xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision ae19fef33707700a91b0b672aa784e084a6ca500)
1 /*
2  * Copyright (c) 2013-2022, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_helpers.h>
15 #include <arch_features.h>
16 #include <bl31/interrupt_mgmt.h>
17 #include <common/bl_common.h>
18 #include <context.h>
19 #include <drivers/arm/gicv3.h>
20 #include <lib/el3_runtime/context_mgmt.h>
21 #include <lib/el3_runtime/pubsub_events.h>
22 #include <lib/extensions/amu.h>
23 #include <lib/extensions/mpam.h>
24 #include <lib/extensions/sme.h>
25 #include <lib/extensions/spe.h>
26 #include <lib/extensions/sve.h>
27 #include <lib/extensions/sys_reg_trace.h>
28 #include <lib/extensions/trbe.h>
29 #include <lib/extensions/trf.h>
30 #include <lib/utils.h>
31 
32 #if ENABLE_FEAT_TWED
33 /* Make sure delay value fits within the range(0-15) */
34 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
35 #endif /* ENABLE_FEAT_TWED */
36 
37 static void manage_extensions_secure(cpu_context_t *ctx);
38 /******************************************************************************
39  * This function performs initializations that are specific to SECURE state
40  * and updates the cpu context specified by 'ctx'.
41  *****************************************************************************/
42 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
43 {
44 	u_register_t scr_el3;
45 	el3_state_t *state;
46 
47 	state = get_el3state_ctx(ctx);
48 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
49 
50 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
51 	/*
52 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
53 	 * indicated by the interrupt routing model for BL31.
54 	 */
55 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
56 #endif
57 
58 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
59 	/* Get Memory Tagging Extension support level */
60 	unsigned int mte = get_armv8_5_mte_support();
61 #endif
62 	/*
63 	 * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS
64 	 * is set, or when MTE is only implemented at EL0.
65 	 */
66 #if CTX_INCLUDE_MTE_REGS
67 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
68 	scr_el3 |= SCR_ATA_BIT;
69 #else
70 	if (mte == MTE_IMPLEMENTED_EL0) {
71 		scr_el3 |= SCR_ATA_BIT;
72 	}
73 #endif /* CTX_INCLUDE_MTE_REGS */
74 
75 	/* Enable S-EL2 if the next EL is EL2 and S-EL2 is present */
76 	if ((GET_EL(ep->spsr) == MODE_EL2) && is_armv8_4_sel2_present()) {
77 		if (GET_RW(ep->spsr) != MODE_RW_64) {
78 			ERROR("S-EL2 can not be used in AArch32\n.");
79 			panic();
80 		}
81 
82 		scr_el3 |= SCR_EEL2_BIT;
83 	}
84 
85 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
86 
87 	manage_extensions_secure(ctx);
88 }
89 
90 #if ENABLE_RME
91 /******************************************************************************
92  * This function performs initializations that are specific to REALM state
93  * and updates the cpu context specified by 'ctx'.
94  *****************************************************************************/
95 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
96 {
97 	u_register_t scr_el3;
98 	el3_state_t *state;
99 
100 	state = get_el3state_ctx(ctx);
101 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
102 
103 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT | SCR_EnSCXT_BIT;
104 
105 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
106 }
107 #endif /* ENABLE_RME */
108 
109 /******************************************************************************
110  * This function performs initializations that are specific to NON-SECURE state
111  * and updates the cpu context specified by 'ctx'.
112  *****************************************************************************/
113 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
114 {
115 	u_register_t scr_el3;
116 	el3_state_t *state;
117 
118 	state = get_el3state_ctx(ctx);
119 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
120 
121 	/* SCR_NS: Set the NS bit */
122 	scr_el3 |= SCR_NS_BIT;
123 
124 #if !CTX_INCLUDE_PAUTH_REGS
125 	/*
126 	 * If the pointer authentication registers aren't saved during world
127 	 * switches the value of the registers can be leaked from the Secure to
128 	 * the Non-secure world. To prevent this, rather than enabling pointer
129 	 * authentication everywhere, we only enable it in the Non-secure world.
130 	 *
131 	 * If the Secure world wants to use pointer authentication,
132 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
133 	 */
134 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
135 #endif /* !CTX_INCLUDE_PAUTH_REGS */
136 
137 	/* Allow access to Allocation Tags when MTE is implemented. */
138 	scr_el3 |= SCR_ATA_BIT;
139 
140 #ifdef IMAGE_BL31
141 	/*
142 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
143 	 *  indicated by the interrupt routing model for BL31.
144 	 */
145 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
146 #endif
147 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
148 
149 	/* Initialize EL2 context registers */
150 #if CTX_INCLUDE_EL2_REGS
151 
152 	/*
153 	 * Initialize SCTLR_EL2 context register using Endianness value
154 	 * taken from the entrypoint attribute.
155 	 */
156 	u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
157 	sctlr_el2 |= SCTLR_EL2_RES1;
158 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2,
159 			sctlr_el2);
160 
161 	/*
162 	 * The GICv3 driver initializes the ICC_SRE_EL2 register during
163 	 * platform setup. Use the same setting for the corresponding
164 	 * context register to make sure the correct bits are set when
165 	 * restoring NS context.
166 	 */
167 	u_register_t icc_sre_el2 = read_icc_sre_el2();
168 	icc_sre_el2 |= (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT);
169 	icc_sre_el2 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
170 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_ICC_SRE_EL2,
171 			icc_sre_el2);
172 #endif /* CTX_INCLUDE_EL2_REGS */
173 }
174 
175 /*******************************************************************************
176  * The following function performs initialization of the cpu_context 'ctx'
177  * for first use that is common to all security states, and sets the
178  * initial entrypoint state as specified by the entry_point_info structure.
179  *
180  * The EE and ST attributes are used to configure the endianness and secure
181  * timer availability for the new execution context.
182  ******************************************************************************/
183 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
184 {
185 	u_register_t scr_el3;
186 	el3_state_t *state;
187 	gp_regs_t *gp_regs;
188 	u_register_t sctlr_elx, actlr_elx;
189 
190 	/* Clear any residual register values from the context */
191 	zeromem(ctx, sizeof(*ctx));
192 
193 	/*
194 	 * SCR_EL3 was initialised during reset sequence in macro
195 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
196 	 * affect the next EL.
197 	 *
198 	 * The following fields are initially set to zero and then updated to
199 	 * the required value depending on the state of the SPSR_EL3 and the
200 	 * Security state and entrypoint attributes of the next EL.
201 	 */
202 	scr_el3 = read_scr();
203 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
204 			SCR_ST_BIT | SCR_HCE_BIT | SCR_NSE_BIT);
205 
206 	/*
207 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
208 	 *  Exception level as specified by SPSR.
209 	 */
210 	if (GET_RW(ep->spsr) == MODE_RW_64) {
211 		scr_el3 |= SCR_RW_BIT;
212 	}
213 
214 	/*
215 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
216 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
217 	 *  by the entrypoint attributes.
218 	 */
219 	if (EP_GET_ST(ep->h.attr) != 0U) {
220 		scr_el3 |= SCR_ST_BIT;
221 	}
222 
223 	/*
224 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
225 	 * SCR_EL3.HXEn.
226 	 */
227 #if ENABLE_FEAT_HCX
228 	scr_el3 |= SCR_HXEn_BIT;
229 #endif
230 
231 #if RAS_TRAP_LOWER_EL_ERR_ACCESS
232 	/*
233 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
234 	 * and RAS ERX registers from EL1 and EL2 are trapped to EL3.
235 	 */
236 	scr_el3 |= SCR_TERR_BIT;
237 #endif
238 
239 #if !HANDLE_EA_EL3_FIRST
240 	/*
241 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
242 	 * to EL3 when executing at a lower EL. When executing at EL3, External
243 	 * Aborts are taken to EL3.
244 	 */
245 	scr_el3 &= ~SCR_EA_BIT;
246 #endif
247 
248 #if FAULT_INJECTION_SUPPORT
249 	/* Enable fault injection from lower ELs */
250 	scr_el3 |= SCR_FIEN_BIT;
251 #endif
252 
253 	/*
254 	 * CPTR_EL3 was initialized out of reset, copy that value to the
255 	 * context register.
256 	 */
257 	write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3());
258 
259 	/*
260 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
261 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
262 	 * next mode is Hyp.
263 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
264 	 * same conditions as HVC instructions and when the processor supports
265 	 * ARMv8.6-FGT.
266 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
267 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
268 	 * and when the processor supports ECV.
269 	 */
270 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
271 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
272 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
273 		scr_el3 |= SCR_HCE_BIT;
274 
275 		if (is_armv8_6_fgt_present()) {
276 			scr_el3 |= SCR_FGTEN_BIT;
277 		}
278 
279 		if (get_armv8_6_ecv_support()
280 		    == ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) {
281 			scr_el3 |= SCR_ECVEN_BIT;
282 		}
283 	}
284 
285 	/*
286 	 * FEAT_AMUv1p1 virtual offset registers are only accessible from EL3
287 	 * and EL2, when clear, this bit traps accesses from EL2 so we set it
288 	 * to 1 when EL2 is present.
289 	 */
290 	if (is_armv8_6_feat_amuv1p1_present() &&
291 		(el_implemented(2) != EL_IMPL_NONE)) {
292 		scr_el3 |= SCR_AMVOFFEN_BIT;
293 	}
294 
295 	/*
296 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
297 	 * execution state setting all fields rather than relying of the hw.
298 	 * Some fields have architecturally UNKNOWN reset values and these are
299 	 * set to zero.
300 	 *
301 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
302 	 *
303 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
304 	 *  required by PSCI specification)
305 	 */
306 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
307 	if (GET_RW(ep->spsr) == MODE_RW_64) {
308 		sctlr_elx |= SCTLR_EL1_RES1;
309 	} else {
310 		/*
311 		 * If the target execution state is AArch32 then the following
312 		 * fields need to be set.
313 		 *
314 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
315 		 *  instructions are not trapped to EL1.
316 		 *
317 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
318 		 *  instructions are not trapped to EL1.
319 		 *
320 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
321 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
322 		 */
323 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
324 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
325 	}
326 
327 #if ERRATA_A75_764081
328 	/*
329 	 * If workaround of errata 764081 for Cortex-A75 is used then set
330 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
331 	 */
332 	sctlr_elx |= SCTLR_IESB_BIT;
333 #endif
334 
335 #if ENABLE_FEAT_TWED
336 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
337 	/* Set delay in SCR_EL3 */
338 	scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
339 	scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
340 			<< SCR_TWEDEL_SHIFT);
341 
342 	/* Enable WFE delay */
343 	scr_el3 |= SCR_TWEDEn_BIT;
344 #endif /* ENABLE_FEAT_TWED */
345 
346 	/*
347 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
348 	 * and other EL2 registers are set up by cm_prepare_el3_exit() as they
349 	 * are not part of the stored cpu_context.
350 	 */
351 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
352 
353 	/*
354 	 * Base the context ACTLR_EL1 on the current value, as it is
355 	 * implementation defined. The context restore process will write
356 	 * the value from the context to the actual register and can cause
357 	 * problems for processor cores that don't expect certain bits to
358 	 * be zero.
359 	 */
360 	actlr_elx = read_actlr_el1();
361 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
362 
363 	/*
364 	 * Populate EL3 state so that we've the right context
365 	 * before doing ERET
366 	 */
367 	state = get_el3state_ctx(ctx);
368 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
369 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
370 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
371 
372 	/*
373 	 * Store the X0-X7 value from the entrypoint into the context
374 	 * Use memcpy as we are in control of the layout of the structures
375 	 */
376 	gp_regs = get_gpregs_ctx(ctx);
377 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
378 }
379 
380 /*******************************************************************************
381  * Context management library initialization routine. This library is used by
382  * runtime services to share pointers to 'cpu_context' structures for secure
383  * non-secure and realm states. Management of the structures and their associated
384  * memory is not done by the context management library e.g. the PSCI service
385  * manages the cpu context used for entry from and exit to the non-secure state.
386  * The Secure payload dispatcher service manages the context(s) corresponding to
387  * the secure state. It also uses this library to get access to the non-secure
388  * state cpu context pointers.
389  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
390  * which will be used for programming an entry into a lower EL. The same context
391  * will be used to save state upon exception entry from that EL.
392  ******************************************************************************/
393 void __init cm_init(void)
394 {
395 	/*
396 	 * The context management library has only global data to intialize, but
397 	 * that will be done when the BSS is zeroed out.
398 	 */
399 }
400 
401 /*******************************************************************************
402  * This is the high-level function used to initialize the cpu_context 'ctx' for
403  * first use. It performs initializations that are common to all security states
404  * and initializations specific to the security state specified in 'ep'
405  ******************************************************************************/
406 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
407 {
408 	unsigned int security_state;
409 
410 	assert(ctx != NULL);
411 
412 	/*
413 	 * Perform initializations that are common
414 	 * to all security states
415 	 */
416 	setup_context_common(ctx, ep);
417 
418 	security_state = GET_SECURITY_STATE(ep->h.attr);
419 
420 	/* Perform security state specific initializations */
421 	switch (security_state) {
422 	case SECURE:
423 		setup_secure_context(ctx, ep);
424 		break;
425 #if ENABLE_RME
426 	case REALM:
427 		setup_realm_context(ctx, ep);
428 		break;
429 #endif
430 	case NON_SECURE:
431 		setup_ns_context(ctx, ep);
432 		break;
433 	default:
434 		ERROR("Invalid security state\n");
435 		panic();
436 		break;
437 	}
438 }
439 
440 /*******************************************************************************
441  * Enable architecture extensions on first entry to Non-secure world.
442  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
443  * it is zero.
444  ******************************************************************************/
445 static void manage_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx)
446 {
447 #if IMAGE_BL31
448 #if ENABLE_SPE_FOR_LOWER_ELS
449 	spe_enable(el2_unused);
450 #endif
451 
452 #if ENABLE_AMU
453 	amu_enable(el2_unused, ctx);
454 #endif
455 
456 #if ENABLE_SME_FOR_NS
457 	/* Enable SME, SVE, and FPU/SIMD for non-secure world. */
458 	sme_enable(ctx);
459 #elif ENABLE_SVE_FOR_NS
460 	/* Enable SVE and FPU/SIMD for non-secure world. */
461 	sve_enable(ctx);
462 #endif
463 
464 #if ENABLE_MPAM_FOR_LOWER_ELS
465 	mpam_enable(el2_unused);
466 #endif
467 
468 #if ENABLE_TRBE_FOR_NS
469 	trbe_enable();
470 #endif /* ENABLE_TRBE_FOR_NS */
471 
472 #if ENABLE_SYS_REG_TRACE_FOR_NS
473 	sys_reg_trace_enable(ctx);
474 #endif /* ENABLE_SYS_REG_TRACE_FOR_NS */
475 
476 #if ENABLE_TRF_FOR_NS
477 	trf_enable();
478 #endif /* ENABLE_TRF_FOR_NS */
479 #endif
480 }
481 
482 /*******************************************************************************
483  * Enable architecture extensions on first entry to Secure world.
484  ******************************************************************************/
485 static void manage_extensions_secure(cpu_context_t *ctx)
486 {
487 #if IMAGE_BL31
488  #if ENABLE_SME_FOR_NS
489   #if ENABLE_SME_FOR_SWD
490 	/*
491 	 * Enable SME, SVE, FPU/SIMD in secure context, secure manager must
492 	 * ensure SME, SVE, and FPU/SIMD context properly managed.
493 	 */
494 	sme_enable(ctx);
495   #else /* ENABLE_SME_FOR_SWD */
496 	/*
497 	 * Disable SME, SVE, FPU/SIMD in secure context so non-secure world can
498 	 * safely use the associated registers.
499 	 */
500 	sme_disable(ctx);
501   #endif /* ENABLE_SME_FOR_SWD */
502  #elif ENABLE_SVE_FOR_NS
503   #if ENABLE_SVE_FOR_SWD
504 	/*
505 	 * Enable SVE and FPU in secure context, secure manager must ensure that
506 	 * the SVE and FPU register contexts are properly managed.
507 	 */
508 	sve_enable(ctx);
509  #else /* ENABLE_SVE_FOR_SWD */
510 	/*
511 	 * Disable SVE and FPU in secure context so non-secure world can safely
512 	 * use them.
513 	 */
514 	sve_disable(ctx);
515   #endif /* ENABLE_SVE_FOR_SWD */
516  #endif /* ENABLE_SVE_FOR_NS */
517 #endif /* IMAGE_BL31 */
518 }
519 
520 /*******************************************************************************
521  * The following function initializes the cpu_context for a CPU specified by
522  * its `cpu_idx` for first use, and sets the initial entrypoint state as
523  * specified by the entry_point_info structure.
524  ******************************************************************************/
525 void cm_init_context_by_index(unsigned int cpu_idx,
526 			      const entry_point_info_t *ep)
527 {
528 	cpu_context_t *ctx;
529 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
530 	cm_setup_context(ctx, ep);
531 }
532 
533 /*******************************************************************************
534  * The following function initializes the cpu_context for the current CPU
535  * for first use, and sets the initial entrypoint state as specified by the
536  * entry_point_info structure.
537  ******************************************************************************/
538 void cm_init_my_context(const entry_point_info_t *ep)
539 {
540 	cpu_context_t *ctx;
541 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
542 	cm_setup_context(ctx, ep);
543 }
544 
545 /*******************************************************************************
546  * Prepare the CPU system registers for first entry into realm, secure, or
547  * normal world.
548  *
549  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
550  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
551  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
552  * For all entries, the EL1 registers are initialized from the cpu_context
553  ******************************************************************************/
554 void cm_prepare_el3_exit(uint32_t security_state)
555 {
556 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
557 	cpu_context_t *ctx = cm_get_context(security_state);
558 	bool el2_unused = false;
559 	uint64_t hcr_el2 = 0U;
560 
561 	assert(ctx != NULL);
562 
563 	if (security_state == NON_SECURE) {
564 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
565 						 CTX_SCR_EL3);
566 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
567 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
568 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
569 							   CTX_SCTLR_EL1);
570 			sctlr_elx &= SCTLR_EE_BIT;
571 			sctlr_elx |= SCTLR_EL2_RES1;
572 #if ERRATA_A75_764081
573 			/*
574 			 * If workaround of errata 764081 for Cortex-A75 is used
575 			 * then set SCTLR_EL2.IESB to enable Implicit Error
576 			 * Synchronization Barrier.
577 			 */
578 			sctlr_elx |= SCTLR_IESB_BIT;
579 #endif
580 			write_sctlr_el2(sctlr_elx);
581 		} else if (el_implemented(2) != EL_IMPL_NONE) {
582 			el2_unused = true;
583 
584 			/*
585 			 * EL2 present but unused, need to disable safely.
586 			 * SCTLR_EL2 can be ignored in this case.
587 			 *
588 			 * Set EL2 register width appropriately: Set HCR_EL2
589 			 * field to match SCR_EL3.RW.
590 			 */
591 			if ((scr_el3 & SCR_RW_BIT) != 0U)
592 				hcr_el2 |= HCR_RW_BIT;
593 
594 			/*
595 			 * For Armv8.3 pointer authentication feature, disable
596 			 * traps to EL2 when accessing key registers or using
597 			 * pointer authentication instructions from lower ELs.
598 			 */
599 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
600 
601 			write_hcr_el2(hcr_el2);
602 
603 			/*
604 			 * Initialise CPTR_EL2 setting all fields rather than
605 			 * relying on the hw. All fields have architecturally
606 			 * UNKNOWN reset values.
607 			 *
608 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
609 			 *  accesses to the CPACR_EL1 or CPACR from both
610 			 *  Execution states do not trap to EL2.
611 			 *
612 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
613 			 *  register accesses to the trace registers from both
614 			 *  Execution states do not trap to EL2.
615 			 *  If PE trace unit System registers are not implemented
616 			 *  then this bit is reserved, and must be set to zero.
617 			 *
618 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
619 			 *  to SIMD and floating-point functionality from both
620 			 *  Execution states do not trap to EL2.
621 			 */
622 			write_cptr_el2(CPTR_EL2_RESET_VAL &
623 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
624 					| CPTR_EL2_TFP_BIT));
625 
626 			/*
627 			 * Initialise CNTHCTL_EL2. All fields are
628 			 * architecturally UNKNOWN on reset and are set to zero
629 			 * except for field(s) listed below.
630 			 *
631 			 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to
632 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
633 			 *  physical timer registers.
634 			 *
635 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
636 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
637 			 *  physical counter registers.
638 			 */
639 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
640 						EL1PCEN_BIT | EL1PCTEN_BIT);
641 
642 			/*
643 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
644 			 * architecturally UNKNOWN value.
645 			 */
646 			write_cntvoff_el2(0);
647 
648 			/*
649 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
650 			 * MPIDR_EL1 respectively.
651 			 */
652 			write_vpidr_el2(read_midr_el1());
653 			write_vmpidr_el2(read_mpidr_el1());
654 
655 			/*
656 			 * Initialise VTTBR_EL2. All fields are architecturally
657 			 * UNKNOWN on reset.
658 			 *
659 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
660 			 *  2 address translation is disabled, cache maintenance
661 			 *  operations depend on the VMID.
662 			 *
663 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
664 			 *  translation is disabled.
665 			 */
666 			write_vttbr_el2(VTTBR_RESET_VAL &
667 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
668 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
669 
670 			/*
671 			 * Initialise MDCR_EL2, setting all fields rather than
672 			 * relying on hw. Some fields are architecturally
673 			 * UNKNOWN on reset.
674 			 *
675 			 * MDCR_EL2.HLP: Set to one so that event counter
676 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
677 			 *  occurs on the increment that changes
678 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
679 			 *  implemented. This bit is RES0 in versions of the
680 			 *  architecture earlier than ARMv8.5, setting it to 1
681 			 *  doesn't have any effect on them.
682 			 *
683 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
684 			 *  Filter Control register TRFCR_EL1 at EL1 is not
685 			 *  trapped to EL2. This bit is RES0 in versions of
686 			 *  the architecture earlier than ARMv8.4.
687 			 *
688 			 * MDCR_EL2.HPMD: Set to one so that event counting is
689 			 *  prohibited at EL2. This bit is RES0 in versions of
690 			 *  the architecture earlier than ARMv8.1, setting it
691 			 *  to 1 doesn't have any effect on them.
692 			 *
693 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
694 			 *  Statistical Profiling control registers from EL1
695 			 *  do not trap to EL2. This bit is RES0 when SPE is
696 			 *  not implemented.
697 			 *
698 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
699 			 *  EL1 System register accesses to the Debug ROM
700 			 *  registers are not trapped to EL2.
701 			 *
702 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
703 			 *  System register accesses to the powerdown debug
704 			 *  registers are not trapped to EL2.
705 			 *
706 			 * MDCR_EL2.TDA: Set to zero so that System register
707 			 *  accesses to the debug registers do not trap to EL2.
708 			 *
709 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
710 			 *  are not routed to EL2.
711 			 *
712 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
713 			 *  Monitors.
714 			 *
715 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
716 			 *  EL1 accesses to all Performance Monitors registers
717 			 *  are not trapped to EL2.
718 			 *
719 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
720 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
721 			 *  trapped to EL2.
722 			 *
723 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
724 			 *  architecturally-defined reset value.
725 			 *
726 			 * MDCR_EL2.E2TB: Set to zero so that the trace Buffer
727 			 *  owning exception level is NS-EL1 and, tracing is
728 			 *  prohibited at NS-EL2. These bits are RES0 when
729 			 *  FEAT_TRBE is not implemented.
730 			 */
731 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
732 				     MDCR_EL2_HPMD) |
733 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
734 				   >> PMCR_EL0_N_SHIFT)) &
735 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
736 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
737 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
738 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
739 				     MDCR_EL2_TPMCR_BIT |
740 				     MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1));
741 
742 			write_mdcr_el2(mdcr_el2);
743 
744 			/*
745 			 * Initialise HSTR_EL2. All fields are architecturally
746 			 * UNKNOWN on reset.
747 			 *
748 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
749 			 *  Non-secure EL0 or EL1 accesses to System registers
750 			 *  do not trap to EL2.
751 			 */
752 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
753 			/*
754 			 * Initialise CNTHP_CTL_EL2. All fields are
755 			 * architecturally UNKNOWN on reset.
756 			 *
757 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
758 			 *  physical timer and prevent timer interrupts.
759 			 */
760 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
761 						~(CNTHP_CTL_ENABLE_BIT));
762 		}
763 		manage_extensions_nonsecure(el2_unused, ctx);
764 	}
765 
766 	cm_el1_sysregs_context_restore(security_state);
767 	cm_set_next_eret_context(security_state);
768 }
769 
770 #if CTX_INCLUDE_EL2_REGS
771 /*******************************************************************************
772  * Save EL2 sysreg context
773  ******************************************************************************/
774 void cm_el2_sysregs_context_save(uint32_t security_state)
775 {
776 	u_register_t scr_el3 = read_scr();
777 
778 	/*
779 	 * Always save the non-secure and realm EL2 context, only save the
780 	 * S-EL2 context if S-EL2 is enabled.
781 	 */
782 	if ((security_state != SECURE) ||
783 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
784 		cpu_context_t *ctx;
785 
786 		ctx = cm_get_context(security_state);
787 		assert(ctx != NULL);
788 
789 		el2_sysregs_context_save(get_el2_sysregs_ctx(ctx));
790 	}
791 }
792 
793 /*******************************************************************************
794  * Restore EL2 sysreg context
795  ******************************************************************************/
796 void cm_el2_sysregs_context_restore(uint32_t security_state)
797 {
798 	u_register_t scr_el3 = read_scr();
799 
800 	/*
801 	 * Always restore the non-secure and realm EL2 context, only restore the
802 	 * S-EL2 context if S-EL2 is enabled.
803 	 */
804 	if ((security_state != SECURE) ||
805 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
806 		cpu_context_t *ctx;
807 
808 		ctx = cm_get_context(security_state);
809 		assert(ctx != NULL);
810 
811 		el2_sysregs_context_restore(get_el2_sysregs_ctx(ctx));
812 	}
813 }
814 #endif /* CTX_INCLUDE_EL2_REGS */
815 
816 /*******************************************************************************
817  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
818  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
819  * updating EL1 and EL2 registers. Otherwise, it calls the generic
820  * cm_prepare_el3_exit function.
821  ******************************************************************************/
822 void cm_prepare_el3_exit_ns(void)
823 {
824 #if CTX_INCLUDE_EL2_REGS
825 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
826 	assert(ctx != NULL);
827 
828 	/*
829 	 * Currently some extensions are configured using
830 	 * direct register updates. Therefore, do this here
831 	 * instead of when setting up context.
832 	 */
833 	manage_extensions_nonsecure(0, ctx);
834 
835 	/*
836 	 * Set the NS bit to be able to access the ICC_SRE_EL2
837 	 * register when restoring context.
838 	 */
839 	write_scr_el3(read_scr_el3() | SCR_NS_BIT);
840 
841 	/* Restore EL2 and EL1 sysreg contexts */
842 	cm_el2_sysregs_context_restore(NON_SECURE);
843 	cm_el1_sysregs_context_restore(NON_SECURE);
844 	cm_set_next_eret_context(NON_SECURE);
845 #else
846 	cm_prepare_el3_exit(NON_SECURE);
847 #endif /* CTX_INCLUDE_EL2_REGS */
848 }
849 
850 /*******************************************************************************
851  * The next four functions are used by runtime services to save and restore
852  * EL1 context on the 'cpu_context' structure for the specified security
853  * state.
854  ******************************************************************************/
855 void cm_el1_sysregs_context_save(uint32_t security_state)
856 {
857 	cpu_context_t *ctx;
858 
859 	ctx = cm_get_context(security_state);
860 	assert(ctx != NULL);
861 
862 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
863 
864 #if IMAGE_BL31
865 	if (security_state == SECURE)
866 		PUBLISH_EVENT(cm_exited_secure_world);
867 	else
868 		PUBLISH_EVENT(cm_exited_normal_world);
869 #endif
870 }
871 
872 void cm_el1_sysregs_context_restore(uint32_t security_state)
873 {
874 	cpu_context_t *ctx;
875 
876 	ctx = cm_get_context(security_state);
877 	assert(ctx != NULL);
878 
879 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
880 
881 #if IMAGE_BL31
882 	if (security_state == SECURE)
883 		PUBLISH_EVENT(cm_entering_secure_world);
884 	else
885 		PUBLISH_EVENT(cm_entering_normal_world);
886 #endif
887 }
888 
889 /*******************************************************************************
890  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
891  * given security state with the given entrypoint
892  ******************************************************************************/
893 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
894 {
895 	cpu_context_t *ctx;
896 	el3_state_t *state;
897 
898 	ctx = cm_get_context(security_state);
899 	assert(ctx != NULL);
900 
901 	/* Populate EL3 state so that ERET jumps to the correct entry */
902 	state = get_el3state_ctx(ctx);
903 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
904 }
905 
906 /*******************************************************************************
907  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
908  * pertaining to the given security state
909  ******************************************************************************/
910 void cm_set_elr_spsr_el3(uint32_t security_state,
911 			uintptr_t entrypoint, uint32_t spsr)
912 {
913 	cpu_context_t *ctx;
914 	el3_state_t *state;
915 
916 	ctx = cm_get_context(security_state);
917 	assert(ctx != NULL);
918 
919 	/* Populate EL3 state so that ERET jumps to the correct entry */
920 	state = get_el3state_ctx(ctx);
921 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
922 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
923 }
924 
925 /*******************************************************************************
926  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
927  * pertaining to the given security state using the value and bit position
928  * specified in the parameters. It preserves all other bits.
929  ******************************************************************************/
930 void cm_write_scr_el3_bit(uint32_t security_state,
931 			  uint32_t bit_pos,
932 			  uint32_t value)
933 {
934 	cpu_context_t *ctx;
935 	el3_state_t *state;
936 	u_register_t scr_el3;
937 
938 	ctx = cm_get_context(security_state);
939 	assert(ctx != NULL);
940 
941 	/* Ensure that the bit position is a valid one */
942 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
943 
944 	/* Ensure that the 'value' is only a bit wide */
945 	assert(value <= 1U);
946 
947 	/*
948 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
949 	 * and set it to its new value.
950 	 */
951 	state = get_el3state_ctx(ctx);
952 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
953 	scr_el3 &= ~(1UL << bit_pos);
954 	scr_el3 |= (u_register_t)value << bit_pos;
955 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
956 }
957 
958 /*******************************************************************************
959  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
960  * given security state.
961  ******************************************************************************/
962 u_register_t cm_get_scr_el3(uint32_t security_state)
963 {
964 	cpu_context_t *ctx;
965 	el3_state_t *state;
966 
967 	ctx = cm_get_context(security_state);
968 	assert(ctx != NULL);
969 
970 	/* Populate EL3 state so that ERET jumps to the correct entry */
971 	state = get_el3state_ctx(ctx);
972 	return read_ctx_reg(state, CTX_SCR_EL3);
973 }
974 
975 /*******************************************************************************
976  * This function is used to program the context that's used for exception
977  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
978  * the required security state
979  ******************************************************************************/
980 void cm_set_next_eret_context(uint32_t security_state)
981 {
982 	cpu_context_t *ctx;
983 
984 	ctx = cm_get_context(security_state);
985 	assert(ctx != NULL);
986 
987 	cm_set_next_context(ctx);
988 }
989