xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision b0b7609edeb77f38749415361846eb28e46d6456)
1 /*
2  * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/cpus/cpu_ops.h>
23 #include <lib/cpus/errata.h>
24 #include <lib/el3_runtime/context_mgmt.h>
25 #include <lib/el3_runtime/cpu_data.h>
26 #include <lib/el3_runtime/pubsub_events.h>
27 #include <lib/extensions/amu.h>
28 #include <lib/extensions/brbe.h>
29 #include <lib/extensions/debug_v8p9.h>
30 #include <lib/extensions/fgt2.h>
31 #include <lib/extensions/fpmr.h>
32 #include <lib/extensions/mpam.h>
33 #include <lib/extensions/pmuv3.h>
34 #include <lib/extensions/sme.h>
35 #include <lib/extensions/spe.h>
36 #include <lib/extensions/sve.h>
37 #include <lib/extensions/sysreg128.h>
38 #include <lib/extensions/sys_reg_trace.h>
39 #include <lib/extensions/tcr2.h>
40 #include <lib/extensions/trbe.h>
41 #include <lib/extensions/trf.h>
42 #include <lib/utils.h>
43 
44 #if ENABLE_FEAT_TWED
45 /* Make sure delay value fits within the range(0-15) */
46 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
47 #endif /* ENABLE_FEAT_TWED */
48 
49 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
50 static bool has_secure_perworld_init;
51 
52 static void manage_extensions_nonsecure(cpu_context_t *ctx);
53 static void manage_extensions_secure(cpu_context_t *ctx);
54 static void manage_extensions_secure_per_world(void);
55 
56 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
57 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
58 {
59 	u_register_t sctlr_elx, actlr_elx;
60 
61 	/*
62 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
63 	 * execution state setting all fields rather than relying on the hw.
64 	 * Some fields have architecturally UNKNOWN reset values and these are
65 	 * set to zero.
66 	 *
67 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
68 	 *
69 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
70 	 * required by PSCI specification)
71 	 */
72 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
73 	if (GET_RW(ep->spsr) == MODE_RW_64) {
74 		sctlr_elx |= SCTLR_EL1_RES1;
75 	} else {
76 		/*
77 		 * If the target execution state is AArch32 then the following
78 		 * fields need to be set.
79 		 *
80 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
81 		 *  instructions are not trapped to EL1.
82 		 *
83 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
84 		 *  instructions are not trapped to EL1.
85 		 *
86 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
87 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
88 		 */
89 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
90 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
91 	}
92 
93 	/*
94 	 * If workaround of errata 764081 for Cortex-A75 is used then set
95 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
96 	 */
97 	if (errata_a75_764081_applies()) {
98 		sctlr_elx |= SCTLR_IESB_BIT;
99 	}
100 
101 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
102 	write_ctx_sctlr_el1_reg_errata(ctx, sctlr_elx);
103 
104 	/*
105 	 * Base the context ACTLR_EL1 on the current value, as it is
106 	 * implementation defined. The context restore process will write
107 	 * the value from the context to the actual register and can cause
108 	 * problems for processor cores that don't expect certain bits to
109 	 * be zero.
110 	 */
111 	actlr_elx = read_actlr_el1();
112 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx);
113 }
114 #endif /* (IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)) */
115 
116 /******************************************************************************
117  * This function performs initializations that are specific to SECURE state
118  * and updates the cpu context specified by 'ctx'.
119  *****************************************************************************/
120 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
121 {
122 	u_register_t scr_el3;
123 	el3_state_t *state;
124 
125 	state = get_el3state_ctx(ctx);
126 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
127 
128 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
129 	/*
130 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
131 	 * indicated by the interrupt routing model for BL31.
132 	 */
133 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
134 #endif
135 
136 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
137 	if (is_feat_mte2_supported()) {
138 		scr_el3 |= SCR_ATA_BIT;
139 	}
140 
141 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
142 
143 	/*
144 	 * Initialize EL1 context registers unless SPMC is running
145 	 * at S-EL2.
146 	 */
147 #if (!SPMD_SPM_AT_SEL2)
148 	setup_el1_context(ctx, ep);
149 #endif
150 
151 	manage_extensions_secure(ctx);
152 
153 	/**
154 	 * manage_extensions_secure_per_world api has to be executed once,
155 	 * as the registers getting initialised, maintain constant value across
156 	 * all the cpus for the secure world.
157 	 * Henceforth, this check ensures that the registers are initialised once
158 	 * and avoids re-initialization from multiple cores.
159 	 */
160 	if (!has_secure_perworld_init) {
161 		manage_extensions_secure_per_world();
162 	}
163 }
164 
165 #if ENABLE_RME
166 /******************************************************************************
167  * This function performs initializations that are specific to REALM state
168  * and updates the cpu context specified by 'ctx'.
169  *****************************************************************************/
170 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
171 {
172 	u_register_t scr_el3;
173 	el3_state_t *state;
174 
175 	state = get_el3state_ctx(ctx);
176 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
177 
178 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
179 
180 	/* CSV2 version 2 and above */
181 	if (is_feat_csv2_2_supported()) {
182 		/* Enable access to the SCXTNUM_ELx registers. */
183 		scr_el3 |= SCR_EnSCXT_BIT;
184 	}
185 
186 	if (is_feat_sctlr2_supported()) {
187 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
188 		 * SCTLR2_ELx registers.
189 		 */
190 		scr_el3 |= SCR_SCTLR2En_BIT;
191 	}
192 
193 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
194 
195 	if (is_feat_fgt2_supported()) {
196 		fgt2_enable(ctx);
197 	}
198 
199 	if (is_feat_debugv8p9_supported()) {
200 		debugv8p9_extended_bp_wp_enable(ctx);
201 	}
202 
203 	if (is_feat_brbe_supported()) {
204 		brbe_enable(ctx);
205 	}
206 
207 }
208 #endif /* ENABLE_RME */
209 
210 /******************************************************************************
211  * This function performs initializations that are specific to NON-SECURE state
212  * and updates the cpu context specified by 'ctx'.
213  *****************************************************************************/
214 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
215 {
216 	u_register_t scr_el3;
217 	el3_state_t *state;
218 
219 	state = get_el3state_ctx(ctx);
220 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
221 
222 	/* SCR_NS: Set the NS bit */
223 	scr_el3 |= SCR_NS_BIT;
224 
225 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
226 	if (is_feat_mte2_supported()) {
227 		scr_el3 |= SCR_ATA_BIT;
228 	}
229 
230 	/*
231 	 * Pointer Authentication feature, if present, is always enabled by
232 	 * default for Non secure lower exception levels. We do not have an
233 	 * explicit flag to set it. To prevent the leakage between the worlds
234 	 * during world switch, we enable it only for the non-secure world.
235 	 *
236 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
237 	 * exception levels of secure and realm worlds.
238 	 *
239 	 * If the Secure/realm world wants to use pointer authentication,
240 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
241 	 * it will be enabled globally for all the contexts.
242 	 *
243 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
244 	 *  other than EL3
245 	 *
246 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
247 	 *  than EL3
248 	 */
249 	if (!is_ctx_pauth_supported()) {
250 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
251 	}
252 
253 #if HANDLE_EA_EL3_FIRST_NS
254 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
255 	scr_el3 |= SCR_EA_BIT;
256 #endif
257 
258 #if RAS_TRAP_NS_ERR_REC_ACCESS
259 	/*
260 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
261 	 * and RAS ERX registers from EL1 and EL2(from any security state)
262 	 * are trapped to EL3.
263 	 * Set here to trap only for NS EL1/EL2
264 	 */
265 	scr_el3 |= SCR_TERR_BIT;
266 #endif
267 
268 	/* CSV2 version 2 and above */
269 	if (is_feat_csv2_2_supported()) {
270 		/* Enable access to the SCXTNUM_ELx registers. */
271 		scr_el3 |= SCR_EnSCXT_BIT;
272 	}
273 
274 #ifdef IMAGE_BL31
275 	/*
276 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
277 	 *  indicated by the interrupt routing model for BL31.
278 	 */
279 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
280 #endif
281 
282 	if (is_feat_the_supported()) {
283 		/* Set the RCWMASKEn bit in SCR_EL3 to enable access to
284 		 * RCWMASK_EL1 and RCWSMASK_EL1 registers.
285 		 */
286 		scr_el3 |= SCR_RCWMASKEn_BIT;
287 	}
288 
289 	if (is_feat_sctlr2_supported()) {
290 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
291 		 * SCTLR2_ELx registers.
292 		 */
293 		scr_el3 |= SCR_SCTLR2En_BIT;
294 	}
295 
296 	if (is_feat_d128_supported()) {
297 		/* Set the D128En bit in SCR_EL3 to enable access to 128-bit
298 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
299 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
300 		 */
301 		scr_el3 |= SCR_D128En_BIT;
302 	}
303 
304 	if (is_feat_fpmr_supported()) {
305 		/* Set the EnFPM bit in SCR_EL3 to enable access to FPMR
306 		 * register.
307 		 */
308 		scr_el3 |= SCR_EnFPM_BIT;
309 	}
310 
311 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
312 
313 	/* Initialize EL2 context registers */
314 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
315 
316 	/*
317 	 * Initialize SCTLR_EL2 context register with reset value.
318 	 */
319 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
320 
321 	if (is_feat_hcx_supported()) {
322 		/*
323 		 * Initialize register HCRX_EL2 with its init value.
324 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
325 		 * chance that this can lead to unexpected behavior in lower
326 		 * ELs that have not been updated since the introduction of
327 		 * this feature if not properly initialized, especially when
328 		 * it comes to those bits that enable/disable traps.
329 		 */
330 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
331 			HCRX_EL2_INIT_VAL);
332 	}
333 
334 	if (is_feat_fgt_supported()) {
335 		/*
336 		 * Initialize HFG*_EL2 registers with a default value so legacy
337 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
338 		 * of initialization for this feature.
339 		 */
340 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
341 			HFGITR_EL2_INIT_VAL);
342 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
343 			HFGRTR_EL2_INIT_VAL);
344 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
345 			HFGWTR_EL2_INIT_VAL);
346 	}
347 #else
348 	/* Initialize EL1 context registers */
349 	setup_el1_context(ctx, ep);
350 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
351 
352 	manage_extensions_nonsecure(ctx);
353 }
354 
355 /*******************************************************************************
356  * The following function performs initialization of the cpu_context 'ctx'
357  * for first use that is common to all security states, and sets the
358  * initial entrypoint state as specified by the entry_point_info structure.
359  *
360  * The EE and ST attributes are used to configure the endianness and secure
361  * timer availability for the new execution context.
362  ******************************************************************************/
363 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
364 {
365 	u_register_t scr_el3;
366 	u_register_t mdcr_el3;
367 	el3_state_t *state;
368 	gp_regs_t *gp_regs;
369 
370 	state = get_el3state_ctx(ctx);
371 
372 	/* Clear any residual register values from the context */
373 	zeromem(ctx, sizeof(*ctx));
374 
375 	/*
376 	 * The lower-EL context is zeroed so that no stale values leak to a world.
377 	 * It is assumed that an all-zero lower-EL context is good enough for it
378 	 * to boot correctly. However, there are very few registers where this
379 	 * is not true and some values need to be recreated.
380 	 */
381 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
382 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
383 
384 	/*
385 	 * These bits are set in the gicv3 driver. Losing them (especially the
386 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
387 	 */
388 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
389 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
390 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
391 
392 	/*
393 	 * The actlr_el2 register can be initialized in platform's reset handler
394 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
395 	 */
396 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
397 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
398 
399 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
400 	scr_el3 = SCR_RESET_VAL;
401 
402 	/*
403 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
404 	 *  EL2, EL1 and EL0 are not trapped to EL3.
405 	 *
406 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
407 	 *  EL2, EL1 and EL0 are not trapped to EL3.
408 	 *
409 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
410 	 *  both Security states and both Execution states.
411 	 *
412 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
413 	 *  Non-secure memory.
414 	 */
415 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
416 
417 	scr_el3 |= SCR_SIF_BIT;
418 
419 	/*
420 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
421 	 *  Exception level as specified by SPSR.
422 	 */
423 	if (GET_RW(ep->spsr) == MODE_RW_64) {
424 		scr_el3 |= SCR_RW_BIT;
425 	}
426 
427 	/*
428 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
429 	 * Secure timer registers to EL3, from AArch64 state only, if specified
430 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
431 	 * bit always behaves as 1 (i.e. secure physical timer register access
432 	 * is not trapped)
433 	 */
434 	if (EP_GET_ST(ep->h.attr) != 0U) {
435 		scr_el3 |= SCR_ST_BIT;
436 	}
437 
438 	/*
439 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
440 	 * SCR_EL3.HXEn.
441 	 */
442 	if (is_feat_hcx_supported()) {
443 		scr_el3 |= SCR_HXEn_BIT;
444 	}
445 
446 	/*
447 	 * If FEAT_LS64_ACCDATA is enabled, enable access to ACCDATA_EL1 by
448 	 * setting SCR_EL3.ADEn and allow the ST64BV0 instruction by setting
449 	 * SCR_EL3.EnAS0.
450 	 */
451 	if (is_feat_ls64_accdata_supported()) {
452 		scr_el3 |= SCR_ADEn_BIT | SCR_EnAS0_BIT;
453 	}
454 
455 	/*
456 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
457 	 * registers are trapped to EL3.
458 	 */
459 	if (is_feat_rng_trap_supported()) {
460 		scr_el3 |= SCR_TRNDR_BIT;
461 	}
462 
463 #if FAULT_INJECTION_SUPPORT
464 	/* Enable fault injection from lower ELs */
465 	scr_el3 |= SCR_FIEN_BIT;
466 #endif
467 
468 	/*
469 	 * Enable Pointer Authentication globally for all the worlds.
470 	 *
471 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
472 	 *  other than EL3
473 	 *
474 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
475 	 *  than EL3
476 	 */
477 	if (is_ctx_pauth_supported()) {
478 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
479 	}
480 
481 	/*
482 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
483 	 */
484 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
485 		scr_el3 |= SCR_TCR2EN_BIT;
486 	}
487 
488 	/*
489 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
490 	 * registers for AArch64 if present.
491 	 */
492 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
493 		scr_el3 |= SCR_PIEN_BIT;
494 	}
495 
496 	/*
497 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
498 	 */
499 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
500 		scr_el3 |= SCR_GCSEn_BIT;
501 	}
502 
503 	/*
504 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
505 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
506 	 * next mode is Hyp.
507 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
508 	 * same conditions as HVC instructions and when the processor supports
509 	 * ARMv8.6-FGT.
510 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
511 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
512 	 * and when the processor supports ECV.
513 	 */
514 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
515 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
516 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
517 		scr_el3 |= SCR_HCE_BIT;
518 
519 		if (is_feat_fgt_supported()) {
520 			scr_el3 |= SCR_FGTEN_BIT;
521 		}
522 
523 		if (is_feat_ecv_supported()) {
524 			scr_el3 |= SCR_ECVEN_BIT;
525 		}
526 	}
527 
528 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
529 	if (is_feat_twed_supported()) {
530 		/* Set delay in SCR_EL3 */
531 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
532 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
533 				<< SCR_TWEDEL_SHIFT);
534 
535 		/* Enable WFE delay */
536 		scr_el3 |= SCR_TWEDEn_BIT;
537 	}
538 
539 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
540 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
541 	if (is_feat_sel2_supported()) {
542 		scr_el3 |= SCR_EEL2_BIT;
543 	}
544 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
545 
546 	if (is_feat_mec_supported()) {
547 		scr_el3 |= SCR_MECEn_BIT;
548 	}
549 
550 	/*
551 	 * Populate EL3 state so that we've the right context
552 	 * before doing ERET
553 	 */
554 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
555 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
556 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
557 
558 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
559 	mdcr_el3 = MDCR_EL3_RESET_VAL;
560 
561 	/* ---------------------------------------------------------------------
562 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
563 	 * Some fields are architecturally UNKNOWN on reset.
564 	 *
565 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
566 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
567 	 *  disabled from all ELs in Secure state.
568 	 *
569 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
570 	 *  privileged debug from S-EL1.
571 	 *
572 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
573 	 *  access to the powerdown debug registers do not trap to EL3.
574 	 *
575 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
576 	 *  debug registers, other than those registers that are controlled by
577 	 *  MDCR_EL3.TDOSA.
578 	 */
579 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
580 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
581 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
582 
583 #if IMAGE_BL31
584 	/* Enable FEAT_TRF for Non-Secure and prohibit for Secure state. */
585 	if (is_feat_trf_supported()) {
586 		trf_enable(ctx);
587 	}
588 
589 	pmuv3_enable(ctx);
590 #endif /* IMAGE_BL31 */
591 
592 	/*
593 	 * Store the X0-X7 value from the entrypoint into the context
594 	 * Use memcpy as we are in control of the layout of the structures
595 	 */
596 	gp_regs = get_gpregs_ctx(ctx);
597 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
598 }
599 
600 /*******************************************************************************
601  * Context management library initialization routine. This library is used by
602  * runtime services to share pointers to 'cpu_context' structures for secure
603  * non-secure and realm states. Management of the structures and their associated
604  * memory is not done by the context management library e.g. the PSCI service
605  * manages the cpu context used for entry from and exit to the non-secure state.
606  * The Secure payload dispatcher service manages the context(s) corresponding to
607  * the secure state. It also uses this library to get access to the non-secure
608  * state cpu context pointers.
609  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
610  * which will be used for programming an entry into a lower EL. The same context
611  * will be used to save state upon exception entry from that EL.
612  ******************************************************************************/
613 void __init cm_init(void)
614 {
615 	/*
616 	 * The context management library has only global data to initialize, but
617 	 * that will be done when the BSS is zeroed out.
618 	 */
619 }
620 
621 /*******************************************************************************
622  * This is the high-level function used to initialize the cpu_context 'ctx' for
623  * first use. It performs initializations that are common to all security states
624  * and initializations specific to the security state specified in 'ep'
625  ******************************************************************************/
626 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
627 {
628 	unsigned int security_state;
629 
630 	assert(ctx != NULL);
631 
632 	/*
633 	 * Perform initializations that are common
634 	 * to all security states
635 	 */
636 	setup_context_common(ctx, ep);
637 
638 	security_state = GET_SECURITY_STATE(ep->h.attr);
639 
640 	/* Perform security state specific initializations */
641 	switch (security_state) {
642 	case SECURE:
643 		setup_secure_context(ctx, ep);
644 		break;
645 #if ENABLE_RME
646 	case REALM:
647 		setup_realm_context(ctx, ep);
648 		break;
649 #endif
650 	case NON_SECURE:
651 		setup_ns_context(ctx, ep);
652 		break;
653 	default:
654 		ERROR("Invalid security state\n");
655 		panic();
656 		break;
657 	}
658 }
659 
660 /*******************************************************************************
661  * Enable architecture extensions for EL3 execution. This function only updates
662  * registers in-place which are expected to either never change or be
663  * overwritten by el3_exit. Expects the core_pos of the current core as argument.
664  ******************************************************************************/
665 #if IMAGE_BL31
666 void cm_manage_extensions_el3(unsigned int my_idx)
667 {
668 	if (is_feat_sve_supported()) {
669 		sve_init_el3();
670 	}
671 
672 	if (is_feat_amu_supported()) {
673 		amu_init_el3(my_idx);
674 	}
675 
676 	if (is_feat_sme_supported()) {
677 		sme_init_el3();
678 	}
679 
680 	pmuv3_init_el3();
681 }
682 #endif /* IMAGE_BL31 */
683 
684 /******************************************************************************
685  * Function to initialise the registers with the RESET values in the context
686  * memory, which are maintained per world.
687  ******************************************************************************/
688 #if IMAGE_BL31
689 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
690 {
691 	/*
692 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
693 	 *
694 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
695 	 *  by Advanced SIMD, floating-point or SVE instructions (if
696 	 *  implemented) do not trap to EL3.
697 	 *
698 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
699 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
700 	 */
701 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
702 
703 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
704 
705 	/*
706 	 * Initialize MPAM3_EL3 to its default reset value
707 	 *
708 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
709 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
710 	 */
711 
712 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
713 }
714 #endif /* IMAGE_BL31 */
715 
716 /*******************************************************************************
717  * Initialise per_world_context for Non-Secure world.
718  * This function enables the architecture extensions, which have same value
719  * across the cores for the non-secure world.
720  ******************************************************************************/
721 #if IMAGE_BL31
722 void manage_extensions_nonsecure_per_world(void)
723 {
724 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
725 
726 	if (is_feat_sme_supported()) {
727 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
728 	}
729 
730 	if (is_feat_sve_supported()) {
731 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
732 	}
733 
734 	if (is_feat_amu_supported()) {
735 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
736 	}
737 
738 	if (is_feat_sys_reg_trace_supported()) {
739 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
740 	}
741 
742 	if (is_feat_mpam_supported()) {
743 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
744 	}
745 
746 	if (is_feat_fpmr_supported()) {
747 		fpmr_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
748 	}
749 }
750 #endif /* IMAGE_BL31 */
751 
752 /*******************************************************************************
753  * Initialise per_world_context for Secure world.
754  * This function enables the architecture extensions, which have same value
755  * across the cores for the secure world.
756  ******************************************************************************/
757 static void manage_extensions_secure_per_world(void)
758 {
759 #if IMAGE_BL31
760 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
761 
762 	if (is_feat_sme_supported()) {
763 
764 		if (ENABLE_SME_FOR_SWD) {
765 		/*
766 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
767 		 * SME, SVE, and FPU/SIMD context properly managed.
768 		 */
769 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
770 		} else {
771 		/*
772 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
773 		 * world can safely use the associated registers.
774 		 */
775 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
776 		}
777 	}
778 	if (is_feat_sve_supported()) {
779 		if (ENABLE_SVE_FOR_SWD) {
780 		/*
781 		 * Enable SVE and FPU in secure context, SPM must ensure
782 		 * that the SVE and FPU register contexts are properly managed.
783 		 */
784 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
785 		} else {
786 		/*
787 		 * Disable SVE and FPU in secure context so non-secure world
788 		 * can safely use them.
789 		 */
790 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
791 		}
792 	}
793 
794 	/* NS can access this but Secure shouldn't */
795 	if (is_feat_sys_reg_trace_supported()) {
796 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
797 	}
798 
799 	has_secure_perworld_init = true;
800 #endif /* IMAGE_BL31 */
801 }
802 
803 /*******************************************************************************
804  * Enable architecture extensions on first entry to Non-secure world.
805  ******************************************************************************/
806 static void manage_extensions_nonsecure(cpu_context_t *ctx)
807 {
808 #if IMAGE_BL31
809 	/* NOTE: registers are not context switched */
810 	if (is_feat_amu_supported()) {
811 		amu_enable(ctx);
812 	}
813 
814 	if (is_feat_sme_supported()) {
815 		sme_enable(ctx);
816 	}
817 
818 	if (is_feat_fgt2_supported()) {
819 		fgt2_enable(ctx);
820 	}
821 
822 	if (is_feat_debugv8p9_supported()) {
823 		debugv8p9_extended_bp_wp_enable(ctx);
824 	}
825 
826 	/*
827 	 * SPE, TRBE, and BRBE have multi-field enables that affect which world
828 	 * they apply to. Despite this, it is useful to ignore these for
829 	 * simplicity in determining the feature's per world enablement status.
830 	 * This is only possible when context is written per-world. Relied on
831 	 * by SMCCC_ARCH_FEATURE_AVAILABILITY
832 	 */
833 	if (is_feat_spe_supported()) {
834 		spe_enable(ctx);
835 	}
836 
837 	if (is_feat_trbe_supported()) {
838 		trbe_enable(ctx);
839 	}
840 
841 	if (is_feat_brbe_supported()) {
842 		brbe_enable(ctx);
843 	}
844 #endif /* IMAGE_BL31 */
845 }
846 
847 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
848 static __unused void enable_pauth_el2(void)
849 {
850 	u_register_t hcr_el2 = read_hcr_el2();
851 	/*
852 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
853 	 *  accessing key registers or using pointer authentication instructions
854 	 *  from lower ELs.
855 	 */
856 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
857 
858 	write_hcr_el2(hcr_el2);
859 }
860 
861 #if INIT_UNUSED_NS_EL2
862 /*******************************************************************************
863  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
864  * world when EL2 is empty and unused.
865  ******************************************************************************/
866 static void manage_extensions_nonsecure_el2_unused(void)
867 {
868 #if IMAGE_BL31
869 	if (is_feat_spe_supported()) {
870 		spe_init_el2_unused();
871 	}
872 
873 	if (is_feat_amu_supported()) {
874 		amu_init_el2_unused();
875 	}
876 
877 	if (is_feat_mpam_supported()) {
878 		mpam_init_el2_unused();
879 	}
880 
881 	if (is_feat_trbe_supported()) {
882 		trbe_init_el2_unused();
883 	}
884 
885 	if (is_feat_sys_reg_trace_supported()) {
886 		sys_reg_trace_init_el2_unused();
887 	}
888 
889 	if (is_feat_trf_supported()) {
890 		trf_init_el2_unused();
891 	}
892 
893 	pmuv3_init_el2_unused();
894 
895 	if (is_feat_sve_supported()) {
896 		sve_init_el2_unused();
897 	}
898 
899 	if (is_feat_sme_supported()) {
900 		sme_init_el2_unused();
901 	}
902 
903 	if (is_feat_mops_supported() && is_feat_hcx_supported()) {
904 		write_hcrx_el2(read_hcrx_el2() | HCRX_EL2_MSCEn_BIT);
905 	}
906 
907 #if ENABLE_PAUTH
908 	enable_pauth_el2();
909 #endif /* ENABLE_PAUTH */
910 #endif /* IMAGE_BL31 */
911 }
912 #endif /* INIT_UNUSED_NS_EL2 */
913 
914 /*******************************************************************************
915  * Enable architecture extensions on first entry to Secure world.
916  ******************************************************************************/
917 static void manage_extensions_secure(cpu_context_t *ctx)
918 {
919 #if IMAGE_BL31
920 	if (is_feat_sme_supported()) {
921 		if (ENABLE_SME_FOR_SWD) {
922 		/*
923 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
924 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
925 		 */
926 			sme_init_el3();
927 			sme_enable(ctx);
928 		} else {
929 		/*
930 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
931 		 * world can safely use the associated registers.
932 		 */
933 			sme_disable(ctx);
934 		}
935 	}
936 
937 	/*
938 	 * SPE and TRBE cannot be fully disabled from EL3 registers alone, only
939 	 * sysreg access can. In case the EL1 controls leave them active on
940 	 * context switch, we want the owning security state to be NS so Secure
941 	 * can't be DOSed.
942 	 */
943 	if (is_feat_spe_supported()) {
944 		spe_disable(ctx);
945 	}
946 
947 	if (is_feat_trbe_supported()) {
948 		trbe_disable(ctx);
949 	}
950 #endif /* IMAGE_BL31 */
951 }
952 
953 #if !IMAGE_BL1
954 /*******************************************************************************
955  * The following function initializes the cpu_context for a CPU specified by
956  * its `cpu_idx` for first use, and sets the initial entrypoint state as
957  * specified by the entry_point_info structure.
958  ******************************************************************************/
959 void cm_init_context_by_index(unsigned int cpu_idx,
960 			      const entry_point_info_t *ep)
961 {
962 	cpu_context_t *ctx;
963 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
964 	cm_setup_context(ctx, ep);
965 }
966 #endif /* !IMAGE_BL1 */
967 
968 /*******************************************************************************
969  * The following function initializes the cpu_context for the current CPU
970  * for first use, and sets the initial entrypoint state as specified by the
971  * entry_point_info structure.
972  ******************************************************************************/
973 void cm_init_my_context(const entry_point_info_t *ep)
974 {
975 	cpu_context_t *ctx;
976 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
977 	cm_setup_context(ctx, ep);
978 }
979 
980 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
981 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
982 {
983 #if INIT_UNUSED_NS_EL2
984 	u_register_t hcr_el2 = HCR_RESET_VAL;
985 	u_register_t mdcr_el2;
986 	u_register_t scr_el3;
987 
988 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
989 
990 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
991 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
992 		hcr_el2 |= HCR_RW_BIT;
993 	}
994 
995 	write_hcr_el2(hcr_el2);
996 
997 	/*
998 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
999 	 * All fields have architecturally UNKNOWN reset values.
1000 	 */
1001 	write_cptr_el2(CPTR_EL2_RESET_VAL);
1002 
1003 	/*
1004 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
1005 	 * reset and are set to zero except for field(s) listed below.
1006 	 *
1007 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
1008 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
1009 	 *
1010 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
1011 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
1012 	 */
1013 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
1014 
1015 	/*
1016 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
1017 	 * UNKNOWN value.
1018 	 */
1019 	write_cntvoff_el2(0);
1020 
1021 	/*
1022 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
1023 	 * respectively.
1024 	 */
1025 	write_vpidr_el2(read_midr_el1());
1026 	write_vmpidr_el2(read_mpidr_el1());
1027 
1028 	/*
1029 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
1030 	 *
1031 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
1032 	 * translation is disabled, cache maintenance operations depend on the
1033 	 * VMID.
1034 	 *
1035 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
1036 	 * disabled.
1037 	 */
1038 	write_vttbr_el2(VTTBR_RESET_VAL &
1039 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
1040 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
1041 
1042 	/*
1043 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
1044 	 * Some fields are architecturally UNKNOWN on reset.
1045 	 *
1046 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
1047 	 * register accesses to the Debug ROM registers are not trapped to EL2.
1048 	 *
1049 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
1050 	 * accesses to the powerdown debug registers are not trapped to EL2.
1051 	 *
1052 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
1053 	 * debug registers do not trap to EL2.
1054 	 *
1055 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
1056 	 * EL2.
1057 	 */
1058 	mdcr_el2 = MDCR_EL2_RESET_VAL &
1059 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
1060 		   MDCR_EL2_TDE_BIT);
1061 
1062 	write_mdcr_el2(mdcr_el2);
1063 
1064 	/*
1065 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
1066 	 *
1067 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
1068 	 * EL1 accesses to System registers do not trap to EL2.
1069 	 */
1070 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
1071 
1072 	/*
1073 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
1074 	 * reset.
1075 	 *
1076 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1077 	 * and prevent timer interrupts.
1078 	 */
1079 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1080 
1081 	manage_extensions_nonsecure_el2_unused();
1082 #endif /* INIT_UNUSED_NS_EL2 */
1083 }
1084 
1085 /*******************************************************************************
1086  * Prepare the CPU system registers for first entry into realm, secure, or
1087  * normal world.
1088  *
1089  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1090  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1091  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1092  * For all entries, the EL1 registers are initialized from the cpu_context
1093  ******************************************************************************/
1094 void cm_prepare_el3_exit(uint32_t security_state)
1095 {
1096 	u_register_t sctlr_el2, scr_el3;
1097 	cpu_context_t *ctx = cm_get_context(security_state);
1098 
1099 	assert(ctx != NULL);
1100 
1101 	if (security_state == NON_SECURE) {
1102 		uint64_t el2_implemented = el_implemented(2);
1103 
1104 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1105 						 CTX_SCR_EL3);
1106 
1107 		if (el2_implemented != EL_IMPL_NONE) {
1108 
1109 			/*
1110 			 * If context is not being used for EL2, initialize
1111 			 * HCRX_EL2 with its init value here.
1112 			 */
1113 			if (is_feat_hcx_supported()) {
1114 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1115 			}
1116 
1117 			/*
1118 			 * Initialize Fine-grained trap registers introduced
1119 			 * by FEAT_FGT so all traps are initially disabled when
1120 			 * switching to EL2 or a lower EL, preventing undesired
1121 			 * behavior.
1122 			 */
1123 			if (is_feat_fgt_supported()) {
1124 				/*
1125 				 * Initialize HFG*_EL2 registers with a default
1126 				 * value so legacy systems unaware of FEAT_FGT
1127 				 * do not get trapped due to their lack of
1128 				 * initialization for this feature.
1129 				 */
1130 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1131 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1132 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1133 			}
1134 
1135 			/* Condition to ensure EL2 is being used. */
1136 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1137 				/* Initialize SCTLR_EL2 register with reset value. */
1138 				sctlr_el2 = SCTLR_EL2_RES1;
1139 
1140 				/*
1141 				 * If workaround of errata 764081 for Cortex-A75
1142 				 * is used then set SCTLR_EL2.IESB to enable
1143 				 * Implicit Error Synchronization Barrier.
1144 				 */
1145 				if (errata_a75_764081_applies()) {
1146 					sctlr_el2 |= SCTLR_IESB_BIT;
1147 				}
1148 
1149 				write_sctlr_el2(sctlr_el2);
1150 			} else {
1151 				/*
1152 				 * (scr_el3 & SCR_HCE_BIT==0)
1153 				 * EL2 implemented but unused.
1154 				 */
1155 				init_nonsecure_el2_unused(ctx);
1156 			}
1157 		}
1158 	}
1159 #if (!CTX_INCLUDE_EL2_REGS)
1160 	/* Restore EL1 system registers, only when CTX_INCLUDE_EL2_REGS=0 */
1161 	cm_el1_sysregs_context_restore(security_state);
1162 #endif
1163 	cm_set_next_eret_context(security_state);
1164 }
1165 
1166 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1167 
1168 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1169 {
1170 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1171 	if (is_feat_amu_supported()) {
1172 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1173 	}
1174 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1175 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1176 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1177 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1178 }
1179 
1180 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1181 {
1182 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1183 	if (is_feat_amu_supported()) {
1184 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1185 	}
1186 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1187 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1188 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1189 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1190 }
1191 
1192 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1193 {
1194 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1195 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1196 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1197 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1198 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1199 }
1200 
1201 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1202 {
1203 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1204 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1205 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1206 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1207 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1208 }
1209 
1210 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1211 {
1212 	u_register_t mpam_idr = read_mpamidr_el1();
1213 
1214 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1215 
1216 	/*
1217 	 * The context registers that we intend to save would be part of the
1218 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1219 	 */
1220 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1221 		return;
1222 	}
1223 
1224 	/*
1225 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1226 	 * MPAMIDR_HAS_HCR_BIT == 1.
1227 	 */
1228 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1229 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1230 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1231 
1232 	/*
1233 	 * The number of MPAMVPM registers is implementation defined, their
1234 	 * number is stored in the MPAMIDR_EL1 register.
1235 	 */
1236 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1237 	case 7:
1238 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1239 		__fallthrough;
1240 	case 6:
1241 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1242 		__fallthrough;
1243 	case 5:
1244 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1245 		__fallthrough;
1246 	case 4:
1247 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1248 		__fallthrough;
1249 	case 3:
1250 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1251 		__fallthrough;
1252 	case 2:
1253 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1254 		__fallthrough;
1255 	case 1:
1256 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1257 		break;
1258 	}
1259 }
1260 
1261 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1262 {
1263 	u_register_t mpam_idr = read_mpamidr_el1();
1264 
1265 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1266 
1267 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1268 		return;
1269 	}
1270 
1271 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1272 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1273 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1274 
1275 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1276 	case 7:
1277 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1278 		__fallthrough;
1279 	case 6:
1280 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1281 		__fallthrough;
1282 	case 5:
1283 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1284 		__fallthrough;
1285 	case 4:
1286 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1287 		__fallthrough;
1288 	case 3:
1289 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1290 		__fallthrough;
1291 	case 2:
1292 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1293 		__fallthrough;
1294 	case 1:
1295 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1296 		break;
1297 	}
1298 }
1299 
1300 /* ---------------------------------------------------------------------------
1301  * The following registers are not added:
1302  * ICH_AP0R<n>_EL2
1303  * ICH_AP1R<n>_EL2
1304  * ICH_LR<n>_EL2
1305  *
1306  * NOTE: For a system with S-EL2 present but not enabled, accessing
1307  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1308  * SCR_EL3.NS = 1 before accessing this register.
1309  * ---------------------------------------------------------------------------
1310  */
1311 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx, uint32_t security_state)
1312 {
1313 	u_register_t scr_el3 = read_scr_el3();
1314 
1315 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1316 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1317 #else
1318 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1319 	isb();
1320 
1321 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1322 
1323 	write_scr_el3(scr_el3);
1324 	isb();
1325 #endif
1326 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1327 
1328 	if (errata_ich_vmcr_el2_applies()) {
1329 		if (security_state == SECURE) {
1330 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1331 		} else {
1332 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1333 		}
1334 		isb();
1335 	}
1336 
1337 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1338 
1339 	if (errata_ich_vmcr_el2_applies()) {
1340 		write_scr_el3(scr_el3);
1341 		isb();
1342 	}
1343 }
1344 
1345 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx, uint32_t security_state)
1346 {
1347 	u_register_t scr_el3 = read_scr_el3();
1348 
1349 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1350 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1351 #else
1352 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1353 	isb();
1354 
1355 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1356 
1357 	write_scr_el3(scr_el3);
1358 	isb();
1359 #endif
1360 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1361 
1362 	if (errata_ich_vmcr_el2_applies()) {
1363 		if (security_state == SECURE) {
1364 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1365 		} else {
1366 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1367 		}
1368 		isb();
1369 	}
1370 
1371 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1372 
1373 	if (errata_ich_vmcr_el2_applies()) {
1374 		write_scr_el3(scr_el3);
1375 		isb();
1376 	}
1377 }
1378 
1379 /* -----------------------------------------------------
1380  * The following registers are not added:
1381  * AMEVCNTVOFF0<n>_EL2
1382  * AMEVCNTVOFF1<n>_EL2
1383  * -----------------------------------------------------
1384  */
1385 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1386 {
1387 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1388 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1389 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1390 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1391 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1392 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1393 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1394 	if (CTX_INCLUDE_AARCH32_REGS) {
1395 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1396 	}
1397 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1398 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1399 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1400 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1401 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1402 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1403 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1404 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1405 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1406 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1407 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1408 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1409 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1410 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1411 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1412 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1413 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1414 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1415 
1416 	write_el2_ctx_common_sysreg128(ctx, ttbr0_el2, read_ttbr0_el2());
1417 	write_el2_ctx_common_sysreg128(ctx, vttbr_el2, read_vttbr_el2());
1418 }
1419 
1420 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1421 {
1422 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1423 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1424 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1425 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1426 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1427 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1428 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1429 	if (CTX_INCLUDE_AARCH32_REGS) {
1430 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1431 	}
1432 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1433 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1434 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1435 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1436 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1437 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1438 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1439 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1440 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1441 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1442 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1443 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1444 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1445 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1446 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1447 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1448 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1449 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1450 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1451 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1452 }
1453 
1454 /*******************************************************************************
1455  * Save EL2 sysreg context
1456  ******************************************************************************/
1457 void cm_el2_sysregs_context_save(uint32_t security_state)
1458 {
1459 	cpu_context_t *ctx;
1460 	el2_sysregs_t *el2_sysregs_ctx;
1461 
1462 	ctx = cm_get_context(security_state);
1463 	assert(ctx != NULL);
1464 
1465 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1466 
1467 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1468 	el2_sysregs_context_save_gic(el2_sysregs_ctx, security_state);
1469 
1470 	if (is_feat_mte2_supported()) {
1471 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1472 	}
1473 
1474 	if (is_feat_mpam_supported()) {
1475 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1476 	}
1477 
1478 	if (is_feat_fgt_supported()) {
1479 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1480 	}
1481 
1482 	if (is_feat_fgt2_supported()) {
1483 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1484 	}
1485 
1486 	if (is_feat_ecv_v2_supported()) {
1487 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1488 	}
1489 
1490 	if (is_feat_vhe_supported()) {
1491 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1492 					read_contextidr_el2());
1493 		write_el2_ctx_vhe_sysreg128(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1494 	}
1495 
1496 	if (is_feat_ras_supported()) {
1497 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1498 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1499 	}
1500 
1501 	if (is_feat_nv2_supported()) {
1502 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1503 	}
1504 
1505 	if (is_feat_trf_supported()) {
1506 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1507 	}
1508 
1509 	if (is_feat_csv2_2_supported()) {
1510 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1511 					read_scxtnum_el2());
1512 	}
1513 
1514 	if (is_feat_hcx_supported()) {
1515 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1516 	}
1517 
1518 	if (is_feat_tcr2_supported()) {
1519 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1520 	}
1521 
1522 	if (is_feat_sxpie_supported()) {
1523 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1524 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1525 	}
1526 
1527 	if (is_feat_sxpoe_supported()) {
1528 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1529 	}
1530 
1531 	if (is_feat_brbe_supported()) {
1532 		write_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2, read_brbcr_el2());
1533 	}
1534 
1535 	if (is_feat_s2pie_supported()) {
1536 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1537 	}
1538 
1539 	if (is_feat_gcs_supported()) {
1540 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1541 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1542 	}
1543 
1544 	if (is_feat_sctlr2_supported()) {
1545 		write_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2, read_sctlr2_el2());
1546 	}
1547 }
1548 
1549 /*******************************************************************************
1550  * Restore EL2 sysreg context
1551  ******************************************************************************/
1552 void cm_el2_sysregs_context_restore(uint32_t security_state)
1553 {
1554 	cpu_context_t *ctx;
1555 	el2_sysregs_t *el2_sysregs_ctx;
1556 
1557 	ctx = cm_get_context(security_state);
1558 	assert(ctx != NULL);
1559 
1560 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1561 
1562 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1563 	el2_sysregs_context_restore_gic(el2_sysregs_ctx, security_state);
1564 
1565 	if (is_feat_mte2_supported()) {
1566 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1567 	}
1568 
1569 	if (is_feat_mpam_supported()) {
1570 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1571 	}
1572 
1573 	if (is_feat_fgt_supported()) {
1574 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1575 	}
1576 
1577 	if (is_feat_fgt2_supported()) {
1578 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1579 	}
1580 
1581 	if (is_feat_ecv_v2_supported()) {
1582 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1583 	}
1584 
1585 	if (is_feat_vhe_supported()) {
1586 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1587 					contextidr_el2));
1588 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1589 	}
1590 
1591 	if (is_feat_ras_supported()) {
1592 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1593 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1594 	}
1595 
1596 	if (is_feat_nv2_supported()) {
1597 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1598 	}
1599 
1600 	if (is_feat_trf_supported()) {
1601 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1602 	}
1603 
1604 	if (is_feat_csv2_2_supported()) {
1605 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1606 					scxtnum_el2));
1607 	}
1608 
1609 	if (is_feat_hcx_supported()) {
1610 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1611 	}
1612 
1613 	if (is_feat_tcr2_supported()) {
1614 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1615 	}
1616 
1617 	if (is_feat_sxpie_supported()) {
1618 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1619 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1620 	}
1621 
1622 	if (is_feat_sxpoe_supported()) {
1623 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1624 	}
1625 
1626 	if (is_feat_s2pie_supported()) {
1627 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1628 	}
1629 
1630 	if (is_feat_gcs_supported()) {
1631 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1632 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1633 	}
1634 
1635 	if (is_feat_sctlr2_supported()) {
1636 		write_sctlr2_el2(read_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2));
1637 	}
1638 
1639 	if (is_feat_brbe_supported()) {
1640 		write_brbcr_el2(read_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2));
1641 	}
1642 }
1643 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1644 
1645 #if IMAGE_BL31
1646 /*********************************************************************************
1647 * This function allows Architecture features asymmetry among cores.
1648 * TF-A assumes that all the cores in the platform has architecture feature parity
1649 * and hence the context is setup on different core (e.g. primary sets up the
1650 * context for secondary cores).This assumption may not be true for systems where
1651 * cores are not conforming to same Arch version or there is CPU Erratum which
1652 * requires certain feature to be be disabled only on a given core.
1653 *
1654 * This function is called on secondary cores to override any disparity in context
1655 * setup by primary, this would be called during warmboot path.
1656 *********************************************************************************/
1657 void cm_handle_asymmetric_features(void)
1658 {
1659 	cpu_context_t *ctx __maybe_unused = cm_get_context(NON_SECURE);
1660 
1661 	assert(ctx != NULL);
1662 
1663 #if ENABLE_SPE_FOR_NS == FEAT_STATE_CHECK_ASYMMETRIC
1664 	if (is_feat_spe_supported()) {
1665 		spe_enable(ctx);
1666 	} else {
1667 		spe_disable(ctx);
1668 	}
1669 #endif
1670 
1671 	if (check_if_trbe_disable_affected_core()) {
1672 		if (is_feat_trbe_supported()) {
1673 			trbe_disable(ctx);
1674 		}
1675 	}
1676 
1677 #if ENABLE_FEAT_TCR2 == FEAT_STATE_CHECK_ASYMMETRIC
1678 	el3_state_t *el3_state = get_el3state_ctx(ctx);
1679 	u_register_t spsr = read_ctx_reg(el3_state, CTX_SPSR_EL3);
1680 
1681 	if (is_feat_tcr2_supported() && (GET_RW(spsr) == MODE_RW_64)) {
1682 		tcr2_enable(ctx);
1683 	} else {
1684 		tcr2_disable(ctx);
1685 	}
1686 #endif
1687 
1688 }
1689 #endif
1690 
1691 /*******************************************************************************
1692  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1693  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1694  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1695  * cm_prepare_el3_exit function.
1696  ******************************************************************************/
1697 void cm_prepare_el3_exit_ns(void)
1698 {
1699 #if IMAGE_BL31
1700 	/*
1701 	 * Check and handle Architecture feature asymmetry among cores.
1702 	 *
1703 	 * In warmboot path secondary cores context is initialized on core which
1704 	 * did CPU_ON SMC call, if there is feature asymmetry in these cores handle
1705 	 * it in this function call.
1706 	 * For Symmetric cores this is an empty function.
1707 	 */
1708 	cm_handle_asymmetric_features();
1709 #endif
1710 
1711 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1712 #if ENABLE_ASSERTIONS
1713 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1714 	assert(ctx != NULL);
1715 
1716 	/* Assert that EL2 is used. */
1717 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1718 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1719 			(el_implemented(2U) != EL_IMPL_NONE));
1720 #endif /* ENABLE_ASSERTIONS */
1721 
1722 	/* Restore EL2 sysreg contexts */
1723 	cm_el2_sysregs_context_restore(NON_SECURE);
1724 	cm_set_next_eret_context(NON_SECURE);
1725 #else
1726 	cm_prepare_el3_exit(NON_SECURE);
1727 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1728 }
1729 
1730 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
1731 /*******************************************************************************
1732  * The next set of six functions are used by runtime services to save and restore
1733  * EL1 context on the 'cpu_context' structure for the specified security state.
1734  ******************************************************************************/
1735 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1736 {
1737 	write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1());
1738 	write_el1_ctx_common(ctx, elr_el1, read_elr_el1());
1739 
1740 #if (!ERRATA_SPECULATIVE_AT)
1741 	write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1());
1742 	write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1());
1743 #endif /* (!ERRATA_SPECULATIVE_AT) */
1744 
1745 	write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1());
1746 	write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1());
1747 	write_el1_ctx_common(ctx, sp_el1, read_sp_el1());
1748 	write_el1_ctx_common(ctx, esr_el1, read_esr_el1());
1749 	write_el1_ctx_common(ctx, mair_el1, read_mair_el1());
1750 	write_el1_ctx_common(ctx, amair_el1, read_amair_el1());
1751 	write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1());
1752 	write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1());
1753 	write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0());
1754 	write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0());
1755 	write_el1_ctx_common(ctx, far_el1, read_far_el1());
1756 	write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1());
1757 	write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1());
1758 	write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1());
1759 	write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1());
1760 	write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1());
1761 	write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1());
1762 
1763 	write_el1_ctx_common_sysreg128(ctx, par_el1, read_par_el1());
1764 	write_el1_ctx_common_sysreg128(ctx, ttbr0_el1, read_ttbr0_el1());
1765 	write_el1_ctx_common_sysreg128(ctx, ttbr1_el1, read_ttbr1_el1());
1766 
1767 	if (CTX_INCLUDE_AARCH32_REGS) {
1768 		/* Save Aarch32 registers */
1769 		write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt());
1770 		write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und());
1771 		write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq());
1772 		write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq());
1773 		write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2());
1774 		write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2());
1775 	}
1776 
1777 	if (NS_TIMER_SWITCH) {
1778 		/* Save NS Timer registers */
1779 		write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0());
1780 		write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0());
1781 		write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0());
1782 		write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0());
1783 		write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1());
1784 	}
1785 
1786 	if (is_feat_mte2_supported()) {
1787 		write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1());
1788 		write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1());
1789 		write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1());
1790 		write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1());
1791 	}
1792 
1793 	if (is_feat_ras_supported()) {
1794 		write_el1_ctx_ras(ctx, disr_el1, read_disr_el1());
1795 	}
1796 
1797 	if (is_feat_s1pie_supported()) {
1798 		write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1());
1799 		write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1());
1800 	}
1801 
1802 	if (is_feat_s1poe_supported()) {
1803 		write_el1_ctx_s1poe(ctx, por_el1, read_por_el1());
1804 	}
1805 
1806 	if (is_feat_s2poe_supported()) {
1807 		write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1());
1808 	}
1809 
1810 	if (is_feat_tcr2_supported()) {
1811 		write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1());
1812 	}
1813 
1814 	if (is_feat_trf_supported()) {
1815 		write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1());
1816 	}
1817 
1818 	if (is_feat_csv2_2_supported()) {
1819 		write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0());
1820 		write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1());
1821 	}
1822 
1823 	if (is_feat_gcs_supported()) {
1824 		write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1());
1825 		write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1());
1826 		write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1());
1827 		write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0());
1828 	}
1829 
1830 	if (is_feat_the_supported()) {
1831 		write_el1_ctx_the_sysreg128(ctx, rcwmask_el1, read_rcwmask_el1());
1832 		write_el1_ctx_the_sysreg128(ctx, rcwsmask_el1, read_rcwsmask_el1());
1833 	}
1834 
1835 	if (is_feat_sctlr2_supported()) {
1836 		write_el1_ctx_sctlr2(ctx, sctlr2_el1, read_sctlr2_el1());
1837 	}
1838 
1839 	if (is_feat_ls64_accdata_supported()) {
1840 		write_el1_ctx_ls64(ctx, accdata_el1, read_accdata_el1());
1841 	}
1842 }
1843 
1844 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1845 {
1846 	write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1));
1847 	write_elr_el1(read_el1_ctx_common(ctx, elr_el1));
1848 
1849 #if (!ERRATA_SPECULATIVE_AT)
1850 	write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1));
1851 	write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1));
1852 #endif /* (!ERRATA_SPECULATIVE_AT) */
1853 
1854 	write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1));
1855 	write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1));
1856 	write_sp_el1(read_el1_ctx_common(ctx, sp_el1));
1857 	write_esr_el1(read_el1_ctx_common(ctx, esr_el1));
1858 	write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1));
1859 	write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1));
1860 	write_mair_el1(read_el1_ctx_common(ctx, mair_el1));
1861 	write_amair_el1(read_el1_ctx_common(ctx, amair_el1));
1862 	write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1));
1863 	write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1));
1864 	write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0));
1865 	write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0));
1866 	write_par_el1(read_el1_ctx_common(ctx, par_el1));
1867 	write_far_el1(read_el1_ctx_common(ctx, far_el1));
1868 	write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1));
1869 	write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1));
1870 	write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1));
1871 	write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1));
1872 	write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1));
1873 	write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1));
1874 
1875 	if (CTX_INCLUDE_AARCH32_REGS) {
1876 		/* Restore Aarch32 registers */
1877 		write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt));
1878 		write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und));
1879 		write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq));
1880 		write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq));
1881 		write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2));
1882 		write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2));
1883 	}
1884 
1885 	if (NS_TIMER_SWITCH) {
1886 		/* Restore NS Timer registers */
1887 		write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0));
1888 		write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0));
1889 		write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0));
1890 		write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0));
1891 		write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1));
1892 	}
1893 
1894 	if (is_feat_mte2_supported()) {
1895 		write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1));
1896 		write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1));
1897 		write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1));
1898 		write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1));
1899 	}
1900 
1901 	if (is_feat_ras_supported()) {
1902 		write_disr_el1(read_el1_ctx_ras(ctx, disr_el1));
1903 	}
1904 
1905 	if (is_feat_s1pie_supported()) {
1906 		write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1));
1907 		write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1));
1908 	}
1909 
1910 	if (is_feat_s1poe_supported()) {
1911 		write_por_el1(read_el1_ctx_s1poe(ctx, por_el1));
1912 	}
1913 
1914 	if (is_feat_s2poe_supported()) {
1915 		write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1));
1916 	}
1917 
1918 	if (is_feat_tcr2_supported()) {
1919 		write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1));
1920 	}
1921 
1922 	if (is_feat_trf_supported()) {
1923 		write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1));
1924 	}
1925 
1926 	if (is_feat_csv2_2_supported()) {
1927 		write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0));
1928 		write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1));
1929 	}
1930 
1931 	if (is_feat_gcs_supported()) {
1932 		write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1));
1933 		write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1));
1934 		write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1));
1935 		write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0));
1936 	}
1937 
1938 	if (is_feat_the_supported()) {
1939 		write_rcwmask_el1(read_el1_ctx_the(ctx, rcwmask_el1));
1940 		write_rcwsmask_el1(read_el1_ctx_the(ctx, rcwsmask_el1));
1941 	}
1942 
1943 	if (is_feat_sctlr2_supported()) {
1944 		write_sctlr2_el1(read_el1_ctx_sctlr2(ctx, sctlr2_el1));
1945 	}
1946 
1947 	if (is_feat_ls64_accdata_supported()) {
1948 		write_accdata_el1(read_el1_ctx_ls64(ctx, accdata_el1));
1949 	}
1950 }
1951 
1952 /*******************************************************************************
1953  * The next couple of functions are used by runtime services to save and restore
1954  * EL1 context on the 'cpu_context' structure for the specified security state.
1955  ******************************************************************************/
1956 void cm_el1_sysregs_context_save(uint32_t security_state)
1957 {
1958 	cpu_context_t *ctx;
1959 
1960 	ctx = cm_get_context(security_state);
1961 	assert(ctx != NULL);
1962 
1963 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1964 
1965 #if IMAGE_BL31
1966 	if (security_state == SECURE) {
1967 		PUBLISH_EVENT(cm_exited_secure_world);
1968 	} else {
1969 		PUBLISH_EVENT(cm_exited_normal_world);
1970 	}
1971 #endif
1972 }
1973 
1974 void cm_el1_sysregs_context_restore(uint32_t security_state)
1975 {
1976 	cpu_context_t *ctx;
1977 
1978 	ctx = cm_get_context(security_state);
1979 	assert(ctx != NULL);
1980 
1981 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1982 
1983 #if IMAGE_BL31
1984 	if (security_state == SECURE) {
1985 		PUBLISH_EVENT(cm_entering_secure_world);
1986 	} else {
1987 		PUBLISH_EVENT(cm_entering_normal_world);
1988 	}
1989 #endif
1990 }
1991 
1992 #endif /* ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) */
1993 
1994 /*******************************************************************************
1995  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1996  * given security state with the given entrypoint
1997  ******************************************************************************/
1998 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1999 {
2000 	cpu_context_t *ctx;
2001 	el3_state_t *state;
2002 
2003 	ctx = cm_get_context(security_state);
2004 	assert(ctx != NULL);
2005 
2006 	/* Populate EL3 state so that ERET jumps to the correct entry */
2007 	state = get_el3state_ctx(ctx);
2008 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
2009 }
2010 
2011 /*******************************************************************************
2012  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
2013  * pertaining to the given security state
2014  ******************************************************************************/
2015 void cm_set_elr_spsr_el3(uint32_t security_state,
2016 			uintptr_t entrypoint, uint32_t spsr)
2017 {
2018 	cpu_context_t *ctx;
2019 	el3_state_t *state;
2020 
2021 	ctx = cm_get_context(security_state);
2022 	assert(ctx != NULL);
2023 
2024 	/* Populate EL3 state so that ERET jumps to the correct entry */
2025 	state = get_el3state_ctx(ctx);
2026 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
2027 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
2028 }
2029 
2030 /*******************************************************************************
2031  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
2032  * pertaining to the given security state using the value and bit position
2033  * specified in the parameters. It preserves all other bits.
2034  ******************************************************************************/
2035 void cm_write_scr_el3_bit(uint32_t security_state,
2036 			  uint32_t bit_pos,
2037 			  uint32_t value)
2038 {
2039 	cpu_context_t *ctx;
2040 	el3_state_t *state;
2041 	u_register_t scr_el3;
2042 
2043 	ctx = cm_get_context(security_state);
2044 	assert(ctx != NULL);
2045 
2046 	/* Ensure that the bit position is a valid one */
2047 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
2048 
2049 	/* Ensure that the 'value' is only a bit wide */
2050 	assert(value <= 1U);
2051 
2052 	/*
2053 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
2054 	 * and set it to its new value.
2055 	 */
2056 	state = get_el3state_ctx(ctx);
2057 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
2058 	scr_el3 &= ~(1UL << bit_pos);
2059 	scr_el3 |= (u_register_t)value << bit_pos;
2060 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
2061 }
2062 
2063 /*******************************************************************************
2064  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
2065  * given security state.
2066  ******************************************************************************/
2067 u_register_t cm_get_scr_el3(uint32_t security_state)
2068 {
2069 	const cpu_context_t *ctx;
2070 	const el3_state_t *state;
2071 
2072 	ctx = cm_get_context(security_state);
2073 	assert(ctx != NULL);
2074 
2075 	/* Populate EL3 state so that ERET jumps to the correct entry */
2076 	state = get_el3state_ctx(ctx);
2077 	return read_ctx_reg(state, CTX_SCR_EL3);
2078 }
2079 
2080 /*******************************************************************************
2081  * This function is used to program the context that's used for exception
2082  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
2083  * the required security state
2084  ******************************************************************************/
2085 void cm_set_next_eret_context(uint32_t security_state)
2086 {
2087 	cpu_context_t *ctx;
2088 
2089 	ctx = cm_get_context(security_state);
2090 	assert(ctx != NULL);
2091 
2092 	cm_set_next_context(ctx);
2093 }
2094