xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision b1bde25ed9b302a2203a928457c91693ed7f91a7)
1 /*
2  * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/cpus/cpu_ops.h>
23 #include <lib/cpus/errata.h>
24 #include <lib/el3_runtime/context_mgmt.h>
25 #include <lib/el3_runtime/cpu_data.h>
26 #include <lib/el3_runtime/pubsub_events.h>
27 #include <lib/extensions/amu.h>
28 #include <lib/extensions/brbe.h>
29 #include <lib/extensions/debug_v8p9.h>
30 #include <lib/extensions/fgt2.h>
31 #include <lib/extensions/mpam.h>
32 #include <lib/extensions/pmuv3.h>
33 #include <lib/extensions/sme.h>
34 #include <lib/extensions/spe.h>
35 #include <lib/extensions/sve.h>
36 #include <lib/extensions/sys_reg_trace.h>
37 #include <lib/extensions/trbe.h>
38 #include <lib/extensions/trf.h>
39 #include <lib/utils.h>
40 
41 #if ENABLE_FEAT_TWED
42 /* Make sure delay value fits within the range(0-15) */
43 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
44 #endif /* ENABLE_FEAT_TWED */
45 
46 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
47 static bool has_secure_perworld_init;
48 
49 static void manage_extensions_common(cpu_context_t *ctx);
50 static void manage_extensions_nonsecure(cpu_context_t *ctx);
51 static void manage_extensions_secure(cpu_context_t *ctx);
52 static void manage_extensions_secure_per_world(void);
53 
54 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
55 {
56 	u_register_t sctlr_elx, actlr_elx;
57 
58 	/*
59 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
60 	 * execution state setting all fields rather than relying on the hw.
61 	 * Some fields have architecturally UNKNOWN reset values and these are
62 	 * set to zero.
63 	 *
64 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
65 	 *
66 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
67 	 * required by PSCI specification)
68 	 */
69 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
70 	if (GET_RW(ep->spsr) == MODE_RW_64) {
71 		sctlr_elx |= SCTLR_EL1_RES1;
72 	} else {
73 		/*
74 		 * If the target execution state is AArch32 then the following
75 		 * fields need to be set.
76 		 *
77 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
78 		 *  instructions are not trapped to EL1.
79 		 *
80 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
81 		 *  instructions are not trapped to EL1.
82 		 *
83 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
84 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
85 		 */
86 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
87 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
88 	}
89 
90 #if ERRATA_A75_764081
91 	/*
92 	 * If workaround of errata 764081 for Cortex-A75 is used then set
93 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
94 	 */
95 	sctlr_elx |= SCTLR_IESB_BIT;
96 #endif
97 
98 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
99 #if (ERRATA_SPECULATIVE_AT)
100 	write_ctx_reg(get_errata_speculative_at_ctx(ctx), CTX_ERRATA_SPEC_AT_SCTLR_EL1, sctlr_elx);
101 #else
102 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), sctlr_el1, sctlr_elx);
103 #endif /* ERRATA_SPECULATIVE_AT */
104 
105 	/*
106 	 * Base the context ACTLR_EL1 on the current value, as it is
107 	 * implementation defined. The context restore process will write
108 	 * the value from the context to the actual register and can cause
109 	 * problems for processor cores that don't expect certain bits to
110 	 * be zero.
111 	 */
112 	actlr_elx = read_actlr_el1();
113 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx);
114 }
115 
116 /******************************************************************************
117  * This function performs initializations that are specific to SECURE state
118  * and updates the cpu context specified by 'ctx'.
119  *****************************************************************************/
120 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
121 {
122 	u_register_t scr_el3;
123 	el3_state_t *state;
124 
125 	state = get_el3state_ctx(ctx);
126 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
127 
128 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
129 	/*
130 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
131 	 * indicated by the interrupt routing model for BL31.
132 	 */
133 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
134 #endif
135 
136 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
137 	if (is_feat_mte2_supported()) {
138 		scr_el3 |= SCR_ATA_BIT;
139 	}
140 
141 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
142 
143 	/*
144 	 * Initialize EL1 context registers unless SPMC is running
145 	 * at S-EL2.
146 	 */
147 #if !SPMD_SPM_AT_SEL2
148 	setup_el1_context(ctx, ep);
149 #endif
150 
151 	manage_extensions_secure(ctx);
152 
153 	/**
154 	 * manage_extensions_secure_per_world api has to be executed once,
155 	 * as the registers getting initialised, maintain constant value across
156 	 * all the cpus for the secure world.
157 	 * Henceforth, this check ensures that the registers are initialised once
158 	 * and avoids re-initialization from multiple cores.
159 	 */
160 	if (!has_secure_perworld_init) {
161 		manage_extensions_secure_per_world();
162 	}
163 
164 }
165 
166 #if ENABLE_RME
167 /******************************************************************************
168  * This function performs initializations that are specific to REALM state
169  * and updates the cpu context specified by 'ctx'.
170  *****************************************************************************/
171 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
172 {
173 	u_register_t scr_el3;
174 	el3_state_t *state;
175 
176 	state = get_el3state_ctx(ctx);
177 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
178 
179 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
180 
181 	/* CSV2 version 2 and above */
182 	if (is_feat_csv2_2_supported()) {
183 		/* Enable access to the SCXTNUM_ELx registers. */
184 		scr_el3 |= SCR_EnSCXT_BIT;
185 	}
186 
187 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
188 }
189 #endif /* ENABLE_RME */
190 
191 /******************************************************************************
192  * This function performs initializations that are specific to NON-SECURE state
193  * and updates the cpu context specified by 'ctx'.
194  *****************************************************************************/
195 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
196 {
197 	u_register_t scr_el3;
198 	el3_state_t *state;
199 
200 	state = get_el3state_ctx(ctx);
201 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
202 
203 	/* SCR_NS: Set the NS bit */
204 	scr_el3 |= SCR_NS_BIT;
205 
206 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
207 	if (is_feat_mte2_supported()) {
208 		scr_el3 |= SCR_ATA_BIT;
209 	}
210 
211 #if !CTX_INCLUDE_PAUTH_REGS
212 	/*
213 	 * Pointer Authentication feature, if present, is always enabled by default
214 	 * for Non secure lower exception levels. We do not have an explicit
215 	 * flag to set it.
216 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
217 	 * exception levels of secure and realm worlds.
218 	 *
219 	 * To prevent the leakage between the worlds during world switch,
220 	 * we enable it only for the non-secure world.
221 	 *
222 	 * If the Secure/realm world wants to use pointer authentication,
223 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
224 	 * it will be enabled globally for all the contexts.
225 	 *
226 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
227 	 *  other than EL3
228 	 *
229 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
230 	 *  than EL3
231 	 */
232 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
233 
234 #endif /* CTX_INCLUDE_PAUTH_REGS */
235 
236 #if HANDLE_EA_EL3_FIRST_NS
237 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
238 	scr_el3 |= SCR_EA_BIT;
239 #endif
240 
241 #if RAS_TRAP_NS_ERR_REC_ACCESS
242 	/*
243 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
244 	 * and RAS ERX registers from EL1 and EL2(from any security state)
245 	 * are trapped to EL3.
246 	 * Set here to trap only for NS EL1/EL2
247 	 *
248 	 */
249 	scr_el3 |= SCR_TERR_BIT;
250 #endif
251 
252 	/* CSV2 version 2 and above */
253 	if (is_feat_csv2_2_supported()) {
254 		/* Enable access to the SCXTNUM_ELx registers. */
255 		scr_el3 |= SCR_EnSCXT_BIT;
256 	}
257 
258 #ifdef IMAGE_BL31
259 	/*
260 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
261 	 *  indicated by the interrupt routing model for BL31.
262 	 */
263 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
264 #endif
265 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
266 
267 	/* Initialize EL1 context registers */
268 	setup_el1_context(ctx, ep);
269 
270 	/* Initialize EL2 context registers */
271 #if CTX_INCLUDE_EL2_REGS
272 
273 	/*
274 	 * Initialize SCTLR_EL2 context register with reset value.
275 	 */
276 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
277 
278 	if (is_feat_hcx_supported()) {
279 		/*
280 		 * Initialize register HCRX_EL2 with its init value.
281 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
282 		 * chance that this can lead to unexpected behavior in lower
283 		 * ELs that have not been updated since the introduction of
284 		 * this feature if not properly initialized, especially when
285 		 * it comes to those bits that enable/disable traps.
286 		 */
287 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
288 			HCRX_EL2_INIT_VAL);
289 	}
290 
291 	if (is_feat_fgt_supported()) {
292 		/*
293 		 * Initialize HFG*_EL2 registers with a default value so legacy
294 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
295 		 * of initialization for this feature.
296 		 */
297 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
298 			HFGITR_EL2_INIT_VAL);
299 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
300 			HFGRTR_EL2_INIT_VAL);
301 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
302 			HFGWTR_EL2_INIT_VAL);
303 	}
304 
305 #endif /* CTX_INCLUDE_EL2_REGS */
306 
307 	manage_extensions_nonsecure(ctx);
308 }
309 
310 /*******************************************************************************
311  * The following function performs initialization of the cpu_context 'ctx'
312  * for first use that is common to all security states, and sets the
313  * initial entrypoint state as specified by the entry_point_info structure.
314  *
315  * The EE and ST attributes are used to configure the endianness and secure
316  * timer availability for the new execution context.
317  ******************************************************************************/
318 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
319 {
320 	u_register_t scr_el3;
321 	u_register_t mdcr_el3;
322 	el3_state_t *state;
323 	gp_regs_t *gp_regs;
324 
325 	state = get_el3state_ctx(ctx);
326 
327 	/* Clear any residual register values from the context */
328 	zeromem(ctx, sizeof(*ctx));
329 
330 	/*
331 	 * The lower-EL context is zeroed so that no stale values leak to a world.
332 	 * It is assumed that an all-zero lower-EL context is good enough for it
333 	 * to boot correctly. However, there are very few registers where this
334 	 * is not true and some values need to be recreated.
335 	 */
336 #if CTX_INCLUDE_EL2_REGS
337 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
338 
339 	/*
340 	 * These bits are set in the gicv3 driver. Losing them (especially the
341 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
342 	 */
343 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
344 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
345 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
346 
347 	/*
348 	 * The actlr_el2 register can be initialized in platform's reset handler
349 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
350 	 */
351 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
352 #endif /* CTX_INCLUDE_EL2_REGS */
353 
354 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
355 	scr_el3 = SCR_RESET_VAL;
356 
357 	/*
358 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
359 	 *  EL2, EL1 and EL0 are not trapped to EL3.
360 	 *
361 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
362 	 *  EL2, EL1 and EL0 are not trapped to EL3.
363 	 *
364 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
365 	 *  both Security states and both Execution states.
366 	 *
367 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
368 	 *  Non-secure memory.
369 	 */
370 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
371 
372 	scr_el3 |= SCR_SIF_BIT;
373 
374 	/*
375 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
376 	 *  Exception level as specified by SPSR.
377 	 */
378 	if (GET_RW(ep->spsr) == MODE_RW_64) {
379 		scr_el3 |= SCR_RW_BIT;
380 	}
381 
382 	/*
383 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
384 	 * Secure timer registers to EL3, from AArch64 state only, if specified
385 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
386 	 * bit always behaves as 1 (i.e. secure physical timer register access
387 	 * is not trapped)
388 	 */
389 	if (EP_GET_ST(ep->h.attr) != 0U) {
390 		scr_el3 |= SCR_ST_BIT;
391 	}
392 
393 	/*
394 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
395 	 * SCR_EL3.HXEn.
396 	 */
397 	if (is_feat_hcx_supported()) {
398 		scr_el3 |= SCR_HXEn_BIT;
399 	}
400 
401 	/*
402 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
403 	 * registers are trapped to EL3.
404 	 */
405 #if ENABLE_FEAT_RNG_TRAP
406 	scr_el3 |= SCR_TRNDR_BIT;
407 #endif
408 
409 #if FAULT_INJECTION_SUPPORT
410 	/* Enable fault injection from lower ELs */
411 	scr_el3 |= SCR_FIEN_BIT;
412 #endif
413 
414 #if CTX_INCLUDE_PAUTH_REGS
415 	/*
416 	 * Enable Pointer Authentication globally for all the worlds.
417 	 *
418 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
419 	 *  other than EL3
420 	 *
421 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
422 	 *  than EL3
423 	 */
424 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
425 #endif /* CTX_INCLUDE_PAUTH_REGS */
426 
427 	/*
428 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
429 	 */
430 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
431 		scr_el3 |= SCR_TCR2EN_BIT;
432 	}
433 
434 	/*
435 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
436 	 * registers for AArch64 if present.
437 	 */
438 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
439 		scr_el3 |= SCR_PIEN_BIT;
440 	}
441 
442 	/*
443 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
444 	 */
445 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
446 		scr_el3 |= SCR_GCSEn_BIT;
447 	}
448 
449 	/*
450 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
451 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
452 	 * next mode is Hyp.
453 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
454 	 * same conditions as HVC instructions and when the processor supports
455 	 * ARMv8.6-FGT.
456 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
457 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
458 	 * and when the processor supports ECV.
459 	 */
460 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
461 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
462 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
463 		scr_el3 |= SCR_HCE_BIT;
464 
465 		if (is_feat_fgt_supported()) {
466 			scr_el3 |= SCR_FGTEN_BIT;
467 		}
468 
469 		if (is_feat_ecv_supported()) {
470 			scr_el3 |= SCR_ECVEN_BIT;
471 		}
472 	}
473 
474 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
475 	if (is_feat_twed_supported()) {
476 		/* Set delay in SCR_EL3 */
477 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
478 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
479 				<< SCR_TWEDEL_SHIFT);
480 
481 		/* Enable WFE delay */
482 		scr_el3 |= SCR_TWEDEn_BIT;
483 	}
484 
485 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
486 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
487 	if (is_feat_sel2_supported()) {
488 		scr_el3 |= SCR_EEL2_BIT;
489 	}
490 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
491 
492 	/*
493 	 * Populate EL3 state so that we've the right context
494 	 * before doing ERET
495 	 */
496 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
497 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
498 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
499 
500 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
501 	mdcr_el3 = MDCR_EL3_RESET_VAL;
502 
503 	/* ---------------------------------------------------------------------
504 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
505 	 * Some fields are architecturally UNKNOWN on reset.
506 	 *
507 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
508 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
509 	 *  disabled from all ELs in Secure state.
510 	 *
511 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
512 	 *  privileged debug from S-EL1.
513 	 *
514 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
515 	 *  access to the powerdown debug registers do not trap to EL3.
516 	 *
517 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
518 	 *  debug registers, other than those registers that are controlled by
519 	 *  MDCR_EL3.TDOSA.
520 	 */
521 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
522 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
523 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
524 
525 	/*
526 	 * Configure MDCR_EL3 register as applicable for each world
527 	 * (NS/Secure/Realm) context.
528 	 */
529 	manage_extensions_common(ctx);
530 
531 	/*
532 	 * Store the X0-X7 value from the entrypoint into the context
533 	 * Use memcpy as we are in control of the layout of the structures
534 	 */
535 	gp_regs = get_gpregs_ctx(ctx);
536 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
537 }
538 
539 /*******************************************************************************
540  * Context management library initialization routine. This library is used by
541  * runtime services to share pointers to 'cpu_context' structures for secure
542  * non-secure and realm states. Management of the structures and their associated
543  * memory is not done by the context management library e.g. the PSCI service
544  * manages the cpu context used for entry from and exit to the non-secure state.
545  * The Secure payload dispatcher service manages the context(s) corresponding to
546  * the secure state. It also uses this library to get access to the non-secure
547  * state cpu context pointers.
548  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
549  * which will be used for programming an entry into a lower EL. The same context
550  * will be used to save state upon exception entry from that EL.
551  ******************************************************************************/
552 void __init cm_init(void)
553 {
554 	/*
555 	 * The context management library has only global data to initialize, but
556 	 * that will be done when the BSS is zeroed out.
557 	 */
558 }
559 
560 /*******************************************************************************
561  * This is the high-level function used to initialize the cpu_context 'ctx' for
562  * first use. It performs initializations that are common to all security states
563  * and initializations specific to the security state specified in 'ep'
564  ******************************************************************************/
565 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
566 {
567 	unsigned int security_state;
568 
569 	assert(ctx != NULL);
570 
571 	/*
572 	 * Perform initializations that are common
573 	 * to all security states
574 	 */
575 	setup_context_common(ctx, ep);
576 
577 	security_state = GET_SECURITY_STATE(ep->h.attr);
578 
579 	/* Perform security state specific initializations */
580 	switch (security_state) {
581 	case SECURE:
582 		setup_secure_context(ctx, ep);
583 		break;
584 #if ENABLE_RME
585 	case REALM:
586 		setup_realm_context(ctx, ep);
587 		break;
588 #endif
589 	case NON_SECURE:
590 		setup_ns_context(ctx, ep);
591 		break;
592 	default:
593 		ERROR("Invalid security state\n");
594 		panic();
595 		break;
596 	}
597 }
598 
599 /*******************************************************************************
600  * Enable architecture extensions for EL3 execution. This function only updates
601  * registers in-place which are expected to either never change or be
602  * overwritten by el3_exit.
603  ******************************************************************************/
604 #if IMAGE_BL31
605 void cm_manage_extensions_el3(void)
606 {
607 	if (is_feat_amu_supported()) {
608 		amu_init_el3();
609 	}
610 
611 	if (is_feat_sme_supported()) {
612 		sme_init_el3();
613 	}
614 
615 	pmuv3_init_el3();
616 }
617 #endif /* IMAGE_BL31 */
618 
619 /******************************************************************************
620  * Function to initialise the registers with the RESET values in the context
621  * memory, which are maintained per world.
622  ******************************************************************************/
623 #if IMAGE_BL31
624 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
625 {
626 	/*
627 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
628 	 *
629 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
630 	 *  by Advanced SIMD, floating-point or SVE instructions (if
631 	 *  implemented) do not trap to EL3.
632 	 *
633 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
634 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
635 	 */
636 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
637 
638 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
639 
640 	/*
641 	 * Initialize MPAM3_EL3 to its default reset value
642 	 *
643 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
644 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
645 	 */
646 
647 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
648 }
649 #endif /* IMAGE_BL31 */
650 
651 /*******************************************************************************
652  * Initialise per_world_context for Non-Secure world.
653  * This function enables the architecture extensions, which have same value
654  * across the cores for the non-secure world.
655  ******************************************************************************/
656 #if IMAGE_BL31
657 void manage_extensions_nonsecure_per_world(void)
658 {
659 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
660 
661 	if (is_feat_sme_supported()) {
662 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
663 	}
664 
665 	if (is_feat_sve_supported()) {
666 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
667 	}
668 
669 	if (is_feat_amu_supported()) {
670 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
671 	}
672 
673 	if (is_feat_sys_reg_trace_supported()) {
674 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
675 	}
676 
677 	if (is_feat_mpam_supported()) {
678 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
679 	}
680 }
681 #endif /* IMAGE_BL31 */
682 
683 /*******************************************************************************
684  * Initialise per_world_context for Secure world.
685  * This function enables the architecture extensions, which have same value
686  * across the cores for the secure world.
687  ******************************************************************************/
688 static void manage_extensions_secure_per_world(void)
689 {
690 #if IMAGE_BL31
691 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
692 
693 	if (is_feat_sme_supported()) {
694 
695 		if (ENABLE_SME_FOR_SWD) {
696 		/*
697 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
698 		 * SME, SVE, and FPU/SIMD context properly managed.
699 		 */
700 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
701 		} else {
702 		/*
703 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
704 		 * world can safely use the associated registers.
705 		 */
706 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
707 		}
708 	}
709 	if (is_feat_sve_supported()) {
710 		if (ENABLE_SVE_FOR_SWD) {
711 		/*
712 		 * Enable SVE and FPU in secure context, SPM must ensure
713 		 * that the SVE and FPU register contexts are properly managed.
714 		 */
715 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
716 		} else {
717 		/*
718 		 * Disable SVE and FPU in secure context so non-secure world
719 		 * can safely use them.
720 		 */
721 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
722 		}
723 	}
724 
725 	/* NS can access this but Secure shouldn't */
726 	if (is_feat_sys_reg_trace_supported()) {
727 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
728 	}
729 
730 	has_secure_perworld_init = true;
731 #endif /* IMAGE_BL31 */
732 }
733 
734 /*******************************************************************************
735  * Enable architecture extensions on first entry to Non-secure world only
736  * and disable for secure world.
737  *
738  * NOTE: Arch features which have been provided with the capability of getting
739  * enabled only for non-secure world and being disabled for secure world are
740  * grouped here, as the MDCR_EL3 context value remains same across the worlds.
741  ******************************************************************************/
742 static void manage_extensions_common(cpu_context_t *ctx)
743 {
744 #if IMAGE_BL31
745 	if (is_feat_spe_supported()) {
746 		/*
747 		 * Enable FEAT_SPE for Non-Secure and prohibit for Secure state.
748 		 */
749 		spe_enable(ctx);
750 	}
751 
752 	if (is_feat_trbe_supported()) {
753 		/*
754 		 * Enable FEAT_TRBE for Non-Secure and prohibit for Secure and
755 		 * Realm state.
756 		 */
757 		trbe_enable(ctx);
758 	}
759 
760 	if (is_feat_trf_supported()) {
761 		/*
762 		 * Enable FEAT_TRF for Non-Secure and prohibit for Secure state.
763 		 */
764 		trf_enable(ctx);
765 	}
766 
767 	if (is_feat_brbe_supported()) {
768 		/*
769 		 * Enable FEAT_BRBE for Non-Secure and prohibit for Secure state.
770 		 */
771 		brbe_enable(ctx);
772 	}
773 #endif /* IMAGE_BL31 */
774 }
775 
776 /*******************************************************************************
777  * Enable architecture extensions on first entry to Non-secure world.
778  ******************************************************************************/
779 static void manage_extensions_nonsecure(cpu_context_t *ctx)
780 {
781 #if IMAGE_BL31
782 	if (is_feat_amu_supported()) {
783 		amu_enable(ctx);
784 	}
785 
786 	if (is_feat_sme_supported()) {
787 		sme_enable(ctx);
788 	}
789 
790 	if (is_feat_fgt2_supported()) {
791 		fgt2_enable(ctx);
792 	}
793 
794 	if (is_feat_debugv8p9_supported()) {
795 		debugv8p9_extended_bp_wp_enable(ctx);
796 	}
797 
798 	pmuv3_enable(ctx);
799 #endif /* IMAGE_BL31 */
800 }
801 
802 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
803 static __unused void enable_pauth_el2(void)
804 {
805 	u_register_t hcr_el2 = read_hcr_el2();
806 	/*
807 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
808 	 *  accessing key registers or using pointer authentication instructions
809 	 *  from lower ELs.
810 	 */
811 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
812 
813 	write_hcr_el2(hcr_el2);
814 }
815 
816 #if INIT_UNUSED_NS_EL2
817 /*******************************************************************************
818  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
819  * world when EL2 is empty and unused.
820  ******************************************************************************/
821 static void manage_extensions_nonsecure_el2_unused(void)
822 {
823 #if IMAGE_BL31
824 	if (is_feat_spe_supported()) {
825 		spe_init_el2_unused();
826 	}
827 
828 	if (is_feat_amu_supported()) {
829 		amu_init_el2_unused();
830 	}
831 
832 	if (is_feat_mpam_supported()) {
833 		mpam_init_el2_unused();
834 	}
835 
836 	if (is_feat_trbe_supported()) {
837 		trbe_init_el2_unused();
838 	}
839 
840 	if (is_feat_sys_reg_trace_supported()) {
841 		sys_reg_trace_init_el2_unused();
842 	}
843 
844 	if (is_feat_trf_supported()) {
845 		trf_init_el2_unused();
846 	}
847 
848 	pmuv3_init_el2_unused();
849 
850 	if (is_feat_sve_supported()) {
851 		sve_init_el2_unused();
852 	}
853 
854 	if (is_feat_sme_supported()) {
855 		sme_init_el2_unused();
856 	}
857 
858 #if ENABLE_PAUTH
859 	enable_pauth_el2();
860 #endif /* ENABLE_PAUTH */
861 #endif /* IMAGE_BL31 */
862 }
863 #endif /* INIT_UNUSED_NS_EL2 */
864 
865 /*******************************************************************************
866  * Enable architecture extensions on first entry to Secure world.
867  ******************************************************************************/
868 static void manage_extensions_secure(cpu_context_t *ctx)
869 {
870 #if IMAGE_BL31
871 	if (is_feat_sme_supported()) {
872 		if (ENABLE_SME_FOR_SWD) {
873 		/*
874 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
875 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
876 		 */
877 			sme_init_el3();
878 			sme_enable(ctx);
879 		} else {
880 		/*
881 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
882 		 * world can safely use the associated registers.
883 		 */
884 			sme_disable(ctx);
885 		}
886 	}
887 #endif /* IMAGE_BL31 */
888 }
889 
890 #if !IMAGE_BL1
891 /*******************************************************************************
892  * The following function initializes the cpu_context for a CPU specified by
893  * its `cpu_idx` for first use, and sets the initial entrypoint state as
894  * specified by the entry_point_info structure.
895  ******************************************************************************/
896 void cm_init_context_by_index(unsigned int cpu_idx,
897 			      const entry_point_info_t *ep)
898 {
899 	cpu_context_t *ctx;
900 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
901 	cm_setup_context(ctx, ep);
902 }
903 #endif /* !IMAGE_BL1 */
904 
905 /*******************************************************************************
906  * The following function initializes the cpu_context for the current CPU
907  * for first use, and sets the initial entrypoint state as specified by the
908  * entry_point_info structure.
909  ******************************************************************************/
910 void cm_init_my_context(const entry_point_info_t *ep)
911 {
912 	cpu_context_t *ctx;
913 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
914 	cm_setup_context(ctx, ep);
915 }
916 
917 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
918 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
919 {
920 #if INIT_UNUSED_NS_EL2
921 	u_register_t hcr_el2 = HCR_RESET_VAL;
922 	u_register_t mdcr_el2;
923 	u_register_t scr_el3;
924 
925 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
926 
927 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
928 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
929 		hcr_el2 |= HCR_RW_BIT;
930 	}
931 
932 	write_hcr_el2(hcr_el2);
933 
934 	/*
935 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
936 	 * All fields have architecturally UNKNOWN reset values.
937 	 */
938 	write_cptr_el2(CPTR_EL2_RESET_VAL);
939 
940 	/*
941 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
942 	 * reset and are set to zero except for field(s) listed below.
943 	 *
944 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
945 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
946 	 *
947 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
948 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
949 	 */
950 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
951 
952 	/*
953 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
954 	 * UNKNOWN value.
955 	 */
956 	write_cntvoff_el2(0);
957 
958 	/*
959 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
960 	 * respectively.
961 	 */
962 	write_vpidr_el2(read_midr_el1());
963 	write_vmpidr_el2(read_mpidr_el1());
964 
965 	/*
966 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
967 	 *
968 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
969 	 * translation is disabled, cache maintenance operations depend on the
970 	 * VMID.
971 	 *
972 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
973 	 * disabled.
974 	 */
975 	write_vttbr_el2(VTTBR_RESET_VAL &
976 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
977 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
978 
979 	/*
980 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
981 	 * Some fields are architecturally UNKNOWN on reset.
982 	 *
983 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
984 	 * register accesses to the Debug ROM registers are not trapped to EL2.
985 	 *
986 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
987 	 * accesses to the powerdown debug registers are not trapped to EL2.
988 	 *
989 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
990 	 * debug registers do not trap to EL2.
991 	 *
992 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
993 	 * EL2.
994 	 */
995 	mdcr_el2 = MDCR_EL2_RESET_VAL &
996 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
997 		   MDCR_EL2_TDE_BIT);
998 
999 	write_mdcr_el2(mdcr_el2);
1000 
1001 	/*
1002 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
1003 	 *
1004 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
1005 	 * EL1 accesses to System registers do not trap to EL2.
1006 	 */
1007 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
1008 
1009 	/*
1010 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
1011 	 * reset.
1012 	 *
1013 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1014 	 * and prevent timer interrupts.
1015 	 */
1016 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1017 
1018 	manage_extensions_nonsecure_el2_unused();
1019 #endif /* INIT_UNUSED_NS_EL2 */
1020 }
1021 
1022 /*******************************************************************************
1023  * Prepare the CPU system registers for first entry into realm, secure, or
1024  * normal world.
1025  *
1026  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1027  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1028  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1029  * For all entries, the EL1 registers are initialized from the cpu_context
1030  ******************************************************************************/
1031 void cm_prepare_el3_exit(uint32_t security_state)
1032 {
1033 	u_register_t sctlr_el2, scr_el3;
1034 	cpu_context_t *ctx = cm_get_context(security_state);
1035 
1036 	assert(ctx != NULL);
1037 
1038 	if (security_state == NON_SECURE) {
1039 		uint64_t el2_implemented = el_implemented(2);
1040 
1041 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1042 						 CTX_SCR_EL3);
1043 
1044 		if (el2_implemented != EL_IMPL_NONE) {
1045 
1046 			/*
1047 			 * If context is not being used for EL2, initialize
1048 			 * HCRX_EL2 with its init value here.
1049 			 */
1050 			if (is_feat_hcx_supported()) {
1051 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1052 			}
1053 
1054 			/*
1055 			 * Initialize Fine-grained trap registers introduced
1056 			 * by FEAT_FGT so all traps are initially disabled when
1057 			 * switching to EL2 or a lower EL, preventing undesired
1058 			 * behavior.
1059 			 */
1060 			if (is_feat_fgt_supported()) {
1061 				/*
1062 				 * Initialize HFG*_EL2 registers with a default
1063 				 * value so legacy systems unaware of FEAT_FGT
1064 				 * do not get trapped due to their lack of
1065 				 * initialization for this feature.
1066 				 */
1067 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1068 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1069 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1070 			}
1071 
1072 			/* Condition to ensure EL2 is being used. */
1073 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1074 				/* Initialize SCTLR_EL2 register with reset value. */
1075 				sctlr_el2 = SCTLR_EL2_RES1;
1076 #if ERRATA_A75_764081
1077 				/*
1078 				 * If workaround of errata 764081 for Cortex-A75
1079 				 * is used then set SCTLR_EL2.IESB to enable
1080 				 * Implicit Error Synchronization Barrier.
1081 				 */
1082 				sctlr_el2 |= SCTLR_IESB_BIT;
1083 #endif
1084 				write_sctlr_el2(sctlr_el2);
1085 			} else {
1086 				/*
1087 				 * (scr_el3 & SCR_HCE_BIT==0)
1088 				 * EL2 implemented but unused.
1089 				 */
1090 				init_nonsecure_el2_unused(ctx);
1091 			}
1092 		}
1093 	}
1094 	cm_el1_sysregs_context_restore(security_state);
1095 	cm_set_next_eret_context(security_state);
1096 }
1097 
1098 #if CTX_INCLUDE_EL2_REGS
1099 
1100 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1101 {
1102 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1103 	if (is_feat_amu_supported()) {
1104 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1105 	}
1106 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1107 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1108 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1109 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1110 }
1111 
1112 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1113 {
1114 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1115 	if (is_feat_amu_supported()) {
1116 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1117 	}
1118 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1119 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1120 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1121 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1122 }
1123 
1124 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1125 {
1126 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1127 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1128 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1129 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1130 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1131 }
1132 
1133 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1134 {
1135 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1136 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1137 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1138 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1139 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1140 }
1141 
1142 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1143 {
1144 	u_register_t mpam_idr = read_mpamidr_el1();
1145 
1146 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1147 
1148 	/*
1149 	 * The context registers that we intend to save would be part of the
1150 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1151 	 */
1152 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1153 		return;
1154 	}
1155 
1156 	/*
1157 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1158 	 * MPAMIDR_HAS_HCR_BIT == 1.
1159 	 */
1160 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1161 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1162 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1163 
1164 	/*
1165 	 * The number of MPAMVPM registers is implementation defined, their
1166 	 * number is stored in the MPAMIDR_EL1 register.
1167 	 */
1168 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1169 	case 7:
1170 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1171 		__fallthrough;
1172 	case 6:
1173 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1174 		__fallthrough;
1175 	case 5:
1176 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1177 		__fallthrough;
1178 	case 4:
1179 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1180 		__fallthrough;
1181 	case 3:
1182 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1183 		__fallthrough;
1184 	case 2:
1185 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1186 		__fallthrough;
1187 	case 1:
1188 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1189 		break;
1190 	}
1191 }
1192 
1193 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1194 {
1195 	u_register_t mpam_idr = read_mpamidr_el1();
1196 
1197 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1198 
1199 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1200 		return;
1201 	}
1202 
1203 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1204 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1205 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1206 
1207 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1208 	case 7:
1209 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1210 		__fallthrough;
1211 	case 6:
1212 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1213 		__fallthrough;
1214 	case 5:
1215 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1216 		__fallthrough;
1217 	case 4:
1218 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1219 		__fallthrough;
1220 	case 3:
1221 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1222 		__fallthrough;
1223 	case 2:
1224 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1225 		__fallthrough;
1226 	case 1:
1227 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1228 		break;
1229 	}
1230 }
1231 
1232 /* ---------------------------------------------------------------------------
1233  * The following registers are not added:
1234  * ICH_AP0R<n>_EL2
1235  * ICH_AP1R<n>_EL2
1236  * ICH_LR<n>_EL2
1237  *
1238  * NOTE: For a system with S-EL2 present but not enabled, accessing
1239  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1240  * SCR_EL3.NS = 1 before accessing this register.
1241  * ---------------------------------------------------------------------------
1242  */
1243 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx)
1244 {
1245 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1246 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1247 #else
1248 	u_register_t scr_el3 = read_scr_el3();
1249 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1250 	isb();
1251 
1252 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1253 
1254 	write_scr_el3(scr_el3);
1255 	isb();
1256 #endif
1257 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1258 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1259 }
1260 
1261 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx)
1262 {
1263 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1264 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1265 #else
1266 	u_register_t scr_el3 = read_scr_el3();
1267 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1268 	isb();
1269 
1270 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1271 
1272 	write_scr_el3(scr_el3);
1273 	isb();
1274 #endif
1275 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1276 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1277 }
1278 
1279 /* -----------------------------------------------------
1280  * The following registers are not added:
1281  * AMEVCNTVOFF0<n>_EL2
1282  * AMEVCNTVOFF1<n>_EL2
1283  * -----------------------------------------------------
1284  */
1285 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1286 {
1287 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1288 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1289 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1290 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1291 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1292 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1293 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1294 	if (CTX_INCLUDE_AARCH32_REGS) {
1295 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1296 	}
1297 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1298 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1299 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1300 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1301 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1302 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1303 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1304 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1305 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1306 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1307 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1308 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1309 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1310 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1311 	write_el2_ctx_common(ctx, ttbr0_el2, read_ttbr0_el2());
1312 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1313 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1314 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1315 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1316 	write_el2_ctx_common(ctx, vttbr_el2, read_vttbr_el2());
1317 }
1318 
1319 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1320 {
1321 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1322 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1323 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1324 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1325 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1326 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1327 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1328 	if (CTX_INCLUDE_AARCH32_REGS) {
1329 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1330 	}
1331 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1332 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1333 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1334 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1335 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1336 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1337 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1338 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1339 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1340 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1341 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1342 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1343 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1344 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1345 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1346 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1347 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1348 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1349 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1350 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1351 }
1352 
1353 /*******************************************************************************
1354  * Save EL2 sysreg context
1355  ******************************************************************************/
1356 void cm_el2_sysregs_context_save(uint32_t security_state)
1357 {
1358 	cpu_context_t *ctx;
1359 	el2_sysregs_t *el2_sysregs_ctx;
1360 
1361 	ctx = cm_get_context(security_state);
1362 	assert(ctx != NULL);
1363 
1364 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1365 
1366 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1367 	el2_sysregs_context_save_gic(el2_sysregs_ctx);
1368 
1369 	if (is_feat_mte2_supported()) {
1370 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1371 	}
1372 
1373 	if (is_feat_mpam_supported()) {
1374 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1375 	}
1376 
1377 	if (is_feat_fgt_supported()) {
1378 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1379 	}
1380 
1381 	if (is_feat_fgt2_supported()) {
1382 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1383 	}
1384 
1385 	if (is_feat_ecv_v2_supported()) {
1386 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1387 	}
1388 
1389 	if (is_feat_vhe_supported()) {
1390 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1391 					read_contextidr_el2());
1392 		write_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1393 	}
1394 
1395 	if (is_feat_ras_supported()) {
1396 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1397 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1398 	}
1399 
1400 	if (is_feat_nv2_supported()) {
1401 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1402 	}
1403 
1404 	if (is_feat_trf_supported()) {
1405 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1406 	}
1407 
1408 	if (is_feat_csv2_2_supported()) {
1409 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1410 					read_scxtnum_el2());
1411 	}
1412 
1413 	if (is_feat_hcx_supported()) {
1414 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1415 	}
1416 
1417 	if (is_feat_tcr2_supported()) {
1418 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1419 	}
1420 
1421 	if (is_feat_sxpie_supported()) {
1422 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1423 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1424 	}
1425 
1426 	if (is_feat_sxpoe_supported()) {
1427 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1428 	}
1429 
1430 	if (is_feat_s2pie_supported()) {
1431 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1432 	}
1433 
1434 	if (is_feat_gcs_supported()) {
1435 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1436 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1437 	}
1438 }
1439 
1440 /*******************************************************************************
1441  * Restore EL2 sysreg context
1442  ******************************************************************************/
1443 void cm_el2_sysregs_context_restore(uint32_t security_state)
1444 {
1445 	cpu_context_t *ctx;
1446 	el2_sysregs_t *el2_sysregs_ctx;
1447 
1448 	ctx = cm_get_context(security_state);
1449 	assert(ctx != NULL);
1450 
1451 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1452 
1453 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1454 	el2_sysregs_context_restore_gic(el2_sysregs_ctx);
1455 
1456 	if (is_feat_mte2_supported()) {
1457 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1458 	}
1459 
1460 	if (is_feat_mpam_supported()) {
1461 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1462 	}
1463 
1464 	if (is_feat_fgt_supported()) {
1465 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1466 	}
1467 
1468 	if (is_feat_fgt2_supported()) {
1469 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1470 	}
1471 
1472 	if (is_feat_ecv_v2_supported()) {
1473 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1474 	}
1475 
1476 	if (is_feat_vhe_supported()) {
1477 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1478 					contextidr_el2));
1479 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1480 	}
1481 
1482 	if (is_feat_ras_supported()) {
1483 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1484 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1485 	}
1486 
1487 	if (is_feat_nv2_supported()) {
1488 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1489 	}
1490 
1491 	if (is_feat_trf_supported()) {
1492 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1493 	}
1494 
1495 	if (is_feat_csv2_2_supported()) {
1496 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1497 					scxtnum_el2));
1498 	}
1499 
1500 	if (is_feat_hcx_supported()) {
1501 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1502 	}
1503 
1504 	if (is_feat_tcr2_supported()) {
1505 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1506 	}
1507 
1508 	if (is_feat_sxpie_supported()) {
1509 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1510 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1511 	}
1512 
1513 	if (is_feat_sxpoe_supported()) {
1514 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1515 	}
1516 
1517 	if (is_feat_s2pie_supported()) {
1518 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1519 	}
1520 
1521 	if (is_feat_gcs_supported()) {
1522 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1523 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1524 	}
1525 }
1526 #endif /* CTX_INCLUDE_EL2_REGS */
1527 
1528 #if IMAGE_BL31
1529 /*********************************************************************************
1530 * This function allows Architecture features asymmetry among cores.
1531 * TF-A assumes that all the cores in the platform has architecture feature parity
1532 * and hence the context is setup on different core (e.g. primary sets up the
1533 * context for secondary cores).This assumption may not be true for systems where
1534 * cores are not conforming to same Arch version or there is CPU Erratum which
1535 * requires certain feature to be be disabled only on a given core.
1536 *
1537 * This function is called on secondary cores to override any disparity in context
1538 * setup by primary, this would be called during warmboot path.
1539 *********************************************************************************/
1540 void cm_handle_asymmetric_features(void)
1541 {
1542 #if ENABLE_SPE_FOR_NS == FEAT_STATE_CHECK_ASYMMETRIC
1543 	cpu_context_t *spe_ctx = cm_get_context(NON_SECURE);
1544 
1545 	assert(spe_ctx != NULL);
1546 
1547 	if (is_feat_spe_supported()) {
1548 		spe_enable(spe_ctx);
1549 	} else {
1550 		spe_disable(spe_ctx);
1551 	}
1552 #endif
1553 #if ERRATA_A520_2938996 || ERRATA_X4_2726228
1554 	cpu_context_t *trbe_ctx = cm_get_context(NON_SECURE);
1555 
1556 	assert(trbe_ctx != NULL);
1557 
1558 	if (check_if_affected_core() == ERRATA_APPLIES) {
1559 		if (is_feat_trbe_supported()) {
1560 			trbe_disable(trbe_ctx);
1561 		}
1562 	}
1563 #endif
1564 }
1565 #endif
1566 
1567 /*******************************************************************************
1568  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1569  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1570  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1571  * cm_prepare_el3_exit function.
1572  ******************************************************************************/
1573 void cm_prepare_el3_exit_ns(void)
1574 {
1575 #if IMAGE_BL31
1576 	/*
1577 	 * Check and handle Architecture feature asymmetry among cores.
1578 	 *
1579 	 * In warmboot path secondary cores context is initialized on core which
1580 	 * did CPU_ON SMC call, if there is feature asymmetry in these cores handle
1581 	 * it in this function call.
1582 	 * For Symmetric cores this is an empty function.
1583 	 */
1584 	cm_handle_asymmetric_features();
1585 #endif
1586 
1587 #if CTX_INCLUDE_EL2_REGS
1588 #if ENABLE_ASSERTIONS
1589 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1590 	assert(ctx != NULL);
1591 
1592 	/* Assert that EL2 is used. */
1593 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1594 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1595 			(el_implemented(2U) != EL_IMPL_NONE));
1596 #endif /* ENABLE_ASSERTIONS */
1597 
1598 	/* Restore EL2 and EL1 sysreg contexts */
1599 	cm_el2_sysregs_context_restore(NON_SECURE);
1600 	cm_el1_sysregs_context_restore(NON_SECURE);
1601 	cm_set_next_eret_context(NON_SECURE);
1602 #else
1603 	cm_prepare_el3_exit(NON_SECURE);
1604 #endif /* CTX_INCLUDE_EL2_REGS */
1605 }
1606 
1607 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1608 {
1609 	write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1());
1610 	write_el1_ctx_common(ctx, elr_el1, read_elr_el1());
1611 
1612 #if (!ERRATA_SPECULATIVE_AT)
1613 	write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1());
1614 	write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1());
1615 #endif /* (!ERRATA_SPECULATIVE_AT) */
1616 
1617 	write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1());
1618 	write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1());
1619 	write_el1_ctx_common(ctx, sp_el1, read_sp_el1());
1620 	write_el1_ctx_common(ctx, esr_el1, read_esr_el1());
1621 	write_el1_ctx_common(ctx, ttbr0_el1, read_ttbr0_el1());
1622 	write_el1_ctx_common(ctx, ttbr1_el1, read_ttbr1_el1());
1623 	write_el1_ctx_common(ctx, mair_el1, read_mair_el1());
1624 	write_el1_ctx_common(ctx, amair_el1, read_amair_el1());
1625 	write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1());
1626 	write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1());
1627 	write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0());
1628 	write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0());
1629 	write_el1_ctx_common(ctx, par_el1, read_par_el1());
1630 	write_el1_ctx_common(ctx, far_el1, read_far_el1());
1631 	write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1());
1632 	write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1());
1633 	write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1());
1634 	write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1());
1635 	write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1());
1636 	write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1());
1637 
1638 	if (CTX_INCLUDE_AARCH32_REGS) {
1639 		/* Save Aarch32 registers */
1640 		write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt());
1641 		write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und());
1642 		write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq());
1643 		write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq());
1644 		write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2());
1645 		write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2());
1646 	}
1647 
1648 	if (NS_TIMER_SWITCH) {
1649 		/* Save NS Timer registers */
1650 		write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0());
1651 		write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0());
1652 		write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0());
1653 		write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0());
1654 		write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1());
1655 	}
1656 
1657 	if (is_feat_mte2_supported()) {
1658 		write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1());
1659 		write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1());
1660 		write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1());
1661 		write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1());
1662 	}
1663 
1664 	if (is_feat_ras_supported()) {
1665 		write_el1_ctx_ras(ctx, disr_el1, read_disr_el1());
1666 	}
1667 
1668 	if (is_feat_s1pie_supported()) {
1669 		write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1());
1670 		write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1());
1671 	}
1672 
1673 	if (is_feat_s1poe_supported()) {
1674 		write_el1_ctx_s1poe(ctx, por_el1, read_por_el1());
1675 	}
1676 
1677 	if (is_feat_s2poe_supported()) {
1678 		write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1());
1679 	}
1680 
1681 	if (is_feat_tcr2_supported()) {
1682 		write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1());
1683 	}
1684 
1685 	if (is_feat_trf_supported()) {
1686 		write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1());
1687 	}
1688 
1689 	if (is_feat_csv2_2_supported()) {
1690 		write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0());
1691 		write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1());
1692 	}
1693 
1694 	if (is_feat_gcs_supported()) {
1695 		write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1());
1696 		write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1());
1697 		write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1());
1698 		write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0());
1699 	}
1700 }
1701 
1702 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1703 {
1704 	write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1));
1705 	write_elr_el1(read_el1_ctx_common(ctx, elr_el1));
1706 
1707 #if (!ERRATA_SPECULATIVE_AT)
1708 	write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1));
1709 	write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1));
1710 #endif /* (!ERRATA_SPECULATIVE_AT) */
1711 
1712 	write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1));
1713 	write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1));
1714 	write_sp_el1(read_el1_ctx_common(ctx, sp_el1));
1715 	write_esr_el1(read_el1_ctx_common(ctx, esr_el1));
1716 	write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1));
1717 	write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1));
1718 	write_mair_el1(read_el1_ctx_common(ctx, mair_el1));
1719 	write_amair_el1(read_el1_ctx_common(ctx, amair_el1));
1720 	write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1));
1721 	write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1));
1722 	write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0));
1723 	write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0));
1724 	write_par_el1(read_el1_ctx_common(ctx, par_el1));
1725 	write_far_el1(read_el1_ctx_common(ctx, far_el1));
1726 	write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1));
1727 	write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1));
1728 	write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1));
1729 	write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1));
1730 	write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1));
1731 	write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1));
1732 
1733 	if (CTX_INCLUDE_AARCH32_REGS) {
1734 		/* Restore Aarch32 registers */
1735 		write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt));
1736 		write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und));
1737 		write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq));
1738 		write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq));
1739 		write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2));
1740 		write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2));
1741 	}
1742 
1743 	if (NS_TIMER_SWITCH) {
1744 		/* Restore NS Timer registers */
1745 		write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0));
1746 		write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0));
1747 		write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0));
1748 		write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0));
1749 		write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1));
1750 	}
1751 
1752 	if (is_feat_mte2_supported()) {
1753 		write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1));
1754 		write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1));
1755 		write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1));
1756 		write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1));
1757 	}
1758 
1759 	if (is_feat_ras_supported()) {
1760 		write_disr_el1(read_el1_ctx_ras(ctx, disr_el1));
1761 	}
1762 
1763 	if (is_feat_s1pie_supported()) {
1764 		write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1));
1765 		write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1));
1766 	}
1767 
1768 	if (is_feat_s1poe_supported()) {
1769 		write_por_el1(read_el1_ctx_s1poe(ctx, por_el1));
1770 	}
1771 
1772 	if (is_feat_s2poe_supported()) {
1773 		write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1));
1774 	}
1775 
1776 	if (is_feat_tcr2_supported()) {
1777 		write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1));
1778 	}
1779 
1780 	if (is_feat_trf_supported()) {
1781 		write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1));
1782 	}
1783 
1784 	if (is_feat_csv2_2_supported()) {
1785 		write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0));
1786 		write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1));
1787 	}
1788 
1789 	if (is_feat_gcs_supported()) {
1790 		write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1));
1791 		write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1));
1792 		write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1));
1793 		write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0));
1794 	}
1795 }
1796 
1797 /*******************************************************************************
1798  * The next four functions are used by runtime services to save and restore
1799  * EL1 context on the 'cpu_context' structure for the specified security
1800  * state.
1801  ******************************************************************************/
1802 void cm_el1_sysregs_context_save(uint32_t security_state)
1803 {
1804 	cpu_context_t *ctx;
1805 
1806 	ctx = cm_get_context(security_state);
1807 	assert(ctx != NULL);
1808 
1809 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1810 
1811 #if IMAGE_BL31
1812 	if (security_state == SECURE)
1813 		PUBLISH_EVENT(cm_exited_secure_world);
1814 	else
1815 		PUBLISH_EVENT(cm_exited_normal_world);
1816 #endif
1817 }
1818 
1819 void cm_el1_sysregs_context_restore(uint32_t security_state)
1820 {
1821 	cpu_context_t *ctx;
1822 
1823 	ctx = cm_get_context(security_state);
1824 	assert(ctx != NULL);
1825 
1826 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1827 
1828 #if IMAGE_BL31
1829 	if (security_state == SECURE)
1830 		PUBLISH_EVENT(cm_entering_secure_world);
1831 	else
1832 		PUBLISH_EVENT(cm_entering_normal_world);
1833 #endif
1834 }
1835 
1836 /*******************************************************************************
1837  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1838  * given security state with the given entrypoint
1839  ******************************************************************************/
1840 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1841 {
1842 	cpu_context_t *ctx;
1843 	el3_state_t *state;
1844 
1845 	ctx = cm_get_context(security_state);
1846 	assert(ctx != NULL);
1847 
1848 	/* Populate EL3 state so that ERET jumps to the correct entry */
1849 	state = get_el3state_ctx(ctx);
1850 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1851 }
1852 
1853 /*******************************************************************************
1854  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1855  * pertaining to the given security state
1856  ******************************************************************************/
1857 void cm_set_elr_spsr_el3(uint32_t security_state,
1858 			uintptr_t entrypoint, uint32_t spsr)
1859 {
1860 	cpu_context_t *ctx;
1861 	el3_state_t *state;
1862 
1863 	ctx = cm_get_context(security_state);
1864 	assert(ctx != NULL);
1865 
1866 	/* Populate EL3 state so that ERET jumps to the correct entry */
1867 	state = get_el3state_ctx(ctx);
1868 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1869 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1870 }
1871 
1872 /*******************************************************************************
1873  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1874  * pertaining to the given security state using the value and bit position
1875  * specified in the parameters. It preserves all other bits.
1876  ******************************************************************************/
1877 void cm_write_scr_el3_bit(uint32_t security_state,
1878 			  uint32_t bit_pos,
1879 			  uint32_t value)
1880 {
1881 	cpu_context_t *ctx;
1882 	el3_state_t *state;
1883 	u_register_t scr_el3;
1884 
1885 	ctx = cm_get_context(security_state);
1886 	assert(ctx != NULL);
1887 
1888 	/* Ensure that the bit position is a valid one */
1889 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1890 
1891 	/* Ensure that the 'value' is only a bit wide */
1892 	assert(value <= 1U);
1893 
1894 	/*
1895 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1896 	 * and set it to its new value.
1897 	 */
1898 	state = get_el3state_ctx(ctx);
1899 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1900 	scr_el3 &= ~(1UL << bit_pos);
1901 	scr_el3 |= (u_register_t)value << bit_pos;
1902 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1903 }
1904 
1905 /*******************************************************************************
1906  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1907  * given security state.
1908  ******************************************************************************/
1909 u_register_t cm_get_scr_el3(uint32_t security_state)
1910 {
1911 	cpu_context_t *ctx;
1912 	el3_state_t *state;
1913 
1914 	ctx = cm_get_context(security_state);
1915 	assert(ctx != NULL);
1916 
1917 	/* Populate EL3 state so that ERET jumps to the correct entry */
1918 	state = get_el3state_ctx(ctx);
1919 	return read_ctx_reg(state, CTX_SCR_EL3);
1920 }
1921 
1922 /*******************************************************************************
1923  * This function is used to program the context that's used for exception
1924  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1925  * the required security state
1926  ******************************************************************************/
1927 void cm_set_next_eret_context(uint32_t security_state)
1928 {
1929 	cpu_context_t *ctx;
1930 
1931 	ctx = cm_get_context(security_state);
1932 	assert(ctx != NULL);
1933 
1934 	cm_set_next_context(ctx);
1935 }
1936