xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision b17fecd6cf23f50346d70ec84f5708c95a2db5f8)
1 /*
2  * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/cpus/cpu_ops.h>
23 #include <lib/cpus/errata.h>
24 #include <lib/el3_runtime/context_mgmt.h>
25 #include <lib/el3_runtime/cpu_data.h>
26 #include <lib/el3_runtime/pubsub_events.h>
27 #include <lib/extensions/amu.h>
28 #include <lib/extensions/brbe.h>
29 #include <lib/extensions/debug_v8p9.h>
30 #include <lib/extensions/fgt2.h>
31 #include <lib/extensions/mpam.h>
32 #include <lib/extensions/pmuv3.h>
33 #include <lib/extensions/sme.h>
34 #include <lib/extensions/spe.h>
35 #include <lib/extensions/sve.h>
36 #include <lib/extensions/sys_reg_trace.h>
37 #include <lib/extensions/tcr2.h>
38 #include <lib/extensions/trbe.h>
39 #include <lib/extensions/trf.h>
40 #include <lib/utils.h>
41 
42 #if ENABLE_FEAT_TWED
43 /* Make sure delay value fits within the range(0-15) */
44 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
45 #endif /* ENABLE_FEAT_TWED */
46 
47 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
48 static bool has_secure_perworld_init;
49 
50 static void manage_extensions_common(cpu_context_t *ctx);
51 static void manage_extensions_nonsecure(cpu_context_t *ctx);
52 static void manage_extensions_secure(cpu_context_t *ctx);
53 static void manage_extensions_secure_per_world(void);
54 
55 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
56 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
57 {
58 	u_register_t sctlr_elx, actlr_elx;
59 
60 	/*
61 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
62 	 * execution state setting all fields rather than relying on the hw.
63 	 * Some fields have architecturally UNKNOWN reset values and these are
64 	 * set to zero.
65 	 *
66 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
67 	 *
68 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
69 	 * required by PSCI specification)
70 	 */
71 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
72 	if (GET_RW(ep->spsr) == MODE_RW_64) {
73 		sctlr_elx |= SCTLR_EL1_RES1;
74 	} else {
75 		/*
76 		 * If the target execution state is AArch32 then the following
77 		 * fields need to be set.
78 		 *
79 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
80 		 *  instructions are not trapped to EL1.
81 		 *
82 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
83 		 *  instructions are not trapped to EL1.
84 		 *
85 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
86 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
87 		 */
88 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
89 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
90 	}
91 
92 	/*
93 	 * If workaround of errata 764081 for Cortex-A75 is used then set
94 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
95 	 */
96 	if (errata_a75_764081_applies()) {
97 		sctlr_elx |= SCTLR_IESB_BIT;
98 	}
99 
100 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
101 	write_ctx_sctlr_el1_reg_errata(ctx, sctlr_elx);
102 
103 	/*
104 	 * Base the context ACTLR_EL1 on the current value, as it is
105 	 * implementation defined. The context restore process will write
106 	 * the value from the context to the actual register and can cause
107 	 * problems for processor cores that don't expect certain bits to
108 	 * be zero.
109 	 */
110 	actlr_elx = read_actlr_el1();
111 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx);
112 }
113 #endif /* (IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)) */
114 
115 /******************************************************************************
116  * This function performs initializations that are specific to SECURE state
117  * and updates the cpu context specified by 'ctx'.
118  *****************************************************************************/
119 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
120 {
121 	u_register_t scr_el3;
122 	el3_state_t *state;
123 
124 	state = get_el3state_ctx(ctx);
125 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
126 
127 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
128 	/*
129 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
130 	 * indicated by the interrupt routing model for BL31.
131 	 */
132 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
133 #endif
134 
135 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
136 	if (is_feat_mte2_supported()) {
137 		scr_el3 |= SCR_ATA_BIT;
138 	}
139 
140 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
141 
142 	/*
143 	 * Initialize EL1 context registers unless SPMC is running
144 	 * at S-EL2.
145 	 */
146 #if (!SPMD_SPM_AT_SEL2)
147 	setup_el1_context(ctx, ep);
148 #endif
149 
150 	manage_extensions_secure(ctx);
151 
152 	/**
153 	 * manage_extensions_secure_per_world api has to be executed once,
154 	 * as the registers getting initialised, maintain constant value across
155 	 * all the cpus for the secure world.
156 	 * Henceforth, this check ensures that the registers are initialised once
157 	 * and avoids re-initialization from multiple cores.
158 	 */
159 	if (!has_secure_perworld_init) {
160 		manage_extensions_secure_per_world();
161 	}
162 }
163 
164 #if ENABLE_RME
165 /******************************************************************************
166  * This function performs initializations that are specific to REALM state
167  * and updates the cpu context specified by 'ctx'.
168  *****************************************************************************/
169 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
170 {
171 	u_register_t scr_el3;
172 	el3_state_t *state;
173 
174 	state = get_el3state_ctx(ctx);
175 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
176 
177 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
178 
179 	/* CSV2 version 2 and above */
180 	if (is_feat_csv2_2_supported()) {
181 		/* Enable access to the SCXTNUM_ELx registers. */
182 		scr_el3 |= SCR_EnSCXT_BIT;
183 	}
184 
185 	if (is_feat_sctlr2_supported()) {
186 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
187 		 * SCTLR2_ELx registers.
188 		 */
189 		scr_el3 |= SCR_SCTLR2En_BIT;
190 	}
191 
192 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
193 }
194 #endif /* ENABLE_RME */
195 
196 /******************************************************************************
197  * This function performs initializations that are specific to NON-SECURE state
198  * and updates the cpu context specified by 'ctx'.
199  *****************************************************************************/
200 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
201 {
202 	u_register_t scr_el3;
203 	el3_state_t *state;
204 
205 	state = get_el3state_ctx(ctx);
206 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
207 
208 	/* SCR_NS: Set the NS bit */
209 	scr_el3 |= SCR_NS_BIT;
210 
211 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
212 	if (is_feat_mte2_supported()) {
213 		scr_el3 |= SCR_ATA_BIT;
214 	}
215 
216 #if !CTX_INCLUDE_PAUTH_REGS
217 	/*
218 	 * Pointer Authentication feature, if present, is always enabled by default
219 	 * for Non secure lower exception levels. We do not have an explicit
220 	 * flag to set it.
221 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
222 	 * exception levels of secure and realm worlds.
223 	 *
224 	 * To prevent the leakage between the worlds during world switch,
225 	 * we enable it only for the non-secure world.
226 	 *
227 	 * If the Secure/realm world wants to use pointer authentication,
228 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
229 	 * it will be enabled globally for all the contexts.
230 	 *
231 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
232 	 *  other than EL3
233 	 *
234 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
235 	 *  than EL3
236 	 */
237 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
238 
239 #endif /* CTX_INCLUDE_PAUTH_REGS */
240 
241 #if HANDLE_EA_EL3_FIRST_NS
242 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
243 	scr_el3 |= SCR_EA_BIT;
244 #endif
245 
246 #if RAS_TRAP_NS_ERR_REC_ACCESS
247 	/*
248 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
249 	 * and RAS ERX registers from EL1 and EL2(from any security state)
250 	 * are trapped to EL3.
251 	 * Set here to trap only for NS EL1/EL2
252 	 *
253 	 */
254 	scr_el3 |= SCR_TERR_BIT;
255 #endif
256 
257 	/* CSV2 version 2 and above */
258 	if (is_feat_csv2_2_supported()) {
259 		/* Enable access to the SCXTNUM_ELx registers. */
260 		scr_el3 |= SCR_EnSCXT_BIT;
261 	}
262 
263 #ifdef IMAGE_BL31
264 	/*
265 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
266 	 *  indicated by the interrupt routing model for BL31.
267 	 */
268 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
269 #endif
270 
271 	if (is_feat_the_supported()) {
272 		/* Set the RCWMASKEn bit in SCR_EL3 to enable access to
273 		 * RCWMASK_EL1 and RCWSMASK_EL1 registers.
274 		 */
275 		scr_el3 |= SCR_RCWMASKEn_BIT;
276 	}
277 
278 	if (is_feat_sctlr2_supported()) {
279 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
280 		 * SCTLR2_ELx registers.
281 		 */
282 		scr_el3 |= SCR_SCTLR2En_BIT;
283 	}
284 
285 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
286 
287 	/* Initialize EL2 context registers */
288 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
289 
290 	/*
291 	 * Initialize SCTLR_EL2 context register with reset value.
292 	 */
293 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
294 
295 	if (is_feat_hcx_supported()) {
296 		/*
297 		 * Initialize register HCRX_EL2 with its init value.
298 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
299 		 * chance that this can lead to unexpected behavior in lower
300 		 * ELs that have not been updated since the introduction of
301 		 * this feature if not properly initialized, especially when
302 		 * it comes to those bits that enable/disable traps.
303 		 */
304 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
305 			HCRX_EL2_INIT_VAL);
306 	}
307 
308 	if (is_feat_fgt_supported()) {
309 		/*
310 		 * Initialize HFG*_EL2 registers with a default value so legacy
311 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
312 		 * of initialization for this feature.
313 		 */
314 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
315 			HFGITR_EL2_INIT_VAL);
316 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
317 			HFGRTR_EL2_INIT_VAL);
318 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
319 			HFGWTR_EL2_INIT_VAL);
320 	}
321 #else
322 	/* Initialize EL1 context registers */
323 	setup_el1_context(ctx, ep);
324 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
325 
326 	manage_extensions_nonsecure(ctx);
327 }
328 
329 /*******************************************************************************
330  * The following function performs initialization of the cpu_context 'ctx'
331  * for first use that is common to all security states, and sets the
332  * initial entrypoint state as specified by the entry_point_info structure.
333  *
334  * The EE and ST attributes are used to configure the endianness and secure
335  * timer availability for the new execution context.
336  ******************************************************************************/
337 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
338 {
339 	u_register_t scr_el3;
340 	u_register_t mdcr_el3;
341 	el3_state_t *state;
342 	gp_regs_t *gp_regs;
343 
344 	state = get_el3state_ctx(ctx);
345 
346 	/* Clear any residual register values from the context */
347 	zeromem(ctx, sizeof(*ctx));
348 
349 	/*
350 	 * The lower-EL context is zeroed so that no stale values leak to a world.
351 	 * It is assumed that an all-zero lower-EL context is good enough for it
352 	 * to boot correctly. However, there are very few registers where this
353 	 * is not true and some values need to be recreated.
354 	 */
355 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
356 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
357 
358 	/*
359 	 * These bits are set in the gicv3 driver. Losing them (especially the
360 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
361 	 */
362 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
363 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
364 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
365 
366 	/*
367 	 * The actlr_el2 register can be initialized in platform's reset handler
368 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
369 	 */
370 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
371 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
372 
373 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
374 	scr_el3 = SCR_RESET_VAL;
375 
376 	/*
377 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
378 	 *  EL2, EL1 and EL0 are not trapped to EL3.
379 	 *
380 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
381 	 *  EL2, EL1 and EL0 are not trapped to EL3.
382 	 *
383 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
384 	 *  both Security states and both Execution states.
385 	 *
386 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
387 	 *  Non-secure memory.
388 	 */
389 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
390 
391 	scr_el3 |= SCR_SIF_BIT;
392 
393 	/*
394 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
395 	 *  Exception level as specified by SPSR.
396 	 */
397 	if (GET_RW(ep->spsr) == MODE_RW_64) {
398 		scr_el3 |= SCR_RW_BIT;
399 	}
400 
401 	/*
402 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
403 	 * Secure timer registers to EL3, from AArch64 state only, if specified
404 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
405 	 * bit always behaves as 1 (i.e. secure physical timer register access
406 	 * is not trapped)
407 	 */
408 	if (EP_GET_ST(ep->h.attr) != 0U) {
409 		scr_el3 |= SCR_ST_BIT;
410 	}
411 
412 	/*
413 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
414 	 * SCR_EL3.HXEn.
415 	 */
416 	if (is_feat_hcx_supported()) {
417 		scr_el3 |= SCR_HXEn_BIT;
418 	}
419 
420 	/*
421 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
422 	 * registers are trapped to EL3.
423 	 */
424 #if ENABLE_FEAT_RNG_TRAP
425 	scr_el3 |= SCR_TRNDR_BIT;
426 #endif
427 
428 #if FAULT_INJECTION_SUPPORT
429 	/* Enable fault injection from lower ELs */
430 	scr_el3 |= SCR_FIEN_BIT;
431 #endif
432 
433 #if CTX_INCLUDE_PAUTH_REGS
434 	/*
435 	 * Enable Pointer Authentication globally for all the worlds.
436 	 *
437 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
438 	 *  other than EL3
439 	 *
440 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
441 	 *  than EL3
442 	 */
443 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
444 #endif /* CTX_INCLUDE_PAUTH_REGS */
445 
446 	/*
447 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
448 	 */
449 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
450 		scr_el3 |= SCR_TCR2EN_BIT;
451 	}
452 
453 	/*
454 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
455 	 * registers for AArch64 if present.
456 	 */
457 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
458 		scr_el3 |= SCR_PIEN_BIT;
459 	}
460 
461 	/*
462 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
463 	 */
464 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
465 		scr_el3 |= SCR_GCSEn_BIT;
466 	}
467 
468 	/*
469 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
470 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
471 	 * next mode is Hyp.
472 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
473 	 * same conditions as HVC instructions and when the processor supports
474 	 * ARMv8.6-FGT.
475 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
476 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
477 	 * and when the processor supports ECV.
478 	 */
479 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
480 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
481 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
482 		scr_el3 |= SCR_HCE_BIT;
483 
484 		if (is_feat_fgt_supported()) {
485 			scr_el3 |= SCR_FGTEN_BIT;
486 		}
487 
488 		if (is_feat_ecv_supported()) {
489 			scr_el3 |= SCR_ECVEN_BIT;
490 		}
491 	}
492 
493 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
494 	if (is_feat_twed_supported()) {
495 		/* Set delay in SCR_EL3 */
496 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
497 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
498 				<< SCR_TWEDEL_SHIFT);
499 
500 		/* Enable WFE delay */
501 		scr_el3 |= SCR_TWEDEn_BIT;
502 	}
503 
504 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
505 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
506 	if (is_feat_sel2_supported()) {
507 		scr_el3 |= SCR_EEL2_BIT;
508 	}
509 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
510 
511 	/*
512 	 * Populate EL3 state so that we've the right context
513 	 * before doing ERET
514 	 */
515 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
516 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
517 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
518 
519 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
520 	mdcr_el3 = MDCR_EL3_RESET_VAL;
521 
522 	/* ---------------------------------------------------------------------
523 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
524 	 * Some fields are architecturally UNKNOWN on reset.
525 	 *
526 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
527 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
528 	 *  disabled from all ELs in Secure state.
529 	 *
530 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
531 	 *  privileged debug from S-EL1.
532 	 *
533 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
534 	 *  access to the powerdown debug registers do not trap to EL3.
535 	 *
536 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
537 	 *  debug registers, other than those registers that are controlled by
538 	 *  MDCR_EL3.TDOSA.
539 	 */
540 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
541 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
542 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
543 
544 	/*
545 	 * Configure MDCR_EL3 register as applicable for each world
546 	 * (NS/Secure/Realm) context.
547 	 */
548 	manage_extensions_common(ctx);
549 
550 	/*
551 	 * Store the X0-X7 value from the entrypoint into the context
552 	 * Use memcpy as we are in control of the layout of the structures
553 	 */
554 	gp_regs = get_gpregs_ctx(ctx);
555 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
556 }
557 
558 /*******************************************************************************
559  * Context management library initialization routine. This library is used by
560  * runtime services to share pointers to 'cpu_context' structures for secure
561  * non-secure and realm states. Management of the structures and their associated
562  * memory is not done by the context management library e.g. the PSCI service
563  * manages the cpu context used for entry from and exit to the non-secure state.
564  * The Secure payload dispatcher service manages the context(s) corresponding to
565  * the secure state. It also uses this library to get access to the non-secure
566  * state cpu context pointers.
567  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
568  * which will be used for programming an entry into a lower EL. The same context
569  * will be used to save state upon exception entry from that EL.
570  ******************************************************************************/
571 void __init cm_init(void)
572 {
573 	/*
574 	 * The context management library has only global data to initialize, but
575 	 * that will be done when the BSS is zeroed out.
576 	 */
577 }
578 
579 /*******************************************************************************
580  * This is the high-level function used to initialize the cpu_context 'ctx' for
581  * first use. It performs initializations that are common to all security states
582  * and initializations specific to the security state specified in 'ep'
583  ******************************************************************************/
584 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
585 {
586 	unsigned int security_state;
587 
588 	assert(ctx != NULL);
589 
590 	/*
591 	 * Perform initializations that are common
592 	 * to all security states
593 	 */
594 	setup_context_common(ctx, ep);
595 
596 	security_state = GET_SECURITY_STATE(ep->h.attr);
597 
598 	/* Perform security state specific initializations */
599 	switch (security_state) {
600 	case SECURE:
601 		setup_secure_context(ctx, ep);
602 		break;
603 #if ENABLE_RME
604 	case REALM:
605 		setup_realm_context(ctx, ep);
606 		break;
607 #endif
608 	case NON_SECURE:
609 		setup_ns_context(ctx, ep);
610 		break;
611 	default:
612 		ERROR("Invalid security state\n");
613 		panic();
614 		break;
615 	}
616 }
617 
618 /*******************************************************************************
619  * Enable architecture extensions for EL3 execution. This function only updates
620  * registers in-place which are expected to either never change or be
621  * overwritten by el3_exit.
622  ******************************************************************************/
623 #if IMAGE_BL31
624 void cm_manage_extensions_el3(void)
625 {
626 	if (is_feat_amu_supported()) {
627 		amu_init_el3();
628 	}
629 
630 	if (is_feat_sme_supported()) {
631 		sme_init_el3();
632 	}
633 
634 	pmuv3_init_el3();
635 }
636 #endif /* IMAGE_BL31 */
637 
638 /******************************************************************************
639  * Function to initialise the registers with the RESET values in the context
640  * memory, which are maintained per world.
641  ******************************************************************************/
642 #if IMAGE_BL31
643 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
644 {
645 	/*
646 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
647 	 *
648 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
649 	 *  by Advanced SIMD, floating-point or SVE instructions (if
650 	 *  implemented) do not trap to EL3.
651 	 *
652 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
653 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
654 	 */
655 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
656 
657 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
658 
659 	/*
660 	 * Initialize MPAM3_EL3 to its default reset value
661 	 *
662 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
663 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
664 	 */
665 
666 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
667 }
668 #endif /* IMAGE_BL31 */
669 
670 /*******************************************************************************
671  * Initialise per_world_context for Non-Secure world.
672  * This function enables the architecture extensions, which have same value
673  * across the cores for the non-secure world.
674  ******************************************************************************/
675 #if IMAGE_BL31
676 void manage_extensions_nonsecure_per_world(void)
677 {
678 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
679 
680 	if (is_feat_sme_supported()) {
681 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
682 	}
683 
684 	if (is_feat_sve_supported()) {
685 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
686 	}
687 
688 	if (is_feat_amu_supported()) {
689 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
690 	}
691 
692 	if (is_feat_sys_reg_trace_supported()) {
693 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
694 	}
695 
696 	if (is_feat_mpam_supported()) {
697 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
698 	}
699 }
700 #endif /* IMAGE_BL31 */
701 
702 /*******************************************************************************
703  * Initialise per_world_context for Secure world.
704  * This function enables the architecture extensions, which have same value
705  * across the cores for the secure world.
706  ******************************************************************************/
707 static void manage_extensions_secure_per_world(void)
708 {
709 #if IMAGE_BL31
710 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
711 
712 	if (is_feat_sme_supported()) {
713 
714 		if (ENABLE_SME_FOR_SWD) {
715 		/*
716 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
717 		 * SME, SVE, and FPU/SIMD context properly managed.
718 		 */
719 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
720 		} else {
721 		/*
722 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
723 		 * world can safely use the associated registers.
724 		 */
725 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
726 		}
727 	}
728 	if (is_feat_sve_supported()) {
729 		if (ENABLE_SVE_FOR_SWD) {
730 		/*
731 		 * Enable SVE and FPU in secure context, SPM must ensure
732 		 * that the SVE and FPU register contexts are properly managed.
733 		 */
734 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
735 		} else {
736 		/*
737 		 * Disable SVE and FPU in secure context so non-secure world
738 		 * can safely use them.
739 		 */
740 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
741 		}
742 	}
743 
744 	/* NS can access this but Secure shouldn't */
745 	if (is_feat_sys_reg_trace_supported()) {
746 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
747 	}
748 
749 	has_secure_perworld_init = true;
750 #endif /* IMAGE_BL31 */
751 }
752 
753 /*******************************************************************************
754  * Enable architecture extensions on first entry to Non-secure world only
755  * and disable for secure world.
756  *
757  * NOTE: Arch features which have been provided with the capability of getting
758  * enabled only for non-secure world and being disabled for secure world are
759  * grouped here, as the MDCR_EL3 context value remains same across the worlds.
760  ******************************************************************************/
761 static void manage_extensions_common(cpu_context_t *ctx)
762 {
763 #if IMAGE_BL31
764 	if (is_feat_spe_supported()) {
765 		/*
766 		 * Enable FEAT_SPE for Non-Secure and prohibit for Secure state.
767 		 */
768 		spe_enable(ctx);
769 	}
770 
771 	if (is_feat_trbe_supported()) {
772 		/*
773 		 * Enable FEAT_TRBE for Non-Secure and prohibit for Secure and
774 		 * Realm state.
775 		 */
776 		trbe_enable(ctx);
777 	}
778 
779 	if (is_feat_trf_supported()) {
780 		/*
781 		 * Enable FEAT_TRF for Non-Secure and prohibit for Secure state.
782 		 */
783 		trf_enable(ctx);
784 	}
785 #endif /* IMAGE_BL31 */
786 }
787 
788 /*******************************************************************************
789  * Enable architecture extensions on first entry to Non-secure world.
790  ******************************************************************************/
791 static void manage_extensions_nonsecure(cpu_context_t *ctx)
792 {
793 #if IMAGE_BL31
794 	if (is_feat_amu_supported()) {
795 		amu_enable(ctx);
796 	}
797 
798 	if (is_feat_sme_supported()) {
799 		sme_enable(ctx);
800 	}
801 
802 	if (is_feat_fgt2_supported()) {
803 		fgt2_enable(ctx);
804 	}
805 
806 	if (is_feat_debugv8p9_supported()) {
807 		debugv8p9_extended_bp_wp_enable(ctx);
808 	}
809 
810 	if (is_feat_brbe_supported()) {
811 		brbe_enable(ctx);
812 	}
813 
814 	pmuv3_enable(ctx);
815 #endif /* IMAGE_BL31 */
816 }
817 
818 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
819 static __unused void enable_pauth_el2(void)
820 {
821 	u_register_t hcr_el2 = read_hcr_el2();
822 	/*
823 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
824 	 *  accessing key registers or using pointer authentication instructions
825 	 *  from lower ELs.
826 	 */
827 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
828 
829 	write_hcr_el2(hcr_el2);
830 }
831 
832 #if INIT_UNUSED_NS_EL2
833 /*******************************************************************************
834  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
835  * world when EL2 is empty and unused.
836  ******************************************************************************/
837 static void manage_extensions_nonsecure_el2_unused(void)
838 {
839 #if IMAGE_BL31
840 	if (is_feat_spe_supported()) {
841 		spe_init_el2_unused();
842 	}
843 
844 	if (is_feat_amu_supported()) {
845 		amu_init_el2_unused();
846 	}
847 
848 	if (is_feat_mpam_supported()) {
849 		mpam_init_el2_unused();
850 	}
851 
852 	if (is_feat_trbe_supported()) {
853 		trbe_init_el2_unused();
854 	}
855 
856 	if (is_feat_sys_reg_trace_supported()) {
857 		sys_reg_trace_init_el2_unused();
858 	}
859 
860 	if (is_feat_trf_supported()) {
861 		trf_init_el2_unused();
862 	}
863 
864 	pmuv3_init_el2_unused();
865 
866 	if (is_feat_sve_supported()) {
867 		sve_init_el2_unused();
868 	}
869 
870 	if (is_feat_sme_supported()) {
871 		sme_init_el2_unused();
872 	}
873 
874 #if ENABLE_PAUTH
875 	enable_pauth_el2();
876 #endif /* ENABLE_PAUTH */
877 #endif /* IMAGE_BL31 */
878 }
879 #endif /* INIT_UNUSED_NS_EL2 */
880 
881 /*******************************************************************************
882  * Enable architecture extensions on first entry to Secure world.
883  ******************************************************************************/
884 static void manage_extensions_secure(cpu_context_t *ctx)
885 {
886 #if IMAGE_BL31
887 	if (is_feat_sme_supported()) {
888 		if (ENABLE_SME_FOR_SWD) {
889 		/*
890 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
891 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
892 		 */
893 			sme_init_el3();
894 			sme_enable(ctx);
895 		} else {
896 		/*
897 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
898 		 * world can safely use the associated registers.
899 		 */
900 			sme_disable(ctx);
901 		}
902 	}
903 #endif /* IMAGE_BL31 */
904 }
905 
906 #if !IMAGE_BL1
907 /*******************************************************************************
908  * The following function initializes the cpu_context for a CPU specified by
909  * its `cpu_idx` for first use, and sets the initial entrypoint state as
910  * specified by the entry_point_info structure.
911  ******************************************************************************/
912 void cm_init_context_by_index(unsigned int cpu_idx,
913 			      const entry_point_info_t *ep)
914 {
915 	cpu_context_t *ctx;
916 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
917 	cm_setup_context(ctx, ep);
918 }
919 #endif /* !IMAGE_BL1 */
920 
921 /*******************************************************************************
922  * The following function initializes the cpu_context for the current CPU
923  * for first use, and sets the initial entrypoint state as specified by the
924  * entry_point_info structure.
925  ******************************************************************************/
926 void cm_init_my_context(const entry_point_info_t *ep)
927 {
928 	cpu_context_t *ctx;
929 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
930 	cm_setup_context(ctx, ep);
931 }
932 
933 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
934 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
935 {
936 #if INIT_UNUSED_NS_EL2
937 	u_register_t hcr_el2 = HCR_RESET_VAL;
938 	u_register_t mdcr_el2;
939 	u_register_t scr_el3;
940 
941 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
942 
943 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
944 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
945 		hcr_el2 |= HCR_RW_BIT;
946 	}
947 
948 	write_hcr_el2(hcr_el2);
949 
950 	/*
951 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
952 	 * All fields have architecturally UNKNOWN reset values.
953 	 */
954 	write_cptr_el2(CPTR_EL2_RESET_VAL);
955 
956 	/*
957 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
958 	 * reset and are set to zero except for field(s) listed below.
959 	 *
960 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
961 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
962 	 *
963 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
964 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
965 	 */
966 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
967 
968 	/*
969 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
970 	 * UNKNOWN value.
971 	 */
972 	write_cntvoff_el2(0);
973 
974 	/*
975 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
976 	 * respectively.
977 	 */
978 	write_vpidr_el2(read_midr_el1());
979 	write_vmpidr_el2(read_mpidr_el1());
980 
981 	/*
982 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
983 	 *
984 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
985 	 * translation is disabled, cache maintenance operations depend on the
986 	 * VMID.
987 	 *
988 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
989 	 * disabled.
990 	 */
991 	write_vttbr_el2(VTTBR_RESET_VAL &
992 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
993 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
994 
995 	/*
996 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
997 	 * Some fields are architecturally UNKNOWN on reset.
998 	 *
999 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
1000 	 * register accesses to the Debug ROM registers are not trapped to EL2.
1001 	 *
1002 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
1003 	 * accesses to the powerdown debug registers are not trapped to EL2.
1004 	 *
1005 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
1006 	 * debug registers do not trap to EL2.
1007 	 *
1008 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
1009 	 * EL2.
1010 	 */
1011 	mdcr_el2 = MDCR_EL2_RESET_VAL &
1012 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
1013 		   MDCR_EL2_TDE_BIT);
1014 
1015 	write_mdcr_el2(mdcr_el2);
1016 
1017 	/*
1018 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
1019 	 *
1020 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
1021 	 * EL1 accesses to System registers do not trap to EL2.
1022 	 */
1023 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
1024 
1025 	/*
1026 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
1027 	 * reset.
1028 	 *
1029 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1030 	 * and prevent timer interrupts.
1031 	 */
1032 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1033 
1034 	manage_extensions_nonsecure_el2_unused();
1035 #endif /* INIT_UNUSED_NS_EL2 */
1036 }
1037 
1038 /*******************************************************************************
1039  * Prepare the CPU system registers for first entry into realm, secure, or
1040  * normal world.
1041  *
1042  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1043  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1044  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1045  * For all entries, the EL1 registers are initialized from the cpu_context
1046  ******************************************************************************/
1047 void cm_prepare_el3_exit(uint32_t security_state)
1048 {
1049 	u_register_t sctlr_el2, scr_el3;
1050 	cpu_context_t *ctx = cm_get_context(security_state);
1051 
1052 	assert(ctx != NULL);
1053 
1054 	if (security_state == NON_SECURE) {
1055 		uint64_t el2_implemented = el_implemented(2);
1056 
1057 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1058 						 CTX_SCR_EL3);
1059 
1060 		if (el2_implemented != EL_IMPL_NONE) {
1061 
1062 			/*
1063 			 * If context is not being used for EL2, initialize
1064 			 * HCRX_EL2 with its init value here.
1065 			 */
1066 			if (is_feat_hcx_supported()) {
1067 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1068 			}
1069 
1070 			/*
1071 			 * Initialize Fine-grained trap registers introduced
1072 			 * by FEAT_FGT so all traps are initially disabled when
1073 			 * switching to EL2 or a lower EL, preventing undesired
1074 			 * behavior.
1075 			 */
1076 			if (is_feat_fgt_supported()) {
1077 				/*
1078 				 * Initialize HFG*_EL2 registers with a default
1079 				 * value so legacy systems unaware of FEAT_FGT
1080 				 * do not get trapped due to their lack of
1081 				 * initialization for this feature.
1082 				 */
1083 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1084 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1085 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1086 			}
1087 
1088 			/* Condition to ensure EL2 is being used. */
1089 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1090 				/* Initialize SCTLR_EL2 register with reset value. */
1091 				sctlr_el2 = SCTLR_EL2_RES1;
1092 
1093 				/*
1094 				 * If workaround of errata 764081 for Cortex-A75
1095 				 * is used then set SCTLR_EL2.IESB to enable
1096 				 * Implicit Error Synchronization Barrier.
1097 				 */
1098 				if (errata_a75_764081_applies()) {
1099 					sctlr_el2 |= SCTLR_IESB_BIT;
1100 				}
1101 
1102 				write_sctlr_el2(sctlr_el2);
1103 			} else {
1104 				/*
1105 				 * (scr_el3 & SCR_HCE_BIT==0)
1106 				 * EL2 implemented but unused.
1107 				 */
1108 				init_nonsecure_el2_unused(ctx);
1109 			}
1110 		}
1111 	}
1112 #if (!CTX_INCLUDE_EL2_REGS)
1113 	/* Restore EL1 system registers, only when CTX_INCLUDE_EL2_REGS=0 */
1114 	cm_el1_sysregs_context_restore(security_state);
1115 #endif
1116 	cm_set_next_eret_context(security_state);
1117 }
1118 
1119 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1120 
1121 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1122 {
1123 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1124 	if (is_feat_amu_supported()) {
1125 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1126 	}
1127 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1128 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1129 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1130 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1131 }
1132 
1133 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1134 {
1135 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1136 	if (is_feat_amu_supported()) {
1137 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1138 	}
1139 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1140 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1141 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1142 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1143 }
1144 
1145 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1146 {
1147 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1148 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1149 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1150 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1151 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1152 }
1153 
1154 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1155 {
1156 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1157 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1158 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1159 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1160 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1161 }
1162 
1163 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1164 {
1165 	u_register_t mpam_idr = read_mpamidr_el1();
1166 
1167 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1168 
1169 	/*
1170 	 * The context registers that we intend to save would be part of the
1171 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1172 	 */
1173 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1174 		return;
1175 	}
1176 
1177 	/*
1178 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1179 	 * MPAMIDR_HAS_HCR_BIT == 1.
1180 	 */
1181 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1182 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1183 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1184 
1185 	/*
1186 	 * The number of MPAMVPM registers is implementation defined, their
1187 	 * number is stored in the MPAMIDR_EL1 register.
1188 	 */
1189 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1190 	case 7:
1191 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1192 		__fallthrough;
1193 	case 6:
1194 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1195 		__fallthrough;
1196 	case 5:
1197 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1198 		__fallthrough;
1199 	case 4:
1200 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1201 		__fallthrough;
1202 	case 3:
1203 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1204 		__fallthrough;
1205 	case 2:
1206 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1207 		__fallthrough;
1208 	case 1:
1209 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1210 		break;
1211 	}
1212 }
1213 
1214 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1215 {
1216 	u_register_t mpam_idr = read_mpamidr_el1();
1217 
1218 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1219 
1220 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1221 		return;
1222 	}
1223 
1224 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1225 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1226 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1227 
1228 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1229 	case 7:
1230 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1231 		__fallthrough;
1232 	case 6:
1233 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1234 		__fallthrough;
1235 	case 5:
1236 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1237 		__fallthrough;
1238 	case 4:
1239 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1240 		__fallthrough;
1241 	case 3:
1242 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1243 		__fallthrough;
1244 	case 2:
1245 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1246 		__fallthrough;
1247 	case 1:
1248 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1249 		break;
1250 	}
1251 }
1252 
1253 /* ---------------------------------------------------------------------------
1254  * The following registers are not added:
1255  * ICH_AP0R<n>_EL2
1256  * ICH_AP1R<n>_EL2
1257  * ICH_LR<n>_EL2
1258  *
1259  * NOTE: For a system with S-EL2 present but not enabled, accessing
1260  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1261  * SCR_EL3.NS = 1 before accessing this register.
1262  * ---------------------------------------------------------------------------
1263  */
1264 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx)
1265 {
1266 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1267 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1268 #else
1269 	u_register_t scr_el3 = read_scr_el3();
1270 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1271 	isb();
1272 
1273 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1274 
1275 	write_scr_el3(scr_el3);
1276 	isb();
1277 #endif
1278 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1279 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1280 }
1281 
1282 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx)
1283 {
1284 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1285 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1286 #else
1287 	u_register_t scr_el3 = read_scr_el3();
1288 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1289 	isb();
1290 
1291 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1292 
1293 	write_scr_el3(scr_el3);
1294 	isb();
1295 #endif
1296 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1297 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1298 }
1299 
1300 /* -----------------------------------------------------
1301  * The following registers are not added:
1302  * AMEVCNTVOFF0<n>_EL2
1303  * AMEVCNTVOFF1<n>_EL2
1304  * -----------------------------------------------------
1305  */
1306 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1307 {
1308 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1309 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1310 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1311 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1312 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1313 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1314 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1315 	if (CTX_INCLUDE_AARCH32_REGS) {
1316 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1317 	}
1318 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1319 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1320 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1321 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1322 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1323 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1324 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1325 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1326 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1327 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1328 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1329 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1330 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1331 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1332 	write_el2_ctx_common(ctx, ttbr0_el2, read_ttbr0_el2());
1333 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1334 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1335 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1336 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1337 	write_el2_ctx_common(ctx, vttbr_el2, read_vttbr_el2());
1338 }
1339 
1340 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1341 {
1342 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1343 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1344 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1345 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1346 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1347 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1348 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1349 	if (CTX_INCLUDE_AARCH32_REGS) {
1350 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1351 	}
1352 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1353 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1354 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1355 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1356 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1357 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1358 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1359 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1360 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1361 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1362 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1363 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1364 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1365 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1366 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1367 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1368 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1369 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1370 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1371 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1372 }
1373 
1374 /*******************************************************************************
1375  * Save EL2 sysreg context
1376  ******************************************************************************/
1377 void cm_el2_sysregs_context_save(uint32_t security_state)
1378 {
1379 	cpu_context_t *ctx;
1380 	el2_sysregs_t *el2_sysregs_ctx;
1381 
1382 	ctx = cm_get_context(security_state);
1383 	assert(ctx != NULL);
1384 
1385 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1386 
1387 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1388 	el2_sysregs_context_save_gic(el2_sysregs_ctx);
1389 
1390 	if (is_feat_mte2_supported()) {
1391 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1392 	}
1393 
1394 	if (is_feat_mpam_supported()) {
1395 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1396 	}
1397 
1398 	if (is_feat_fgt_supported()) {
1399 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1400 	}
1401 
1402 	if (is_feat_fgt2_supported()) {
1403 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1404 	}
1405 
1406 	if (is_feat_ecv_v2_supported()) {
1407 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1408 	}
1409 
1410 	if (is_feat_vhe_supported()) {
1411 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1412 					read_contextidr_el2());
1413 		write_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1414 	}
1415 
1416 	if (is_feat_ras_supported()) {
1417 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1418 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1419 	}
1420 
1421 	if (is_feat_nv2_supported()) {
1422 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1423 	}
1424 
1425 	if (is_feat_trf_supported()) {
1426 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1427 	}
1428 
1429 	if (is_feat_csv2_2_supported()) {
1430 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1431 					read_scxtnum_el2());
1432 	}
1433 
1434 	if (is_feat_hcx_supported()) {
1435 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1436 	}
1437 
1438 	if (is_feat_tcr2_supported()) {
1439 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1440 	}
1441 
1442 	if (is_feat_sxpie_supported()) {
1443 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1444 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1445 	}
1446 
1447 	if (is_feat_sxpoe_supported()) {
1448 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1449 	}
1450 
1451 	if (is_feat_s2pie_supported()) {
1452 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1453 	}
1454 
1455 	if (is_feat_gcs_supported()) {
1456 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1457 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1458 	}
1459 
1460 	if (is_feat_sctlr2_supported()) {
1461 		write_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2, read_sctlr2_el2());
1462 	}
1463 }
1464 
1465 /*******************************************************************************
1466  * Restore EL2 sysreg context
1467  ******************************************************************************/
1468 void cm_el2_sysregs_context_restore(uint32_t security_state)
1469 {
1470 	cpu_context_t *ctx;
1471 	el2_sysregs_t *el2_sysregs_ctx;
1472 
1473 	ctx = cm_get_context(security_state);
1474 	assert(ctx != NULL);
1475 
1476 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1477 
1478 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1479 	el2_sysregs_context_restore_gic(el2_sysregs_ctx);
1480 
1481 	if (is_feat_mte2_supported()) {
1482 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1483 	}
1484 
1485 	if (is_feat_mpam_supported()) {
1486 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1487 	}
1488 
1489 	if (is_feat_fgt_supported()) {
1490 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1491 	}
1492 
1493 	if (is_feat_fgt2_supported()) {
1494 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1495 	}
1496 
1497 	if (is_feat_ecv_v2_supported()) {
1498 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1499 	}
1500 
1501 	if (is_feat_vhe_supported()) {
1502 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1503 					contextidr_el2));
1504 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1505 	}
1506 
1507 	if (is_feat_ras_supported()) {
1508 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1509 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1510 	}
1511 
1512 	if (is_feat_nv2_supported()) {
1513 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1514 	}
1515 
1516 	if (is_feat_trf_supported()) {
1517 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1518 	}
1519 
1520 	if (is_feat_csv2_2_supported()) {
1521 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1522 					scxtnum_el2));
1523 	}
1524 
1525 	if (is_feat_hcx_supported()) {
1526 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1527 	}
1528 
1529 	if (is_feat_tcr2_supported()) {
1530 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1531 	}
1532 
1533 	if (is_feat_sxpie_supported()) {
1534 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1535 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1536 	}
1537 
1538 	if (is_feat_sxpoe_supported()) {
1539 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1540 	}
1541 
1542 	if (is_feat_s2pie_supported()) {
1543 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1544 	}
1545 
1546 	if (is_feat_gcs_supported()) {
1547 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1548 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1549 	}
1550 
1551 	if (is_feat_sctlr2_supported()) {
1552 		write_sctlr2_el2(read_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2));
1553 	}
1554 }
1555 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1556 
1557 #if IMAGE_BL31
1558 /*********************************************************************************
1559 * This function allows Architecture features asymmetry among cores.
1560 * TF-A assumes that all the cores in the platform has architecture feature parity
1561 * and hence the context is setup on different core (e.g. primary sets up the
1562 * context for secondary cores).This assumption may not be true for systems where
1563 * cores are not conforming to same Arch version or there is CPU Erratum which
1564 * requires certain feature to be be disabled only on a given core.
1565 *
1566 * This function is called on secondary cores to override any disparity in context
1567 * setup by primary, this would be called during warmboot path.
1568 *********************************************************************************/
1569 void cm_handle_asymmetric_features(void)
1570 {
1571 	cpu_context_t *ctx __maybe_unused = cm_get_context(NON_SECURE);
1572 
1573 	assert(ctx != NULL);
1574 
1575 #if ENABLE_SPE_FOR_NS == FEAT_STATE_CHECK_ASYMMETRIC
1576 	if (is_feat_spe_supported()) {
1577 		spe_enable(ctx);
1578 	} else {
1579 		spe_disable(ctx);
1580 	}
1581 #endif
1582 
1583 #if ERRATA_A520_2938996 || ERRATA_X4_2726228
1584 	if (check_if_affected_core() == ERRATA_APPLIES) {
1585 		if (is_feat_trbe_supported()) {
1586 			trbe_disable(ctx);
1587 		}
1588 	}
1589 #endif
1590 
1591 #if ENABLE_FEAT_TCR2 == FEAT_STATE_CHECK_ASYMMETRIC
1592 	el3_state_t *el3_state = get_el3state_ctx(ctx);
1593 	u_register_t spsr = read_ctx_reg(el3_state, CTX_SPSR_EL3);
1594 
1595 	if (is_feat_tcr2_supported() && (GET_RW(spsr) == MODE_RW_64)) {
1596 		tcr2_enable(ctx);
1597 	} else {
1598 		tcr2_disable(ctx);
1599 	}
1600 #endif
1601 
1602 }
1603 #endif
1604 
1605 /*******************************************************************************
1606  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1607  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1608  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1609  * cm_prepare_el3_exit function.
1610  ******************************************************************************/
1611 void cm_prepare_el3_exit_ns(void)
1612 {
1613 #if IMAGE_BL31
1614 	/*
1615 	 * Check and handle Architecture feature asymmetry among cores.
1616 	 *
1617 	 * In warmboot path secondary cores context is initialized on core which
1618 	 * did CPU_ON SMC call, if there is feature asymmetry in these cores handle
1619 	 * it in this function call.
1620 	 * For Symmetric cores this is an empty function.
1621 	 */
1622 	cm_handle_asymmetric_features();
1623 #endif
1624 
1625 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1626 #if ENABLE_ASSERTIONS
1627 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1628 	assert(ctx != NULL);
1629 
1630 	/* Assert that EL2 is used. */
1631 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1632 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1633 			(el_implemented(2U) != EL_IMPL_NONE));
1634 #endif /* ENABLE_ASSERTIONS */
1635 
1636 	/* Restore EL2 sysreg contexts */
1637 	cm_el2_sysregs_context_restore(NON_SECURE);
1638 	cm_set_next_eret_context(NON_SECURE);
1639 #else
1640 	cm_prepare_el3_exit(NON_SECURE);
1641 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1642 }
1643 
1644 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
1645 /*******************************************************************************
1646  * The next set of six functions are used by runtime services to save and restore
1647  * EL1 context on the 'cpu_context' structure for the specified security state.
1648  ******************************************************************************/
1649 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1650 {
1651 	write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1());
1652 	write_el1_ctx_common(ctx, elr_el1, read_elr_el1());
1653 
1654 #if (!ERRATA_SPECULATIVE_AT)
1655 	write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1());
1656 	write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1());
1657 #endif /* (!ERRATA_SPECULATIVE_AT) */
1658 
1659 	write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1());
1660 	write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1());
1661 	write_el1_ctx_common(ctx, sp_el1, read_sp_el1());
1662 	write_el1_ctx_common(ctx, esr_el1, read_esr_el1());
1663 	write_el1_ctx_common(ctx, ttbr0_el1, read_ttbr0_el1());
1664 	write_el1_ctx_common(ctx, ttbr1_el1, read_ttbr1_el1());
1665 	write_el1_ctx_common(ctx, mair_el1, read_mair_el1());
1666 	write_el1_ctx_common(ctx, amair_el1, read_amair_el1());
1667 	write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1());
1668 	write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1());
1669 	write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0());
1670 	write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0());
1671 	write_el1_ctx_common(ctx, par_el1, read_par_el1());
1672 	write_el1_ctx_common(ctx, far_el1, read_far_el1());
1673 	write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1());
1674 	write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1());
1675 	write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1());
1676 	write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1());
1677 	write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1());
1678 	write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1());
1679 
1680 	if (CTX_INCLUDE_AARCH32_REGS) {
1681 		/* Save Aarch32 registers */
1682 		write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt());
1683 		write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und());
1684 		write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq());
1685 		write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq());
1686 		write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2());
1687 		write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2());
1688 	}
1689 
1690 	if (NS_TIMER_SWITCH) {
1691 		/* Save NS Timer registers */
1692 		write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0());
1693 		write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0());
1694 		write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0());
1695 		write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0());
1696 		write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1());
1697 	}
1698 
1699 	if (is_feat_mte2_supported()) {
1700 		write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1());
1701 		write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1());
1702 		write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1());
1703 		write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1());
1704 	}
1705 
1706 	if (is_feat_ras_supported()) {
1707 		write_el1_ctx_ras(ctx, disr_el1, read_disr_el1());
1708 	}
1709 
1710 	if (is_feat_s1pie_supported()) {
1711 		write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1());
1712 		write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1());
1713 	}
1714 
1715 	if (is_feat_s1poe_supported()) {
1716 		write_el1_ctx_s1poe(ctx, por_el1, read_por_el1());
1717 	}
1718 
1719 	if (is_feat_s2poe_supported()) {
1720 		write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1());
1721 	}
1722 
1723 	if (is_feat_tcr2_supported()) {
1724 		write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1());
1725 	}
1726 
1727 	if (is_feat_trf_supported()) {
1728 		write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1());
1729 	}
1730 
1731 	if (is_feat_csv2_2_supported()) {
1732 		write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0());
1733 		write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1());
1734 	}
1735 
1736 	if (is_feat_gcs_supported()) {
1737 		write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1());
1738 		write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1());
1739 		write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1());
1740 		write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0());
1741 	}
1742 
1743 	if (is_feat_the_supported()) {
1744 		write_el1_ctx_the(ctx, rcwmask_el1, read_rcwmask_el1());
1745 		write_el1_ctx_the(ctx, rcwsmask_el1, read_rcwsmask_el1());
1746 	}
1747 
1748 	if (is_feat_sctlr2_supported()) {
1749 		write_el1_ctx_sctlr2(ctx, sctlr2_el1, read_sctlr2_el1());
1750 	}
1751 
1752 }
1753 
1754 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1755 {
1756 	write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1));
1757 	write_elr_el1(read_el1_ctx_common(ctx, elr_el1));
1758 
1759 #if (!ERRATA_SPECULATIVE_AT)
1760 	write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1));
1761 	write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1));
1762 #endif /* (!ERRATA_SPECULATIVE_AT) */
1763 
1764 	write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1));
1765 	write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1));
1766 	write_sp_el1(read_el1_ctx_common(ctx, sp_el1));
1767 	write_esr_el1(read_el1_ctx_common(ctx, esr_el1));
1768 	write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1));
1769 	write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1));
1770 	write_mair_el1(read_el1_ctx_common(ctx, mair_el1));
1771 	write_amair_el1(read_el1_ctx_common(ctx, amair_el1));
1772 	write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1));
1773 	write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1));
1774 	write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0));
1775 	write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0));
1776 	write_par_el1(read_el1_ctx_common(ctx, par_el1));
1777 	write_far_el1(read_el1_ctx_common(ctx, far_el1));
1778 	write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1));
1779 	write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1));
1780 	write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1));
1781 	write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1));
1782 	write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1));
1783 	write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1));
1784 
1785 	if (CTX_INCLUDE_AARCH32_REGS) {
1786 		/* Restore Aarch32 registers */
1787 		write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt));
1788 		write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und));
1789 		write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq));
1790 		write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq));
1791 		write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2));
1792 		write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2));
1793 	}
1794 
1795 	if (NS_TIMER_SWITCH) {
1796 		/* Restore NS Timer registers */
1797 		write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0));
1798 		write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0));
1799 		write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0));
1800 		write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0));
1801 		write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1));
1802 	}
1803 
1804 	if (is_feat_mte2_supported()) {
1805 		write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1));
1806 		write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1));
1807 		write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1));
1808 		write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1));
1809 	}
1810 
1811 	if (is_feat_ras_supported()) {
1812 		write_disr_el1(read_el1_ctx_ras(ctx, disr_el1));
1813 	}
1814 
1815 	if (is_feat_s1pie_supported()) {
1816 		write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1));
1817 		write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1));
1818 	}
1819 
1820 	if (is_feat_s1poe_supported()) {
1821 		write_por_el1(read_el1_ctx_s1poe(ctx, por_el1));
1822 	}
1823 
1824 	if (is_feat_s2poe_supported()) {
1825 		write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1));
1826 	}
1827 
1828 	if (is_feat_tcr2_supported()) {
1829 		write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1));
1830 	}
1831 
1832 	if (is_feat_trf_supported()) {
1833 		write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1));
1834 	}
1835 
1836 	if (is_feat_csv2_2_supported()) {
1837 		write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0));
1838 		write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1));
1839 	}
1840 
1841 	if (is_feat_gcs_supported()) {
1842 		write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1));
1843 		write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1));
1844 		write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1));
1845 		write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0));
1846 	}
1847 
1848 	if (is_feat_the_supported()) {
1849 		write_rcwmask_el1(read_el1_ctx_the(ctx, rcwmask_el1));
1850 		write_rcwsmask_el1(read_el1_ctx_the(ctx, rcwsmask_el1));
1851 	}
1852 
1853 	if (is_feat_sctlr2_supported()) {
1854 		write_sctlr2_el1(read_el1_ctx_sctlr2(ctx, sctlr2_el1));
1855 	}
1856 
1857 }
1858 
1859 /*******************************************************************************
1860  * The next couple of functions are used by runtime services to save and restore
1861  * EL1 context on the 'cpu_context' structure for the specified security state.
1862  ******************************************************************************/
1863 void cm_el1_sysregs_context_save(uint32_t security_state)
1864 {
1865 	cpu_context_t *ctx;
1866 
1867 	ctx = cm_get_context(security_state);
1868 	assert(ctx != NULL);
1869 
1870 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1871 
1872 #if IMAGE_BL31
1873 	if (security_state == SECURE)
1874 		PUBLISH_EVENT(cm_exited_secure_world);
1875 	else
1876 		PUBLISH_EVENT(cm_exited_normal_world);
1877 #endif
1878 }
1879 
1880 void cm_el1_sysregs_context_restore(uint32_t security_state)
1881 {
1882 	cpu_context_t *ctx;
1883 
1884 	ctx = cm_get_context(security_state);
1885 	assert(ctx != NULL);
1886 
1887 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1888 
1889 #if IMAGE_BL31
1890 	if (security_state == SECURE)
1891 		PUBLISH_EVENT(cm_entering_secure_world);
1892 	else
1893 		PUBLISH_EVENT(cm_entering_normal_world);
1894 #endif
1895 }
1896 
1897 #endif /* ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) */
1898 
1899 /*******************************************************************************
1900  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1901  * given security state with the given entrypoint
1902  ******************************************************************************/
1903 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1904 {
1905 	cpu_context_t *ctx;
1906 	el3_state_t *state;
1907 
1908 	ctx = cm_get_context(security_state);
1909 	assert(ctx != NULL);
1910 
1911 	/* Populate EL3 state so that ERET jumps to the correct entry */
1912 	state = get_el3state_ctx(ctx);
1913 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1914 }
1915 
1916 /*******************************************************************************
1917  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1918  * pertaining to the given security state
1919  ******************************************************************************/
1920 void cm_set_elr_spsr_el3(uint32_t security_state,
1921 			uintptr_t entrypoint, uint32_t spsr)
1922 {
1923 	cpu_context_t *ctx;
1924 	el3_state_t *state;
1925 
1926 	ctx = cm_get_context(security_state);
1927 	assert(ctx != NULL);
1928 
1929 	/* Populate EL3 state so that ERET jumps to the correct entry */
1930 	state = get_el3state_ctx(ctx);
1931 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1932 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1933 }
1934 
1935 /*******************************************************************************
1936  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1937  * pertaining to the given security state using the value and bit position
1938  * specified in the parameters. It preserves all other bits.
1939  ******************************************************************************/
1940 void cm_write_scr_el3_bit(uint32_t security_state,
1941 			  uint32_t bit_pos,
1942 			  uint32_t value)
1943 {
1944 	cpu_context_t *ctx;
1945 	el3_state_t *state;
1946 	u_register_t scr_el3;
1947 
1948 	ctx = cm_get_context(security_state);
1949 	assert(ctx != NULL);
1950 
1951 	/* Ensure that the bit position is a valid one */
1952 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1953 
1954 	/* Ensure that the 'value' is only a bit wide */
1955 	assert(value <= 1U);
1956 
1957 	/*
1958 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1959 	 * and set it to its new value.
1960 	 */
1961 	state = get_el3state_ctx(ctx);
1962 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1963 	scr_el3 &= ~(1UL << bit_pos);
1964 	scr_el3 |= (u_register_t)value << bit_pos;
1965 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1966 }
1967 
1968 /*******************************************************************************
1969  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1970  * given security state.
1971  ******************************************************************************/
1972 u_register_t cm_get_scr_el3(uint32_t security_state)
1973 {
1974 	cpu_context_t *ctx;
1975 	el3_state_t *state;
1976 
1977 	ctx = cm_get_context(security_state);
1978 	assert(ctx != NULL);
1979 
1980 	/* Populate EL3 state so that ERET jumps to the correct entry */
1981 	state = get_el3state_ctx(ctx);
1982 	return read_ctx_reg(state, CTX_SCR_EL3);
1983 }
1984 
1985 /*******************************************************************************
1986  * This function is used to program the context that's used for exception
1987  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1988  * the required security state
1989  ******************************************************************************/
1990 void cm_set_next_eret_context(uint32_t security_state)
1991 {
1992 	cpu_context_t *ctx;
1993 
1994 	ctx = cm_get_context(security_state);
1995 	assert(ctx != NULL);
1996 
1997 	cm_set_next_context(ctx);
1998 }
1999