that are controlled by
547 	 *  MDCR_EL3.TDOSA.
548 	 */
549 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
550 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
551 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
552 
553 	/*
554 	 * Configure MDCR_EL3 register as applicable for each world
555 	 * (NS/Secure/Realm) context.
556 	 */
557 	manage_extensions_common(ctx);
558 
559 	/*
560 	 * Store the X0-X7 value from the entrypoint into the context
561 	 * Use memcpy as we are in control of the layout of the structures
562 	 */
563 	gp_regs = get_gpregs_ctx(ctx);
564 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
565 }
566 
567 /*******************************************************************************
568  * Context management library initialization routine. This library is used by
569  * runtime services to share pointers to 'cpu_context' structures for secure
570  * non-secure and realm states. Management of the structures and their associated
571  * memory is not done by the context management library e.g. the PSCI service
572  * manages the cpu context used for entry from and exit to the non-secure state.
573  * The Secure payload dispatcher service manages the context(s) corresponding to
574  * the secure state. It also uses this library to get access to the non-secure
575  * state cpu context pointers.
576  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
577  * which will be used for programming an entry into a lower EL. The same context
578  * will be used to save state upon exception entry from that EL.
579  ******************************************************************************/
580 void __init cm_init(void)
581 {
582 	/*
583 	 * The context management library has only global data to initialize, but
584 	 * that will be done when the BSS is zeroed out.
585 	 */
586 }
587 
588 /*******************************************************************************
589  * This is the high-level function used to initialize the cpu_context 'ctx' for
590  * first use. It performs initializations that are common to all security states
591  * and initializations specific to the security state specified in 'ep'
592  ******************************************************************************/
593 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
594 {
595 	unsigned int security_state;
596 
597 	assert(ctx != NULL);
598 
599 	/*
600 	 * Perform initializations that are common
601 	 * to all security states
602 	 */
603 	setup_context_common(ctx, ep);
604 
605 	security_state = GET_SECURITY_STATE(ep->h.attr);
606 
607 	/* Perform security state specific initializations */
608 	switch (security_state) {
609 	case SECURE:
610 		setup_secure_context(ctx, ep);
611 		break;
612 #if ENABLE_RME
613 	case REALM:
614 		setup_realm_context(ctx, ep);
615 		break;
616 #endif
617 	case NON_SECURE:
618 		setup_ns_context(ctx, ep);
619 		break;
620 	default:
621 		ERROR("Invalid security state\n");
622 		panic();
623 		break;
624 	}
625 }
626 
627 /*******************************************************************************
628  * Enable architecture extensions for EL3 execution. This function only updates
629  * registers in-place which are expected to either never change or be
630  * overwritten by el3_exit.
631  ******************************************************************************/
632 #if IMAGE_BL31
633 void cm_manage_extensions_el3(void)
634 {
635 	if (is_feat_amu_supported()) {
636 		amu_init_el3();
637 	}
638 
639 	if (is_feat_sme_supported()) {
640 		sme_init_el3();
641 	}
642 
643 	pmuv3_init_el3();
644 }
645 #endif /* IMAGE_BL31 */
646 
647 /******************************************************************************
648  * Function to initialise the registers with the RESET values in the context
649  * memory, which are maintained per world.
650  ******************************************************************************/
651 #if IMAGE_BL31
652 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
653 {
654 	/*
655 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
656 	 *
657 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
658 	 *  by Advanced SIMD, floating-point or SVE instructions (if
659 	 *  implemented) do not trap to EL3.
660 	 *
661 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
662 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
663 	 */
664 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
665 
666 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
667 
668 	/*
669 	 * Initialize MPAM3_EL3 to its default reset value
670 	 *
671 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
672 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
673 	 */
674 
675 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
676 }
677 #endif /* IMAGE_BL31 */
678 
679 /*******************************************************************************
680  * Initialise per_world_context for Non-Secure world.
681  * This function enables the architecture extensions, which have same value
682  * across the cores for the non-secure world.
683  ******************************************************************************/
684 #if IMAGE_BL31
685 void manage_extensions_nonsecure_per_world(void)
686 {
687 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
688 
689 	if (is_feat_sme_supported()) {
690 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
691 	}
692 
693 	if (is_feat_sve_supported()) {
694 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
695 	}
696 
697 	if (is_feat_amu_supported()) {
698 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
699 	}
700 
701 	if (is_feat_sys_reg_trace_supported()) {
702 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
703 	}
704 
705 	if (is_feat_mpam_supported()) {
706 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
707 	}
708 }
709 #endif /* IMAGE_BL31 */
710 
711 /*******************************************************************************
712  * Initialise per_world_context for Secure world.
713  * This function enables the architecture extensions, which have same value
714  * across the cores for the secure world.
715  ******************************************************************************/
716 static void manage_extensions_secure_per_world(void)
717 {
718 #if IMAGE_BL31
719 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
720 
721 	if (is_feat_sme_supported()) {
722 
723 		if (ENABLE_SME_FOR_SWD) {
724 		/*
725 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
726 		 * SME, SVE, and FPU/SIMD context properly managed.
727 		 */
728 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
729 		} else {
730 		/*
731 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
732 		 * world can safely use the associated registers.
733 		 */
734 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
735 		}
736 	}
737 	if (is_feat_sve_supported()) {
738 		if (ENABLE_SVE_FOR_SWD) {
739 		/*
740 		 * Enable SVE and FPU in secure context, SPM must ensure
741 		 * that the SVE and FPU register contexts are properly managed.
742 		 */
743 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
744 		} else {
745 		/*
746 		 * Disable SVE and FPU in secure context so non-secure world
747 		 * can safely use them.
748 		 */
749 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
750 		}
751 	}
752 
753 	/* NS can access this but Secure shouldn't */
754 	if (is_feat_sys_reg_trace_supported()) {
755 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
756 	}
757 
758 	has_secure_perworld_init = true;
759 #endif /* IMAGE_BL31 */
760 }
761 
762 /*******************************************************************************
763  * Enable architecture extensions on first entry to Non-secure world only
764  * and disable for secure world.
765  *
766  * NOTE: Arch features which have been provided with the capability of getting
767  * enabled only for non-secure world and being disabled for secure world are
768  * grouped here, as the MDCR_EL3 context value remains same across the worlds.
769  ******************************************************************************/
770 static void manage_extensions_common(cpu_context_t *ctx)
771 {
772 #if IMAGE_BL31
773 	if (is_feat_spe_supported()) {
774 		/*
775 		 * Enable FEAT_SPE for Non-Secure and prohibit for Secure state.
776 		 */
777 		spe_enable(ctx);
778 	}
779 
780 	if (is_feat_trbe_supported()) {
781 		/*
782 		 * Enable FEAT_TRBE for Non-Secure and prohibit for Secure and
783 		 * Realm state.
784 		 */
785 		trbe_enable(ctx);
786 	}
787 
788 	if (is_feat_trf_supported()) {
789 		/*
790 		 * Enable FEAT_TRF for Non-Secure and prohibit for Secure state.
791 		 */
792 		trf_enable(ctx);
793 	}
794 #endif /* IMAGE_BL31 */
795 }
796 
797 /*******************************************************************************
798  * Enable architecture extensions on first entry to Non-secure world.
799  ******************************************************************************/
800 static void manage_extensions_nonsecure(cpu_context_t *ctx)
801 {
802 #if IMAGE_BL31
803 	if (is_feat_amu_supported()) {
804 		amu_enable(ctx);
805 	}
806 
807 	if (is_feat_sme_supported()) {
808 		sme_enable(ctx);
809 	}
810 
811 	if (is_feat_fgt2_supported()) {
812 		fgt2_enable(ctx);
813 	}
814 
815 	if (is_feat_debugv8p9_supported()) {
816 		debugv8p9_extended_bp_wp_enable(ctx);
817 	}
818 
819 	if (is_feat_brbe_supported()) {
820 		brbe_enable(ctx);
821 	}
822 
823 	pmuv3_enable(ctx);
824 #endif /* IMAGE_BL31 */
825 }
826 
827 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
828 static __unused void enable_pauth_el2(void)
829 {
830 	u_register_t hcr_el2 = read_hcr_el2();
831 	/*
832 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
833 	 *  accessing key registers or using pointer authentication instructions
834 	 *  from lower ELs.
835 	 */
836 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
837 
838 	write_hcr_el2(hcr_el2);
839 }
840 
841 #if INIT_UNUSED_NS_EL2
842 /*******************************************************************************
843  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
844  * world when EL2 is empty and unused.
845  ******************************************************************************/
846 static void manage_extensions_nonsecure_el2_unused(void)
847 {
848 #if IMAGE_BL31
849 	if (is_feat_spe_supported()) {
850 		spe_init_el2_unused();
851 	}
852 
853 	if (is_feat_amu_supported()) {
854 		amu_init_el2_unused();
855 	}
856 
857 	if (is_feat_mpam_supported()) {
858 		mpam_init_el2_unused();
859 	}
860 
861 	if (is_feat_trbe_supported()) {
862 		trbe_init_el2_unused();
863 	}
864 
865 	if (is_feat_sys_reg_trace_supported()) {
866 		sys_reg_trace_init_el2_unused();
867 	}
868 
869 	if (is_feat_trf_supported()) {
870 		trf_init_el2_unused();
871 	}
872 
873 	pmuv3_init_el2_unused();
874 
875 	if (is_feat_sve_supported()) {
876 		sve_init_el2_unused();
877 	}
878 
879 	if (is_feat_sme_supported()) {
880 		sme_init_el2_unused();
881 	}
882 
883 #if ENABLE_PAUTH
884 	enable_pauth_el2();
885 #endif /* ENABLE_PAUTH */
886 #endif /* IMAGE_BL31 */
887 }
888 #endif /* INIT_UNUSED_NS_EL2 */
889 
890 /*******************************************************************************
891  * Enable architecture extensions on first entry to Secure world.
892  ******************************************************************************/
893 static void manage_extensions_secure(cpu_context_t *ctx)
894 {
895 #if IMAGE_BL31
896 	if (is_feat_sme_supported()) {
897 		if (ENABLE_SME_FOR_SWD) {
898 		/*
899 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
900 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
901 		 */
902 			sme_init_el3();
903 			sme_enable(ctx);
904 		} else {
905 		/*
906 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
907 		 * world can safely use the associated registers.
908 		 */
909 			sme_disable(ctx);
910 		}
911 	}
912 #endif /* IMAGE_BL31 */
913 }
914 
915 #if !IMAGE_BL1
916 /*******************************************************************************
917  * The following function initializes the cpu_context for a CPU specified by
918  * its `cpu_idx` for first use, and sets the initial entrypoint state as
919  * specified by the entry_point_info structure.
920  ******************************************************************************/
921 void cm_init_context_by_index(unsigned int cpu_idx,
922 			      const entry_point_info_t *ep)
923 {
924 	cpu_context_t *ctx;
925 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
926 	cm_setup_context(ctx, ep);
927 }
928 #endif /* !IMAGE_BL1 */
929 
930 /*******************************************************************************
931  * The following function initializes the cpu_context for the current CPU
932  * for first use, and sets the initial entrypoint state as specified by the
933  * entry_point_info structure.
934  ******************************************************************************/
935 void cm_init_my_context(const entry_point_info_t *ep)
936 {
937 	cpu_context_t *ctx;
938 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
939 	cm_setup_context(ctx, ep);
940 }
941 
942 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
943 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
944 {
945 #if INIT_UNUSED_NS_EL2
946 	u_register_t hcr_el2 = HCR_RESET_VAL;
947 	u_register_t mdcr_el2;
948 	u_register_t scr_el3;
949 
950 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
951 
952 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
953 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
954 		hcr_el2 |= HCR_RW_BIT;
955 	}
956 
957 	write_hcr_el2(hcr_el2);
958 
959 	/*
960 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
961 	 * All fields have architecturally UNKNOWN reset values.
962 	 */
963 	write_cptr_el2(CPTR_EL2_RESET_VAL);
964 
965 	/*
966 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
967 	 * reset and are set to zero except for field(s) listed below.
968 	 *
969 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
970 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
971 	 *
972 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
973 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
974 	 */
975 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
976 
977 	/*
978 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
979 	 * UNKNOWN value.
980 	 */
981 	write_cntvoff_el2(0);
982 
983 	/*
984 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
985 	 * respectively.
986 	 */
987 	write_vpidr_el2(read_midr_el1());
988 	write_vmpidr_el2(read_mpidr_el1());
989 
990 	/*
991 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
992 	 *
993 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
994 	 * translation is disabled, cache maintenance operations depend on the
995 	 * VMID.
996 	 *
997 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
998 	 * disabled.
999 	 */
1000 	write_vttbr_el2(VTTBR_RESET_VAL &
1001 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
1002 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
1003 
1004 	/*
1005 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
1006 	 * Some fields are architecturally UNKNOWN on reset.
1007 	 *
1008 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
1009 	 * register accesses to the Debug ROM registers are not trapped to EL2.
1010 	 *
1011 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
1012 	 * accesses to the powerdown debug registers are not trapped to EL2.
1013 	 *
1014 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
1015 	 * debug registers do not trap to EL2.
1016 	 *
1017 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
1018 	 * EL2.
1019 	 */
1020 	mdcr_el2 = MDCR_EL2_RESET_VAL &
1021 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
1022 		   MDCR_EL2_TDE_BIT);
1023 
1024 	write_mdcr_el2(mdcr_el2);
1025 
1026 	/*
1027 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
1028 	 *
1029 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
1030 	 * EL1 accesses to System registers do not trap to EL2.
1031 	 */
1032 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
1033 
1034 	/*
1035 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
1036 	 * reset.
1037 	 *
1038 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1039 	 * and prevent timer interrupts.
1040 	 */
1041 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1042 
1043 	manage_extensions_nonsecure_el2_unused();
1044 #endif /* INIT_UNUSED_NS_EL2 */
1045 }
1046 
1047 /*******************************************************************************
1048  * Prepare the CPU system registers for first entry into realm, secure, or
1049  * normal world.
1050  *
1051  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1052  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1053  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1054  * For all entries, the EL1 registers are initialized from the cpu_context
1055  ******************************************************************************/
1056 void cm_prepare_el3_exit(uint32_t security_state)
1057 {
1058 	u_register_t sctlr_el2, scr_el3;
1059 	cpu_context_t *ctx = cm_get_context(security_state);
1060 
1061 	assert(ctx != NULL);
1062 
1063 	if (security_state == NON_SECURE) {
1064 		uint64_t el2_implemented = el_implemented(2);
1065 
1066 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1067 						 CTX_SCR_EL3);
1068 
1069 		if (el2_implemented != EL_IMPL_NONE) {
1070 
1071 			/*
1072 			 * If context is not being used for EL2, initialize
1073 			 * HCRX_EL2 with its init value here.
1074 			 */
1075 			if (is_feat_hcx_supported()) {
1076 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1077 			}
1078 
1079 			/*
1080 			 * Initialize Fine-grained trap registers introduced
1081 			 * by FEAT_FGT so all traps are initially disabled when
1082 			 * switching to EL2 or a lower EL, preventing undesired
1083 			 * behavior.
1084 			 */
1085 			if (is_feat_fgt_supported()) {
1086 				/*
1087 				 * Initialize HFG*_EL2 registers with a default
1088 				 * value so legacy systems unaware of FEAT_FGT
1089 				 * do not get trapped due to their lack of
1090 				 * initialization for this feature.
1091 				 */
1092 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1093 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1094 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1095 			}
1096 
1097 			/* Condition to ensure EL2 is being used. */
1098 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1099 				/* Initialize SCTLR_EL2 register with reset value. */
1100 				sctlr_el2 = SCTLR_EL2_RES1;
1101 
1102 				/*
1103 				 * If workaround of errata 764081 for Cortex-A75
1104 				 * is used then set SCTLR_EL2.IESB to enable
1105 				 * Implicit Error Synchronization Barrier.
1106 				 */
1107 				if (errata_a75_764081_applies()) {
1108 					sctlr_el2 |= SCTLR_IESB_BIT;
1109 				}
1110 
1111 				write_sctlr_el2(sctlr_el2);
1112 			} else {
1113 				/*
1114 				 * (scr_el3 & SCR_HCE_BIT==0)
1115 				 * EL2 implemented but unused.
1116 				 */
1117 				init_nonsecure_el2_unused(ctx);
1118 			}
1119 		}
1120 	}
1121 #if (!CTX_INCLUDE_EL2_REGS)
1122 	/* Restore EL1 system registers, only when CTX_INCLUDE_EL2_REGS=0 */
1123 	cm_el1_sysregs_context_restore(security_state);
1124 #endif
1125 	cm_set_next_eret_context(security_state);
1126 }
1127 
1128 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1129 
1130 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1131 {
1132 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1133 	if (is_feat_amu_supported()) {
1134 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1135 	}
1136 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1137 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1138 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1139 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1140 }
1141 
1142 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1143 {
1144 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1145 	if (is_feat_amu_supported()) {
1146 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1147 	}
1148 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1149 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1150 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1151 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1152 }
1153 
1154 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1155 {
1156 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1157 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1158 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1159 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1160 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1161 }
1162 
1163 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1164 {
1165 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1166 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1167 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1168 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1169 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1170 }
1171 
1172 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1173 {
1174 	u_register_t mpam_idr = read_mpamidr_el1();
1175 
1176 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1177 
1178 	/*
1179 	 * The context registers that we intend to save would be part of the
1180 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1181 	 */
1182 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1183 		return;
1184 	}
1185 
1186 	/*
1187 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1188 	 * MPAMIDR_HAS_HCR_BIT == 1.
1189 	 */
1190 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1191 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1192 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1193 
1194 	/*
1195 	 * The number of MPAMVPM registers is implementation defined, their
1196 	 * number is stored in the MPAMIDR_EL1 register.
1197 	 */
1198 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1199 	case 7:
1200 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1201 		__fallthrough;
1202 	case 6:
1203 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1204 		__fallthrough;
1205 	case 5:
1206 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1207 		__fallthrough;
1208 	case 4:
1209 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1210 		__fallthrough;
1211 	case 3:
1212 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1213 		__fallthrough;
1214 	case 2:
1215 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1216 		__fallthrough;
1217 	case 1:
1218 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1219 		break;
1220 	}
1221 }
1222 
1223 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1224 {
1225 	u_register_t mpam_idr = read_mpamidr_el1();
1226 
1227 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1228 
1229 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1230 		return;
1231 	}
1232 
1233 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1234 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1235 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1236 
1237 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1238 	case 7:
1239 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1240 		__fallthrough;
1241 	case 6:
1242 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1243 		__fallthrough;
1244 	case 5:
1245 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1246 		__fallthrough;
1247 	case 4:
1248 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1249 		__fallthrough;
1250 	case 3:
1251 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1252 		__fallthrough;
1253 	case 2:
1254 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1255 		__fallthrough;
1256 	case 1:
1257 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1258 		break;
1259 	}
1260 }
1261 
1262 /* ---------------------------------------------------------------------------
1263  * The following registers are not added:
1264  * ICH_AP0R<n>_EL2
1265  * ICH_AP1R<n>_EL2
1266  * ICH_LR<n>_EL2
1267  *
1268  * NOTE: For a system with S-EL2 present but not enabled, accessing
1269  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1270  * SCR_EL3.NS = 1 before accessing this register.
1271  * ---------------------------------------------------------------------------
1272  */
1273 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx)
1274 {
1275 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1276 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1277 #else
1278 	u_register_t scr_el3 = read_scr_el3();
1279 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1280 	isb();
1281 
1282 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1283 
1284 	write_scr_el3(scr_el3);
1285 	isb();
1286 #endif
1287 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1288 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1289 }
1290 
1291 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx)
1292 {
1293 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1294 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1295 #else
1296 	u_register_t scr_el3 = read_scr_el3();
1297 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1298 	isb();
1299 
1300 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1301 
1302 	write_scr_el3(scr_el3);
1303 	isb();
1304 #endif
1305 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1306 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1307 }
1308 
1309 /* -----------------------------------------------------
1310  * The following registers are not added:
1311  * AMEVCNTVOFF0<n>_EL2
1312  * AMEVCNTVOFF1<n>_EL2
1313  * -----------------------------------------------------
1314  */
1315 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1316 {
1317 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1318 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1319 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1320 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1321 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1322 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1323 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1324 	if (CTX_INCLUDE_AARCH32_REGS) {
1325 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1326 	}
1327 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1328 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1329 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1330 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1331 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1332 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1333 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1334 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1335 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1336 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1337 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1338 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1339 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1340 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1341 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1342 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1343 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1344 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1345 
1346 	write_el2_ctx_sysreg128(ctx, ttbr0_el2, read_ttbr0_el2());
1347 	write_el2_ctx_sysreg128(ctx, vttbr_el2, read_vttbr_el2());
1348 }
1349 
1350 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1351 {
1352 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1353 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1354 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1355 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1356 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1357 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1358 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1359 	if (CTX_INCLUDE_AARCH32_REGS) {
1360 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1361 	}
1362 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1363 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1364 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1365 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1366 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1367 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1368 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1369 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1370 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1371 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1372 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1373 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1374 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1375 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1376 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1377 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1378 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1379 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1380 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1381 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1382 }
1383 
1384 /*******************************************************************************
1385  * Save EL2 sysreg context
1386  ******************************************************************************/
1387 void cm_el2_sysregs_context_save(uint32_t security_state)
1388 {
1389 	cpu_context_t *ctx;
1390 	el2_sysregs_t *el2_sysregs_ctx;
1391 
1392 	ctx = cm_get_context(security_state);
1393 	assert(ctx != NULL);
1394 
1395 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1396 
1397 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1398 	el2_sysregs_context_save_gic(el2_sysregs_ctx);
1399 
1400 	if (is_feat_mte2_supported()) {
1401 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1402 	}
1403 
1404 	if (is_feat_mpam_supported()) {
1405 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1406 	}
1407 
1408 	if (is_feat_fgt_supported()) {
1409 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1410 	}
1411 
1412 	if (is_feat_fgt2_supported()) {
1413 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1414 	}
1415 
1416 	if (is_feat_ecv_v2_supported()) {
1417 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1418 	}
1419 
1420 	if (is_feat_vhe_supported()) {
1421 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1422 					read_contextidr_el2());
1423 		write_el2_ctx_vhe_sysreg128(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1424 	}
1425 
1426 	if (is_feat_ras_supported()) {
1427 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1428 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1429 	}
1430 
1431 	if (is_feat_nv2_supported()) {
1432 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1433 	}
1434 
1435 	if (is_feat_trf_supported()) {
1436 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1437 	}
1438 
1439 	if (is_feat_csv2_2_supported()) {
1440 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1441 					read_scxtnum_el2());
1442 	}
1443 
1444 	if (is_feat_hcx_supported()) {
1445 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1446 	}
1447 
1448 	if (is_feat_tcr2_supported()) {
1449 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1450 	}
1451 
1452 	if (is_feat_sxpie_supported()) {
1453 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1454 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1455 	}
1456 
1457 	if (is_feat_sxpoe_supported()) {
1458 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1459 	}
1460 
1461 	if (is_feat_s2pie_supported()) {
1462 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1463 	}
1464 
1465 	if (is_feat_gcs_supported()) {
1466 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1467 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1468 	}
1469 
1470 	if (is_feat_sctlr2_supported()) {
1471 		write_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2, read_sctlr2_el2());
1472 	}
1473 }
1474 
1475 /*******************************************************************************
1476  * Restore EL2 sysreg context
1477  ******************************************************************************/
1478 void cm_el2_sysregs_context_restore(uint32_t security_state)
1479 {
1480 	cpu_context_t *ctx;
1481 	el2_sysregs_t *el2_sysregs_ctx;
1482 
1483 	ctx = cm_get_context(security_state);
1484 	assert(ctx != NULL);
1485 
1486 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1487 
1488 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1489 	el2_sysregs_context_restore_gic(el2_sysregs_ctx);
1490 
1491 	if (is_feat_mte2_supported()) {
1492 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1493 	}
1494 
1495 	if (is_feat_mpam_supported()) {
1496 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1497 	}
1498 
1499 	if (is_feat_fgt_supported()) {
1500 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1501 	}
1502 
1503 	if (is_feat_fgt2_supported()) {
1504 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1505 	}
1506 
1507 	if (is_feat_ecv_v2_supported()) {
1508 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1509 	}
1510 
1511 	if (is_feat_vhe_supported()) {
1512 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1513 					contextidr_el2));
1514 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1515 	}
1516 
1517 	if (is_feat_ras_supported()) {
1518 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1519 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1520 	}
1521 
1522 	if (is_feat_nv2_supported()) {
1523 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1524 	}
1525 
1526 	if (is_feat_trf_supported()) {
1527 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1528 	}
1529 
1530 	if (is_feat_csv2_2_supported()) {
1531 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1532 					scxtnum_el2));
1533 	}
1534 
1535 	if (is_feat_hcx_supported()) {
1536 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1537 	}
1538 
1539 	if (is_feat_tcr2_supported()) {
1540 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1541 	}
1542 
1543 	if (is_feat_sxpie_supported()) {
1544 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1545 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1546 	}
1547 
1548 	if (is_feat_sxpoe_supported()) {
1549 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1550 	}
1551 
1552 	if (is_feat_s2pie_supported()) {
1553 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1554 	}
1555 
1556 	if (is_feat_gcs_supported()) {
1557 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1558 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1559 	}
1560 
1561 	if (is_feat_sctlr2_supported()) {
1562 		write_sctlr2_el2(read_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2));
1563 	}
1564 }
1565 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1566 
1567 #if IMAGE_BL31
1568 /*********************************************************************************
1569 * This function allows Architecture features asymmetry among cores.
1570 * TF-A assumes that all the cores in the platform has architecture feature parity
1571 * and hence the context is setup on different core (e.g. primary sets up the
1572 * context for secondary cores).This assumption may not be true for systems where
1573 * cores are not conforming to same Arch version or there is CPU Erratum which
1574 * requires certain feature to be be disabled only on a given core.
1575 *
1576 * This function is called on secondary cores to override any disparity in context
1577 * setup by primary, this would be called during warmboot path.
1578 *********************************************************************************/
1579 void cm_handle_asymmetric_features(void)
1580 {
1581 	cpu_context_t *ctx __maybe_unused = cm_get_context(NON_SECURE);
1582 
1583 	assert(ctx != NULL);
1584 
1585 #if ENABLE_SPE_FOR_NS == FEAT_STATE_CHECK_ASYMMETRIC
1586 	if (is_feat_spe_supported()) {
1587 		spe_enable(ctx);
1588 	} else {
1589 		spe_disable(ctx);
1590 	}
1591 #endif
1592 
1593 #if ERRATA_A520_2938996 || ERRATA_X4_2726228
1594 	if (check_if_affected_core() == ERRATA_APPLIES) {
1595 		if (is_feat_trbe_supported()) {
1596 			trbe_disable(ctx);
1597 		}
1598 	}
1599 #endif
1600 
1601 #if ENABLE_FEAT_TCR2 == FEAT_STATE_CHECK_ASYMMETRIC
1602 	el3_state_t *el3_state = get_el3state_ctx(ctx);
1603 	u_register_t spsr = read_ctx_reg(el3_state, CTX_SPSR_EL3);
1604 
1605 	if (is_feat_tcr2_supported() && (GET_RW(spsr) == MODE_RW_64)) {
1606 		tcr2_enable(ctx);
1607 	} else {
1608 		tcr2_disable(ctx);
1609 	}
1610 #endif
1611 
1612 }
1613 #endif
1614 
1615 /*******************************************************************************
1616  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1617  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1618  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1619  * cm_prepare_el3_exit function.
1620  ******************************************************************************/
1621 void cm_prepare_el3_exit_ns(void)
1622 {
1623 #if IMAGE_BL31
1624 	/*
1625 	 * Check and handle Architecture feature asymmetry among cores.
1626 	 *
1627 	 * In warmboot path secondary cores context is initialized on core which
1628 	 * did CPU_ON SMC call, if there is feature asymmetry in these cores handle
1629 	 * it in this function call.
1630 	 * For Symmetric cores this is an empty function.
1631 	 */
1632 	cm_handle_asymmetric_features();
1633 #endif
1634 
1635 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1636 #if ENABLE_ASSERTIONS
1637 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1638 	assert(ctx != NULL);
1639 
1640 	/* Assert that EL2 is used. */
1641 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1642 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1643 			(el_implemented(2U) != EL_IMPL_NONE));
1644 #endif /* ENABLE_ASSERTIONS */
1645 
1646 	/* Restore EL2 sysreg contexts */
1647 	cm_el2_sysregs_context_restore(NON_SECURE);
1648 	cm_set_next_eret_context(NON_SECURE);
1649 #else
1650 	cm_prepare_el3_exit(NON_SECURE);
1651 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1652 }
1653 
1654 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
1655 /*******************************************************************************
1656  * The next set of six functions are used by runtime services to save and restore
1657  * EL1 context on the 'cpu_context' structure for the specified security state.
1658  ******************************************************************************/
1659 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1660 {
1661 	write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1());
1662 	write_el1_ctx_common(ctx, elr_el1, read_elr_el1());
1663 
1664 #if (!ERRATA_SPECULATIVE_AT)
1665 	write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1());
1666 	write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1());
1667 #endif /* (!ERRATA_SPECULATIVE_AT) */
1668 
1669 	write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1());
1670 	write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1());
1671 	write_el1_ctx_common(ctx, sp_el1, read_sp_el1());
1672 	write_el1_ctx_common(ctx, esr_el1, read_esr_el1());
1673 	write_el1_ctx_common(ctx, ttbr0_el1, read_ttbr0_el1());
1674 	write_el1_ctx_common(ctx, ttbr1_el1, read_ttbr1_el1());
1675 	write_el1_ctx_common(ctx, mair_el1, read_mair_el1());
1676 	write_el1_ctx_common(ctx, amair_el1, read_amair_el1());
1677 	write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1());
1678 	write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1());
1679 	write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0());
1680 	write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0());
1681 	write_el1_ctx_common(ctx, par_el1, read_par_el1());
1682 	write_el1_ctx_common(ctx, far_el1, read_far_el1());
1683 	write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1());
1684 	write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1());
1685 	write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1());
1686 	write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1());
1687 	write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1());
1688 	write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1());
1689 
1690 	if (CTX_INCLUDE_AARCH32_REGS) {
1691 		/* Save Aarch32 registers */
1692 		write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt());
1693 		write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und());
1694 		write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq());
1695 		write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq());
1696 		write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2());
1697 		write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2());
1698 	}
1699 
1700 	if (NS_TIMER_SWITCH) {
1701 		/* Save NS Timer registers */
1702 		write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0());
1703 		write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0());
1704 		write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0());
1705 		write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0());
1706 		write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1());
1707 	}
1708 
1709 	if (is_feat_mte2_supported()) {
1710 		write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1());
1711 		write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1());
1712 		write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1());
1713 		write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1());
1714 	}
1715 
1716 	if (is_feat_ras_supported()) {
1717 		write_el1_ctx_ras(ctx, disr_el1, read_disr_el1());
1718 	}
1719 
1720 	if (is_feat_s1pie_supported()) {
1721 		write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1());
1722 		write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1());
1723 	}
1724 
1725 	if (is_feat_s1poe_supported()) {
1726 		write_el1_ctx_s1poe(ctx, por_el1, read_por_el1());
1727 	}
1728 
1729 	if (is_feat_s2poe_supported()) {
1730 		write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1());
1731 	}
1732 
1733 	if (is_feat_tcr2_supported()) {
1734 		write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1());
1735 	}
1736 
1737 	if (is_feat_trf_supported()) {
1738 		write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1());
1739 	}
1740 
1741 	if (is_feat_csv2_2_supported()) {
1742 		write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0());
1743 		write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1());
1744 	}
1745 
1746 	if (is_feat_gcs_supported()) {
1747 		write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1());
1748 		write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1());
1749 		write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1());
1750 		write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0());
1751 	}
1752 
1753 	if (is_feat_the_supported()) {
1754 		write_el1_ctx_the(ctx, rcwmask_el1, read_rcwmask_el1());
1755 		write_el1_ctx_the(ctx, rcwsmask_el1, read_rcwsmask_el1());
1756 	}
1757 
1758 	if (is_feat_sctlr2_supported()) {
1759 		write_el1_ctx_sctlr2(ctx, sctlr2_el1, read_sctlr2_el1());
1760 	}
1761 
1762 }
1763 
1764 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1765 {
1766 	write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1));
1767 	write_elr_el1(read_el1_ctx_common(ctx, elr_el1));
1768 
1769 #if (!ERRATA_SPECULATIVE_AT)
1770 	write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1));
1771 	write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1));
1772 #endif /* (!ERRATA_SPECULATIVE_AT) */
1773 
1774 	write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1));
1775 	write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1));
1776 	write_sp_el1(read_el1_ctx_common(ctx, sp_el1));
1777 	write_esr_el1(read_el1_ctx_common(ctx, esr_el1));
1778 	write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1));
1779 	write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1));
1780 	write_mair_el1(read_el1_ctx_common(ctx, mair_el1));
1781 	write_amair_el1(read_el1_ctx_common(ctx, amair_el1));
1782 	write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1));
1783 	write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1));
1784 	write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0));
1785 	write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0));
1786 	write_par_el1(read_el1_ctx_common(ctx, par_el1));
1787 	write_far_el1(read_el1_ctx_common(ctx, far_el1));
1788 	write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1));
1789 	write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1));
1790 	write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1));
1791 	write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1));
1792 	write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1));
1793 	write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1));
1794 
1795 	if (CTX_INCLUDE_AARCH32_REGS) {
1796 		/* Restore Aarch32 registers */
1797 		write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt));
1798 		write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und));
1799 		write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq));
1800 		write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq));
1801 		write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2));
1802 		write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2));
1803 	}
1804 
1805 	if (NS_TIMER_SWITCH) {
1806 		/* Restore NS Timer registers */
1807 		write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0));
1808 		write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0));
1809 		write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0));
1810 		write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0));
1811 		write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1));
1812 	}
1813 
1814 	if (is_feat_mte2_supported()) {
1815 		write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1));
1816 		write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1));
1817 		write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1));
1818 		write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1));
1819 	}
1820 
1821 	if (is_feat_ras_supported()) {
1822 		write_disr_el1(read_el1_ctx_ras(ctx, disr_el1));
1823 	}
1824 
1825 	if (is_feat_s1pie_supported()) {
1826 		write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1));
1827 		write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1));
1828 	}
1829 
1830 	if (is_feat_s1poe_supported()) {
1831 		write_por_el1(read_el1_ctx_s1poe(ctx, por_el1));
1832 	}
1833 
1834 	if (is_feat_s2poe_supported()) {
1835 		write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1));
1836 	}
1837 
1838 	if (is_feat_tcr2_supported()) {
1839 		write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1));
1840 	}
1841 
1842 	if (is_feat_trf_supported()) {
1843 		write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1));
1844 	}
1845 
1846 	if (is_feat_csv2_2_supported()) {
1847 		write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0));
1848 		write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1));
1849 	}
1850 
1851 	if (is_feat_gcs_supported()) {
1852 		write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1));
1853 		write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1));
1854 		write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1));
1855 		write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0));
1856 	}
1857 
1858 	if (is_feat_the_supported()) {
1859 		write_rcwmask_el1(read_el1_ctx_the(ctx, rcwmask_el1));
1860 		write_rcwsmask_el1(read_el1_ctx_the(ctx, rcwsmask_el1));
1861 	}
1862 
1863 	if (is_feat_sctlr2_supported()) {
1864 		write_sctlr2_el1(read_el1_ctx_sctlr2(ctx, sctlr2_el1));
1865 	}
1866 
1867 }
1868 
1869 /*******************************************************************************
1870  * The next couple of functions are used by runtime services to save and restore
1871  * EL1 context on the 'cpu_context' structure for the specified security state.
1872  ******************************************************************************/
1873 void cm_el1_sysregs_context_save(uint32_t security_state)
1874 {
1875 	cpu_context_t *ctx;
1876 
1877 	ctx = cm_get_context(security_state);
1878 	assert(ctx != NULL);
1879 
1880 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1881 
1882 #if IMAGE_BL31
1883 	if (security_state == SECURE)
1884 		PUBLISH_EVENT(cm_exited_secure_world);
1885 	else
1886 		PUBLISH_EVENT(cm_exited_normal_world);
1887 #endif
1888 }
1889 
1890 void cm_el1_sysregs_context_restore(uint32_t security_state)
1891 {
1892 	cpu_context_t *ctx;
1893 
1894 	ctx = cm_get_context(security_state);
1895 	assert(ctx != NULL);
1896 
1897 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1898 
1899 #if IMAGE_BL31
1900 	if (security_state == SECURE)
1901 		PUBLISH_EVENT(cm_entering_secure_world);
1902 	else
1903 		PUBLISH_EVENT(cm_entering_normal_world);
1904 #endif
1905 }
1906 
1907 #endif /* ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) */
1908 
1909 /*******************************************************************************
1910  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1911  * given security state with the given entrypoint
1912  ******************************************************************************/
1913 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1914 {
1915 	cpu_context_t *ctx;
1916 	el3_state_t *state;
1917 
1918 	ctx = cm_get_context(security_state);
1919 	assert(ctx != NULL);
1920 
1921 	/* Populate EL3 state so that ERET jumps to the correct entry */
1922 	state = get_el3state_ctx(ctx);
1923 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1924 }
1925 
1926 /*******************************************************************************
1927  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1928  * pertaining to the given security state
1929  ******************************************************************************/
1930 void cm_set_elr_spsr_el3(uint32_t security_state,
1931 			uintptr_t entrypoint, uint32_t spsr)
1932 {
1933 	cpu_context_t *ctx;
1934 	el3_state_t *state;
1935 
1936 	ctx = cm_get_context(security_state);
1937 	assert(ctx != NULL);
1938 
1939 	/* Populate EL3 state so that ERET jumps to the correct entry */
1940 	state = get_el3state_ctx(ctx);
1941 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1942 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1943 }
1944 
1945 /*******************************************************************************
1946  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1947  * pertaining to the given security state using the value and bit position
1948  * specified in the parameters. It preserves all other bits.
1949  ******************************************************************************/
1950 void cm_write_scr_el3_bit(uint32_t security_state,
1951 			  uint32_t bit_pos,
1952 			  uint32_t value)
1953 {
1954 	cpu_context_t *ctx;
1955 	el3_state_t *state;
1956 	u_register_t scr_el3;
1957 
1958 	ctx = cm_get_context(security_state);
1959 	assert(ctx != NULL);
1960 
1961 	/* Ensure that the bit position is a valid one */
1962 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1963 
1964 	/* Ensure that the 'value' is only a bit wide */
1965 	assert(value <= 1U);
1966 
1967 	/*
1968 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1969 	 * and set it to its new value.
1970 	 */
1971 	state = get_el3state_ctx(ctx);
1972 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1973 	scr_el3 &= ~(1UL << bit_pos);
1974 	scr_el3 |= (u_register_t)value << bit_pos;
1975 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1976 }
1977 
1978 /*******************************************************************************
1979  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1980  * given security state.
1981  ******************************************************************************/
1982 u_register_t cm_get_scr_el3(uint32_t security_state)
1983 {
1984 	cpu_context_t *ctx;
1985 	el3_state_t *state;
1986 
1987 	ctx = cm_get_context(security_state);
1988 	assert(ctx != NULL);
1989 
1990 	/* Populate EL3 state so that ERET jumps to the correct entry */
1991 	state = get_el3state_ctx(ctx);
1992 	return read_ctx_reg(state, CTX_SCR_EL3);
1993 }
1994 
1995 /*******************************************************************************
1996  * This function is used to program the context that's used for exception
1997  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1998  * the required security state
1999  ******************************************************************************/
2000 void cm_set_next_eret_context(uint32_t security_state)
2001 {
2002 	cpu_context_t *ctx;
2003 
2004 	ctx = cm_get_context(security_state);
2005 	assert(ctx != NULL);
2006 
2007 	cm_set_next_context(ctx);
2008 }
2009