xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision ad8b51418e3c9e19ddc957424ab19386711ba7ee)
1 /*
2  * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/cpu_data.h>
24 #include <lib/el3_runtime/pubsub_events.h>
25 #include <lib/extensions/amu.h>
26 #include <lib/extensions/brbe.h>
27 #include <lib/extensions/debug_v8p9.h>
28 #include <lib/extensions/mpam.h>
29 #include <lib/extensions/pmuv3.h>
30 #include <lib/extensions/sme.h>
31 #include <lib/extensions/spe.h>
32 #include <lib/extensions/sve.h>
33 #include <lib/extensions/sys_reg_trace.h>
34 #include <lib/extensions/trbe.h>
35 #include <lib/extensions/trf.h>
36 #include <lib/utils.h>
37 
38 #if ENABLE_FEAT_TWED
39 /* Make sure delay value fits within the range(0-15) */
40 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
41 #endif /* ENABLE_FEAT_TWED */
42 
43 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
44 static bool has_secure_perworld_init;
45 
46 static void manage_extensions_common(cpu_context_t *ctx);
47 static void manage_extensions_nonsecure(cpu_context_t *ctx);
48 static void manage_extensions_secure(cpu_context_t *ctx);
49 static void manage_extensions_secure_per_world(void);
50 
51 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
52 {
53 	u_register_t sctlr_elx, actlr_elx;
54 
55 	/*
56 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
57 	 * execution state setting all fields rather than relying on the hw.
58 	 * Some fields have architecturally UNKNOWN reset values and these are
59 	 * set to zero.
60 	 *
61 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
62 	 *
63 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
64 	 * required by PSCI specification)
65 	 */
66 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
67 	if (GET_RW(ep->spsr) == MODE_RW_64) {
68 		sctlr_elx |= SCTLR_EL1_RES1;
69 	} else {
70 		/*
71 		 * If the target execution state is AArch32 then the following
72 		 * fields need to be set.
73 		 *
74 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
75 		 *  instructions are not trapped to EL1.
76 		 *
77 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
78 		 *  instructions are not trapped to EL1.
79 		 *
80 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
81 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
82 		 */
83 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
84 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
85 	}
86 
87 #if ERRATA_A75_764081
88 	/*
89 	 * If workaround of errata 764081 for Cortex-A75 is used then set
90 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
91 	 */
92 	sctlr_elx |= SCTLR_IESB_BIT;
93 #endif
94 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
95 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
96 
97 	/*
98 	 * Base the context ACTLR_EL1 on the current value, as it is
99 	 * implementation defined. The context restore process will write
100 	 * the value from the context to the actual register and can cause
101 	 * problems for processor cores that don't expect certain bits to
102 	 * be zero.
103 	 */
104 	actlr_elx = read_actlr_el1();
105 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
106 }
107 
108 /******************************************************************************
109  * This function performs initializations that are specific to SECURE state
110  * and updates the cpu context specified by 'ctx'.
111  *****************************************************************************/
112 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
113 {
114 	u_register_t scr_el3;
115 	el3_state_t *state;
116 
117 	state = get_el3state_ctx(ctx);
118 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
119 
120 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
121 	/*
122 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
123 	 * indicated by the interrupt routing model for BL31.
124 	 */
125 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
126 #endif
127 
128 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
129 	if (is_feat_mte2_supported()) {
130 		scr_el3 |= SCR_ATA_BIT;
131 	}
132 
133 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
134 
135 	/*
136 	 * Initialize EL1 context registers unless SPMC is running
137 	 * at S-EL2.
138 	 */
139 #if !SPMD_SPM_AT_SEL2
140 	setup_el1_context(ctx, ep);
141 #endif
142 
143 	manage_extensions_secure(ctx);
144 
145 	/**
146 	 * manage_extensions_secure_per_world api has to be executed once,
147 	 * as the registers getting initialised, maintain constant value across
148 	 * all the cpus for the secure world.
149 	 * Henceforth, this check ensures that the registers are initialised once
150 	 * and avoids re-initialization from multiple cores.
151 	 */
152 	if (!has_secure_perworld_init) {
153 		manage_extensions_secure_per_world();
154 	}
155 
156 }
157 
158 #if ENABLE_RME
159 /******************************************************************************
160  * This function performs initializations that are specific to REALM state
161  * and updates the cpu context specified by 'ctx'.
162  *****************************************************************************/
163 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
164 {
165 	u_register_t scr_el3;
166 	el3_state_t *state;
167 
168 	state = get_el3state_ctx(ctx);
169 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
170 
171 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
172 
173 	/* CSV2 version 2 and above */
174 	if (is_feat_csv2_2_supported()) {
175 		/* Enable access to the SCXTNUM_ELx registers. */
176 		scr_el3 |= SCR_EnSCXT_BIT;
177 	}
178 
179 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
180 }
181 #endif /* ENABLE_RME */
182 
183 /******************************************************************************
184  * This function performs initializations that are specific to NON-SECURE state
185  * and updates the cpu context specified by 'ctx'.
186  *****************************************************************************/
187 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
188 {
189 	u_register_t scr_el3;
190 	el3_state_t *state;
191 
192 	state = get_el3state_ctx(ctx);
193 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
194 
195 	/* SCR_NS: Set the NS bit */
196 	scr_el3 |= SCR_NS_BIT;
197 
198 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
199 	if (is_feat_mte2_supported()) {
200 		scr_el3 |= SCR_ATA_BIT;
201 	}
202 
203 #if !CTX_INCLUDE_PAUTH_REGS
204 	/*
205 	 * Pointer Authentication feature, if present, is always enabled by default
206 	 * for Non secure lower exception levels. We do not have an explicit
207 	 * flag to set it.
208 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
209 	 * exception levels of secure and realm worlds.
210 	 *
211 	 * To prevent the leakage between the worlds during world switch,
212 	 * we enable it only for the non-secure world.
213 	 *
214 	 * If the Secure/realm world wants to use pointer authentication,
215 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
216 	 * it will be enabled globally for all the contexts.
217 	 *
218 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
219 	 *  other than EL3
220 	 *
221 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
222 	 *  than EL3
223 	 */
224 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
225 
226 #endif /* CTX_INCLUDE_PAUTH_REGS */
227 
228 #if HANDLE_EA_EL3_FIRST_NS
229 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
230 	scr_el3 |= SCR_EA_BIT;
231 #endif
232 
233 #if RAS_TRAP_NS_ERR_REC_ACCESS
234 	/*
235 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
236 	 * and RAS ERX registers from EL1 and EL2(from any security state)
237 	 * are trapped to EL3.
238 	 * Set here to trap only for NS EL1/EL2
239 	 *
240 	 */
241 	scr_el3 |= SCR_TERR_BIT;
242 #endif
243 
244 	/* CSV2 version 2 and above */
245 	if (is_feat_csv2_2_supported()) {
246 		/* Enable access to the SCXTNUM_ELx registers. */
247 		scr_el3 |= SCR_EnSCXT_BIT;
248 	}
249 
250 #ifdef IMAGE_BL31
251 	/*
252 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
253 	 *  indicated by the interrupt routing model for BL31.
254 	 */
255 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
256 #endif
257 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
258 
259 	/* Initialize EL1 context registers */
260 	setup_el1_context(ctx, ep);
261 
262 	/* Initialize EL2 context registers */
263 #if CTX_INCLUDE_EL2_REGS
264 
265 	/*
266 	 * Initialize SCTLR_EL2 context register with reset value.
267 	 */
268 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
269 
270 	if (is_feat_hcx_supported()) {
271 		/*
272 		 * Initialize register HCRX_EL2 with its init value.
273 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
274 		 * chance that this can lead to unexpected behavior in lower
275 		 * ELs that have not been updated since the introduction of
276 		 * this feature if not properly initialized, especially when
277 		 * it comes to those bits that enable/disable traps.
278 		 */
279 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
280 			HCRX_EL2_INIT_VAL);
281 	}
282 
283 	if (is_feat_fgt_supported()) {
284 		/*
285 		 * Initialize HFG*_EL2 registers with a default value so legacy
286 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
287 		 * of initialization for this feature.
288 		 */
289 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
290 			HFGITR_EL2_INIT_VAL);
291 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
292 			HFGRTR_EL2_INIT_VAL);
293 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
294 			HFGWTR_EL2_INIT_VAL);
295 	}
296 
297 #endif /* CTX_INCLUDE_EL2_REGS */
298 
299 	manage_extensions_nonsecure(ctx);
300 }
301 
302 /*******************************************************************************
303  * The following function performs initialization of the cpu_context 'ctx'
304  * for first use that is common to all security states, and sets the
305  * initial entrypoint state as specified by the entry_point_info structure.
306  *
307  * The EE and ST attributes are used to configure the endianness and secure
308  * timer availability for the new execution context.
309  ******************************************************************************/
310 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
311 {
312 	u_register_t scr_el3;
313 	u_register_t mdcr_el3;
314 	el3_state_t *state;
315 	gp_regs_t *gp_regs;
316 
317 	state = get_el3state_ctx(ctx);
318 
319 	/* Clear any residual register values from the context */
320 	zeromem(ctx, sizeof(*ctx));
321 
322 	/*
323 	 * The lower-EL context is zeroed so that no stale values leak to a world.
324 	 * It is assumed that an all-zero lower-EL context is good enough for it
325 	 * to boot correctly. However, there are very few registers where this
326 	 * is not true and some values need to be recreated.
327 	 */
328 #if CTX_INCLUDE_EL2_REGS
329 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
330 
331 	/*
332 	 * These bits are set in the gicv3 driver. Losing them (especially the
333 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
334 	 */
335 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
336 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
337 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
338 
339 	/*
340 	 * The actlr_el2 register can be initialized in platform's reset handler
341 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
342 	 */
343 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
344 #endif /* CTX_INCLUDE_EL2_REGS */
345 
346 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
347 	scr_el3 = SCR_RESET_VAL;
348 
349 	/*
350 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
351 	 *  EL2, EL1 and EL0 are not trapped to EL3.
352 	 *
353 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
354 	 *  EL2, EL1 and EL0 are not trapped to EL3.
355 	 *
356 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
357 	 *  both Security states and both Execution states.
358 	 *
359 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
360 	 *  Non-secure memory.
361 	 */
362 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
363 
364 	scr_el3 |= SCR_SIF_BIT;
365 
366 	/*
367 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
368 	 *  Exception level as specified by SPSR.
369 	 */
370 	if (GET_RW(ep->spsr) == MODE_RW_64) {
371 		scr_el3 |= SCR_RW_BIT;
372 	}
373 
374 	/*
375 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
376 	 * Secure timer registers to EL3, from AArch64 state only, if specified
377 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
378 	 * bit always behaves as 1 (i.e. secure physical timer register access
379 	 * is not trapped)
380 	 */
381 	if (EP_GET_ST(ep->h.attr) != 0U) {
382 		scr_el3 |= SCR_ST_BIT;
383 	}
384 
385 	/*
386 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
387 	 * SCR_EL3.HXEn.
388 	 */
389 	if (is_feat_hcx_supported()) {
390 		scr_el3 |= SCR_HXEn_BIT;
391 	}
392 
393 	/*
394 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
395 	 * registers are trapped to EL3.
396 	 */
397 #if ENABLE_FEAT_RNG_TRAP
398 	scr_el3 |= SCR_TRNDR_BIT;
399 #endif
400 
401 #if FAULT_INJECTION_SUPPORT
402 	/* Enable fault injection from lower ELs */
403 	scr_el3 |= SCR_FIEN_BIT;
404 #endif
405 
406 #if CTX_INCLUDE_PAUTH_REGS
407 	/*
408 	 * Enable Pointer Authentication globally for all the worlds.
409 	 *
410 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
411 	 *  other than EL3
412 	 *
413 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
414 	 *  than EL3
415 	 */
416 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
417 #endif /* CTX_INCLUDE_PAUTH_REGS */
418 
419 	/*
420 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
421 	 */
422 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
423 		scr_el3 |= SCR_TCR2EN_BIT;
424 	}
425 
426 	/*
427 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
428 	 * registers for AArch64 if present.
429 	 */
430 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
431 		scr_el3 |= SCR_PIEN_BIT;
432 	}
433 
434 	/*
435 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
436 	 */
437 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
438 		scr_el3 |= SCR_GCSEn_BIT;
439 	}
440 
441 	/*
442 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
443 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
444 	 * next mode is Hyp.
445 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
446 	 * same conditions as HVC instructions and when the processor supports
447 	 * ARMv8.6-FGT.
448 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
449 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
450 	 * and when the processor supports ECV.
451 	 */
452 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
453 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
454 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
455 		scr_el3 |= SCR_HCE_BIT;
456 
457 		if (is_feat_fgt_supported()) {
458 			scr_el3 |= SCR_FGTEN_BIT;
459 		}
460 
461 		if (is_feat_ecv_supported()) {
462 			scr_el3 |= SCR_ECVEN_BIT;
463 		}
464 	}
465 
466 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
467 	if (is_feat_twed_supported()) {
468 		/* Set delay in SCR_EL3 */
469 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
470 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
471 				<< SCR_TWEDEL_SHIFT);
472 
473 		/* Enable WFE delay */
474 		scr_el3 |= SCR_TWEDEn_BIT;
475 	}
476 
477 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
478 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
479 	if (is_feat_sel2_supported()) {
480 		scr_el3 |= SCR_EEL2_BIT;
481 	}
482 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
483 
484 	/*
485 	 * Populate EL3 state so that we've the right context
486 	 * before doing ERET
487 	 */
488 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
489 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
490 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
491 
492 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
493 	mdcr_el3 = MDCR_EL3_RESET_VAL;
494 
495 	/* ---------------------------------------------------------------------
496 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
497 	 * Some fields are architecturally UNKNOWN on reset.
498 	 *
499 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
500 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
501 	 *  disabled from all ELs in Secure state.
502 	 *
503 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
504 	 *  privileged debug from S-EL1.
505 	 *
506 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
507 	 *  access to the powerdown debug registers do not trap to EL3.
508 	 *
509 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
510 	 *  debug registers, other than those registers that are controlled by
511 	 *  MDCR_EL3.TDOSA.
512 	 */
513 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
514 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
515 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
516 
517 	/*
518 	 * Configure MDCR_EL3 register as applicable for each world
519 	 * (NS/Secure/Realm) context.
520 	 */
521 	manage_extensions_common(ctx);
522 
523 	/*
524 	 * Store the X0-X7 value from the entrypoint into the context
525 	 * Use memcpy as we are in control of the layout of the structures
526 	 */
527 	gp_regs = get_gpregs_ctx(ctx);
528 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
529 }
530 
531 /*******************************************************************************
532  * Context management library initialization routine. This library is used by
533  * runtime services to share pointers to 'cpu_context' structures for secure
534  * non-secure and realm states. Management of the structures and their associated
535  * memory is not done by the context management library e.g. the PSCI service
536  * manages the cpu context used for entry from and exit to the non-secure state.
537  * The Secure payload dispatcher service manages the context(s) corresponding to
538  * the secure state. It also uses this library to get access to the non-secure
539  * state cpu context pointers.
540  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
541  * which will be used for programming an entry into a lower EL. The same context
542  * will be used to save state upon exception entry from that EL.
543  ******************************************************************************/
544 void __init cm_init(void)
545 {
546 	/*
547 	 * The context management library has only global data to initialize, but
548 	 * that will be done when the BSS is zeroed out.
549 	 */
550 }
551 
552 /*******************************************************************************
553  * This is the high-level function used to initialize the cpu_context 'ctx' for
554  * first use. It performs initializations that are common to all security states
555  * and initializations specific to the security state specified in 'ep'
556  ******************************************************************************/
557 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
558 {
559 	unsigned int security_state;
560 
561 	assert(ctx != NULL);
562 
563 	/*
564 	 * Perform initializations that are common
565 	 * to all security states
566 	 */
567 	setup_context_common(ctx, ep);
568 
569 	security_state = GET_SECURITY_STATE(ep->h.attr);
570 
571 	/* Perform security state specific initializations */
572 	switch (security_state) {
573 	case SECURE:
574 		setup_secure_context(ctx, ep);
575 		break;
576 #if ENABLE_RME
577 	case REALM:
578 		setup_realm_context(ctx, ep);
579 		break;
580 #endif
581 	case NON_SECURE:
582 		setup_ns_context(ctx, ep);
583 		break;
584 	default:
585 		ERROR("Invalid security state\n");
586 		panic();
587 		break;
588 	}
589 }
590 
591 /*******************************************************************************
592  * Enable architecture extensions for EL3 execution. This function only updates
593  * registers in-place which are expected to either never change or be
594  * overwritten by el3_exit.
595  ******************************************************************************/
596 #if IMAGE_BL31
597 void cm_manage_extensions_el3(void)
598 {
599 	if (is_feat_amu_supported()) {
600 		amu_init_el3();
601 	}
602 
603 	if (is_feat_sme_supported()) {
604 		sme_init_el3();
605 	}
606 
607 	pmuv3_init_el3();
608 }
609 #endif /* IMAGE_BL31 */
610 
611 /******************************************************************************
612  * Function to initialise the registers with the RESET values in the context
613  * memory, which are maintained per world.
614  ******************************************************************************/
615 #if IMAGE_BL31
616 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
617 {
618 	/*
619 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
620 	 *
621 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
622 	 *  by Advanced SIMD, floating-point or SVE instructions (if
623 	 *  implemented) do not trap to EL3.
624 	 *
625 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
626 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
627 	 */
628 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
629 
630 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
631 
632 	/*
633 	 * Initialize MPAM3_EL3 to its default reset value
634 	 *
635 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
636 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
637 	 */
638 
639 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
640 }
641 #endif /* IMAGE_BL31 */
642 
643 /*******************************************************************************
644  * Initialise per_world_context for Non-Secure world.
645  * This function enables the architecture extensions, which have same value
646  * across the cores for the non-secure world.
647  ******************************************************************************/
648 #if IMAGE_BL31
649 void manage_extensions_nonsecure_per_world(void)
650 {
651 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
652 
653 	if (is_feat_sme_supported()) {
654 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
655 	}
656 
657 	if (is_feat_sve_supported()) {
658 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
659 	}
660 
661 	if (is_feat_amu_supported()) {
662 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
663 	}
664 
665 	if (is_feat_sys_reg_trace_supported()) {
666 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
667 	}
668 
669 	if (is_feat_mpam_supported()) {
670 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
671 	}
672 }
673 #endif /* IMAGE_BL31 */
674 
675 /*******************************************************************************
676  * Initialise per_world_context for Secure world.
677  * This function enables the architecture extensions, which have same value
678  * across the cores for the secure world.
679  ******************************************************************************/
680 static void manage_extensions_secure_per_world(void)
681 {
682 #if IMAGE_BL31
683 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
684 
685 	if (is_feat_sme_supported()) {
686 
687 		if (ENABLE_SME_FOR_SWD) {
688 		/*
689 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
690 		 * SME, SVE, and FPU/SIMD context properly managed.
691 		 */
692 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
693 		} else {
694 		/*
695 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
696 		 * world can safely use the associated registers.
697 		 */
698 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
699 		}
700 	}
701 	if (is_feat_sve_supported()) {
702 		if (ENABLE_SVE_FOR_SWD) {
703 		/*
704 		 * Enable SVE and FPU in secure context, SPM must ensure
705 		 * that the SVE and FPU register contexts are properly managed.
706 		 */
707 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
708 		} else {
709 		/*
710 		 * Disable SVE and FPU in secure context so non-secure world
711 		 * can safely use them.
712 		 */
713 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
714 		}
715 	}
716 
717 	/* NS can access this but Secure shouldn't */
718 	if (is_feat_sys_reg_trace_supported()) {
719 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
720 	}
721 
722 	has_secure_perworld_init = true;
723 #endif /* IMAGE_BL31 */
724 }
725 
726 /*******************************************************************************
727  * Enable architecture extensions on first entry to Non-secure world only
728  * and disable for secure world.
729  *
730  * NOTE: Arch features which have been provided with the capability of getting
731  * enabled only for non-secure world and being disabled for secure world are
732  * grouped here, as the MDCR_EL3 context value remains same across the worlds.
733  ******************************************************************************/
734 static void manage_extensions_common(cpu_context_t *ctx)
735 {
736 #if IMAGE_BL31
737 	if (is_feat_spe_supported()) {
738 		/*
739 		 * Enable FEAT_SPE for Non-Secure and prohibit for Secure state.
740 		 */
741 		spe_enable(ctx);
742 	}
743 
744 	if (is_feat_trbe_supported()) {
745 		/*
746 		 * Enable FEAT_TRBE for Non-Secure and prohibit for Secure and
747 		 * Realm state.
748 		 */
749 		trbe_enable(ctx);
750 	}
751 
752 	if (is_feat_trf_supported()) {
753 		/*
754 		 * Enable FEAT_TRF for Non-Secure and prohibit for Secure state.
755 		 */
756 		trf_enable(ctx);
757 	}
758 
759 	if (is_feat_brbe_supported()) {
760 		/*
761 		 * Enable FEAT_BRBE for Non-Secure and prohibit for Secure state.
762 		 */
763 		brbe_enable(ctx);
764 	}
765 #endif /* IMAGE_BL31 */
766 }
767 
768 /*******************************************************************************
769  * Enable architecture extensions on first entry to Non-secure world.
770  ******************************************************************************/
771 static void manage_extensions_nonsecure(cpu_context_t *ctx)
772 {
773 #if IMAGE_BL31
774 	if (is_feat_amu_supported()) {
775 		amu_enable(ctx);
776 	}
777 
778 	if (is_feat_sme_supported()) {
779 		sme_enable(ctx);
780 	}
781 
782 	if (is_feat_debugv8p9_supported()) {
783 		debugv8p9_extended_bp_wp_enable(ctx);
784 	}
785 
786 	pmuv3_enable(ctx);
787 #endif /* IMAGE_BL31 */
788 }
789 
790 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
791 static __unused void enable_pauth_el2(void)
792 {
793 	u_register_t hcr_el2 = read_hcr_el2();
794 	/*
795 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
796 	 *  accessing key registers or using pointer authentication instructions
797 	 *  from lower ELs.
798 	 */
799 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
800 
801 	write_hcr_el2(hcr_el2);
802 }
803 
804 #if INIT_UNUSED_NS_EL2
805 /*******************************************************************************
806  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
807  * world when EL2 is empty and unused.
808  ******************************************************************************/
809 static void manage_extensions_nonsecure_el2_unused(void)
810 {
811 #if IMAGE_BL31
812 	if (is_feat_spe_supported()) {
813 		spe_init_el2_unused();
814 	}
815 
816 	if (is_feat_amu_supported()) {
817 		amu_init_el2_unused();
818 	}
819 
820 	if (is_feat_mpam_supported()) {
821 		mpam_init_el2_unused();
822 	}
823 
824 	if (is_feat_trbe_supported()) {
825 		trbe_init_el2_unused();
826 	}
827 
828 	if (is_feat_sys_reg_trace_supported()) {
829 		sys_reg_trace_init_el2_unused();
830 	}
831 
832 	if (is_feat_trf_supported()) {
833 		trf_init_el2_unused();
834 	}
835 
836 	pmuv3_init_el2_unused();
837 
838 	if (is_feat_sve_supported()) {
839 		sve_init_el2_unused();
840 	}
841 
842 	if (is_feat_sme_supported()) {
843 		sme_init_el2_unused();
844 	}
845 
846 #if ENABLE_PAUTH
847 	enable_pauth_el2();
848 #endif /* ENABLE_PAUTH */
849 #endif /* IMAGE_BL31 */
850 }
851 #endif /* INIT_UNUSED_NS_EL2 */
852 
853 /*******************************************************************************
854  * Enable architecture extensions on first entry to Secure world.
855  ******************************************************************************/
856 static void manage_extensions_secure(cpu_context_t *ctx)
857 {
858 #if IMAGE_BL31
859 	if (is_feat_sme_supported()) {
860 		if (ENABLE_SME_FOR_SWD) {
861 		/*
862 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
863 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
864 		 */
865 			sme_init_el3();
866 			sme_enable(ctx);
867 		} else {
868 		/*
869 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
870 		 * world can safely use the associated registers.
871 		 */
872 			sme_disable(ctx);
873 		}
874 	}
875 #endif /* IMAGE_BL31 */
876 }
877 
878 #if !IMAGE_BL1
879 /*******************************************************************************
880  * The following function initializes the cpu_context for a CPU specified by
881  * its `cpu_idx` for first use, and sets the initial entrypoint state as
882  * specified by the entry_point_info structure.
883  ******************************************************************************/
884 void cm_init_context_by_index(unsigned int cpu_idx,
885 			      const entry_point_info_t *ep)
886 {
887 	cpu_context_t *ctx;
888 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
889 	cm_setup_context(ctx, ep);
890 }
891 #endif /* !IMAGE_BL1 */
892 
893 /*******************************************************************************
894  * The following function initializes the cpu_context for the current CPU
895  * for first use, and sets the initial entrypoint state as specified by the
896  * entry_point_info structure.
897  ******************************************************************************/
898 void cm_init_my_context(const entry_point_info_t *ep)
899 {
900 	cpu_context_t *ctx;
901 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
902 	cm_setup_context(ctx, ep);
903 }
904 
905 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
906 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
907 {
908 #if INIT_UNUSED_NS_EL2
909 	u_register_t hcr_el2 = HCR_RESET_VAL;
910 	u_register_t mdcr_el2;
911 	u_register_t scr_el3;
912 
913 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
914 
915 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
916 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
917 		hcr_el2 |= HCR_RW_BIT;
918 	}
919 
920 	write_hcr_el2(hcr_el2);
921 
922 	/*
923 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
924 	 * All fields have architecturally UNKNOWN reset values.
925 	 */
926 	write_cptr_el2(CPTR_EL2_RESET_VAL);
927 
928 	/*
929 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
930 	 * reset and are set to zero except for field(s) listed below.
931 	 *
932 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
933 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
934 	 *
935 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
936 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
937 	 */
938 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
939 
940 	/*
941 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
942 	 * UNKNOWN value.
943 	 */
944 	write_cntvoff_el2(0);
945 
946 	/*
947 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
948 	 * respectively.
949 	 */
950 	write_vpidr_el2(read_midr_el1());
951 	write_vmpidr_el2(read_mpidr_el1());
952 
953 	/*
954 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
955 	 *
956 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
957 	 * translation is disabled, cache maintenance operations depend on the
958 	 * VMID.
959 	 *
960 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
961 	 * disabled.
962 	 */
963 	write_vttbr_el2(VTTBR_RESET_VAL &
964 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
965 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
966 
967 	/*
968 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
969 	 * Some fields are architecturally UNKNOWN on reset.
970 	 *
971 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
972 	 * register accesses to the Debug ROM registers are not trapped to EL2.
973 	 *
974 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
975 	 * accesses to the powerdown debug registers are not trapped to EL2.
976 	 *
977 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
978 	 * debug registers do not trap to EL2.
979 	 *
980 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
981 	 * EL2.
982 	 */
983 	mdcr_el2 = MDCR_EL2_RESET_VAL &
984 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
985 		   MDCR_EL2_TDE_BIT);
986 
987 	write_mdcr_el2(mdcr_el2);
988 
989 	/*
990 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
991 	 *
992 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
993 	 * EL1 accesses to System registers do not trap to EL2.
994 	 */
995 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
996 
997 	/*
998 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
999 	 * reset.
1000 	 *
1001 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1002 	 * and prevent timer interrupts.
1003 	 */
1004 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1005 
1006 	manage_extensions_nonsecure_el2_unused();
1007 #endif /* INIT_UNUSED_NS_EL2 */
1008 }
1009 
1010 /*******************************************************************************
1011  * Prepare the CPU system registers for first entry into realm, secure, or
1012  * normal world.
1013  *
1014  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1015  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1016  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1017  * For all entries, the EL1 registers are initialized from the cpu_context
1018  ******************************************************************************/
1019 void cm_prepare_el3_exit(uint32_t security_state)
1020 {
1021 	u_register_t sctlr_el2, scr_el3;
1022 	cpu_context_t *ctx = cm_get_context(security_state);
1023 
1024 	assert(ctx != NULL);
1025 
1026 	if (security_state == NON_SECURE) {
1027 		uint64_t el2_implemented = el_implemented(2);
1028 
1029 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1030 						 CTX_SCR_EL3);
1031 
1032 		if (el2_implemented != EL_IMPL_NONE) {
1033 
1034 			/*
1035 			 * If context is not being used for EL2, initialize
1036 			 * HCRX_EL2 with its init value here.
1037 			 */
1038 			if (is_feat_hcx_supported()) {
1039 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1040 			}
1041 
1042 			/*
1043 			 * Initialize Fine-grained trap registers introduced
1044 			 * by FEAT_FGT so all traps are initially disabled when
1045 			 * switching to EL2 or a lower EL, preventing undesired
1046 			 * behavior.
1047 			 */
1048 			if (is_feat_fgt_supported()) {
1049 				/*
1050 				 * Initialize HFG*_EL2 registers with a default
1051 				 * value so legacy systems unaware of FEAT_FGT
1052 				 * do not get trapped due to their lack of
1053 				 * initialization for this feature.
1054 				 */
1055 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1056 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1057 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1058 			}
1059 
1060 			/* Condition to ensure EL2 is being used. */
1061 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1062 				/* Initialize SCTLR_EL2 register with reset value. */
1063 				sctlr_el2 = SCTLR_EL2_RES1;
1064 #if ERRATA_A75_764081
1065 				/*
1066 				 * If workaround of errata 764081 for Cortex-A75
1067 				 * is used then set SCTLR_EL2.IESB to enable
1068 				 * Implicit Error Synchronization Barrier.
1069 				 */
1070 				sctlr_el2 |= SCTLR_IESB_BIT;
1071 #endif
1072 				write_sctlr_el2(sctlr_el2);
1073 			} else {
1074 				/*
1075 				 * (scr_el3 & SCR_HCE_BIT==0)
1076 				 * EL2 implemented but unused.
1077 				 */
1078 				init_nonsecure_el2_unused(ctx);
1079 			}
1080 		}
1081 	}
1082 	cm_el1_sysregs_context_restore(security_state);
1083 	cm_set_next_eret_context(security_state);
1084 }
1085 
1086 #if CTX_INCLUDE_EL2_REGS
1087 
1088 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1089 {
1090 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1091 	if (is_feat_amu_supported()) {
1092 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1093 	}
1094 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1095 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1096 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1097 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1098 }
1099 
1100 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1101 {
1102 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1103 	if (is_feat_amu_supported()) {
1104 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1105 	}
1106 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1107 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1108 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1109 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1110 }
1111 
1112 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1113 {
1114 	u_register_t mpam_idr = read_mpamidr_el1();
1115 
1116 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1117 
1118 	/*
1119 	 * The context registers that we intend to save would be part of the
1120 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1121 	 */
1122 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1123 		return;
1124 	}
1125 
1126 	/*
1127 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1128 	 * MPAMIDR_HAS_HCR_BIT == 1.
1129 	 */
1130 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1131 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1132 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1133 
1134 	/*
1135 	 * The number of MPAMVPM registers is implementation defined, their
1136 	 * number is stored in the MPAMIDR_EL1 register.
1137 	 */
1138 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1139 	case 7:
1140 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1141 		__fallthrough;
1142 	case 6:
1143 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1144 		__fallthrough;
1145 	case 5:
1146 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1147 		__fallthrough;
1148 	case 4:
1149 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1150 		__fallthrough;
1151 	case 3:
1152 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1153 		__fallthrough;
1154 	case 2:
1155 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1156 		__fallthrough;
1157 	case 1:
1158 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1159 		break;
1160 	}
1161 }
1162 
1163 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1164 {
1165 	u_register_t mpam_idr = read_mpamidr_el1();
1166 
1167 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1168 
1169 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1170 		return;
1171 	}
1172 
1173 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1174 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1175 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1176 
1177 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1178 	case 7:
1179 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1180 		__fallthrough;
1181 	case 6:
1182 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1183 		__fallthrough;
1184 	case 5:
1185 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1186 		__fallthrough;
1187 	case 4:
1188 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1189 		__fallthrough;
1190 	case 3:
1191 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1192 		__fallthrough;
1193 	case 2:
1194 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1195 		__fallthrough;
1196 	case 1:
1197 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1198 		break;
1199 	}
1200 }
1201 
1202 /* ---------------------------------------------------------------------------
1203  * The following registers are not added:
1204  * ICH_AP0R<n>_EL2
1205  * ICH_AP1R<n>_EL2
1206  * ICH_LR<n>_EL2
1207  *
1208  * NOTE: For a system with S-EL2 present but not enabled, accessing
1209  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1210  * SCR_EL3.NS = 1 before accessing this register.
1211  * ---------------------------------------------------------------------------
1212  */
1213 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx)
1214 {
1215 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1216 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1217 #else
1218 	u_register_t scr_el3 = read_scr_el3();
1219 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1220 	isb();
1221 
1222 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1223 
1224 	write_scr_el3(scr_el3);
1225 	isb();
1226 #endif
1227 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1228 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1229 }
1230 
1231 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx)
1232 {
1233 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1234 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1235 #else
1236 	u_register_t scr_el3 = read_scr_el3();
1237 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1238 	isb();
1239 
1240 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1241 
1242 	write_scr_el3(scr_el3);
1243 	isb();
1244 #endif
1245 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1246 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1247 }
1248 
1249 /* -----------------------------------------------------
1250  * The following registers are not added:
1251  * AMEVCNTVOFF0<n>_EL2
1252  * AMEVCNTVOFF1<n>_EL2
1253  * -----------------------------------------------------
1254  */
1255 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1256 {
1257 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1258 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1259 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1260 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1261 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1262 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1263 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1264 	if (CTX_INCLUDE_AARCH32_REGS) {
1265 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1266 	}
1267 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1268 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1269 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1270 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1271 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1272 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1273 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1274 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1275 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1276 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1277 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1278 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1279 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1280 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1281 	write_el2_ctx_common(ctx, ttbr0_el2, read_ttbr0_el2());
1282 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1283 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1284 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1285 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1286 	write_el2_ctx_common(ctx, vttbr_el2, read_vttbr_el2());
1287 }
1288 
1289 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1290 {
1291 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1292 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1293 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1294 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1295 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1296 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1297 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1298 	if (CTX_INCLUDE_AARCH32_REGS) {
1299 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1300 	}
1301 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1302 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1303 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1304 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1305 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1306 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1307 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1308 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1309 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1310 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1311 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1312 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1313 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1314 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1315 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1316 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1317 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1318 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1319 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1320 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1321 }
1322 
1323 /*******************************************************************************
1324  * Save EL2 sysreg context
1325  ******************************************************************************/
1326 void cm_el2_sysregs_context_save(uint32_t security_state)
1327 {
1328 	cpu_context_t *ctx;
1329 	el2_sysregs_t *el2_sysregs_ctx;
1330 
1331 	ctx = cm_get_context(security_state);
1332 	assert(ctx != NULL);
1333 
1334 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1335 
1336 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1337 	el2_sysregs_context_save_gic(el2_sysregs_ctx);
1338 
1339 	if (is_feat_mte2_supported()) {
1340 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1341 	}
1342 
1343 	if (is_feat_mpam_supported()) {
1344 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1345 	}
1346 
1347 	if (is_feat_fgt_supported()) {
1348 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1349 	}
1350 
1351 	if (is_feat_ecv_v2_supported()) {
1352 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1353 	}
1354 
1355 	if (is_feat_vhe_supported()) {
1356 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1357 					read_contextidr_el2());
1358 		write_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1359 	}
1360 
1361 	if (is_feat_ras_supported()) {
1362 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1363 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1364 	}
1365 
1366 	if (is_feat_nv2_supported()) {
1367 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1368 	}
1369 
1370 	if (is_feat_trf_supported()) {
1371 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1372 	}
1373 
1374 	if (is_feat_csv2_2_supported()) {
1375 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1376 					read_scxtnum_el2());
1377 	}
1378 
1379 	if (is_feat_hcx_supported()) {
1380 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1381 	}
1382 
1383 	if (is_feat_tcr2_supported()) {
1384 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1385 	}
1386 
1387 	if (is_feat_sxpie_supported()) {
1388 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1389 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1390 	}
1391 
1392 	if (is_feat_sxpoe_supported()) {
1393 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1394 	}
1395 
1396 	if (is_feat_s2pie_supported()) {
1397 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1398 	}
1399 
1400 	if (is_feat_gcs_supported()) {
1401 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1402 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1403 	}
1404 }
1405 
1406 /*******************************************************************************
1407  * Restore EL2 sysreg context
1408  ******************************************************************************/
1409 void cm_el2_sysregs_context_restore(uint32_t security_state)
1410 {
1411 	cpu_context_t *ctx;
1412 	el2_sysregs_t *el2_sysregs_ctx;
1413 
1414 	ctx = cm_get_context(security_state);
1415 	assert(ctx != NULL);
1416 
1417 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1418 
1419 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1420 	el2_sysregs_context_restore_gic(el2_sysregs_ctx);
1421 
1422 	if (is_feat_mte2_supported()) {
1423 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1424 	}
1425 
1426 	if (is_feat_mpam_supported()) {
1427 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1428 	}
1429 
1430 	if (is_feat_fgt_supported()) {
1431 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1432 	}
1433 
1434 	if (is_feat_ecv_v2_supported()) {
1435 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1436 	}
1437 
1438 	if (is_feat_vhe_supported()) {
1439 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1440 					contextidr_el2));
1441 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1442 	}
1443 
1444 	if (is_feat_ras_supported()) {
1445 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1446 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1447 	}
1448 
1449 	if (is_feat_nv2_supported()) {
1450 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1451 	}
1452 
1453 	if (is_feat_trf_supported()) {
1454 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1455 	}
1456 
1457 	if (is_feat_csv2_2_supported()) {
1458 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1459 					scxtnum_el2));
1460 	}
1461 
1462 	if (is_feat_hcx_supported()) {
1463 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1464 	}
1465 
1466 	if (is_feat_tcr2_supported()) {
1467 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1468 	}
1469 
1470 	if (is_feat_sxpie_supported()) {
1471 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1472 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1473 	}
1474 
1475 	if (is_feat_sxpoe_supported()) {
1476 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1477 	}
1478 
1479 	if (is_feat_s2pie_supported()) {
1480 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1481 	}
1482 
1483 	if (is_feat_gcs_supported()) {
1484 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1485 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1486 	}
1487 }
1488 #endif /* CTX_INCLUDE_EL2_REGS */
1489 
1490 /*******************************************************************************
1491  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1492  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1493  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1494  * cm_prepare_el3_exit function.
1495  ******************************************************************************/
1496 void cm_prepare_el3_exit_ns(void)
1497 {
1498 #if CTX_INCLUDE_EL2_REGS
1499 #if ENABLE_ASSERTIONS
1500 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1501 	assert(ctx != NULL);
1502 
1503 	/* Assert that EL2 is used. */
1504 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1505 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1506 			(el_implemented(2U) != EL_IMPL_NONE));
1507 #endif /* ENABLE_ASSERTIONS */
1508 
1509 	/* Restore EL2 and EL1 sysreg contexts */
1510 	cm_el2_sysregs_context_restore(NON_SECURE);
1511 	cm_el1_sysregs_context_restore(NON_SECURE);
1512 	cm_set_next_eret_context(NON_SECURE);
1513 #else
1514 	cm_prepare_el3_exit(NON_SECURE);
1515 #endif /* CTX_INCLUDE_EL2_REGS */
1516 }
1517 
1518 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1519 {
1520 	write_ctx_reg(ctx, CTX_SPSR_EL1, read_spsr_el1());
1521 	write_ctx_reg(ctx, CTX_ELR_EL1, read_elr_el1());
1522 
1523 #if !ERRATA_SPECULATIVE_AT
1524 	write_ctx_reg(ctx, CTX_SCTLR_EL1, read_sctlr_el1());
1525 	write_ctx_reg(ctx, CTX_TCR_EL1, read_tcr_el1());
1526 #endif /* (!ERRATA_SPECULATIVE_AT) */
1527 
1528 	write_ctx_reg(ctx, CTX_CPACR_EL1, read_cpacr_el1());
1529 	write_ctx_reg(ctx, CTX_CSSELR_EL1, read_csselr_el1());
1530 	write_ctx_reg(ctx, CTX_SP_EL1, read_sp_el1());
1531 	write_ctx_reg(ctx, CTX_ESR_EL1, read_esr_el1());
1532 	write_ctx_reg(ctx, CTX_TTBR0_EL1, read_ttbr0_el1());
1533 	write_ctx_reg(ctx, CTX_TTBR1_EL1, read_ttbr1_el1());
1534 	write_ctx_reg(ctx, CTX_MAIR_EL1, read_mair_el1());
1535 	write_ctx_reg(ctx, CTX_AMAIR_EL1, read_amair_el1());
1536 	write_ctx_reg(ctx, CTX_ACTLR_EL1, read_actlr_el1());
1537 	write_ctx_reg(ctx, CTX_TPIDR_EL1, read_tpidr_el1());
1538 	write_ctx_reg(ctx, CTX_TPIDR_EL0, read_tpidr_el0());
1539 	write_ctx_reg(ctx, CTX_TPIDRRO_EL0, read_tpidrro_el0());
1540 	write_ctx_reg(ctx, CTX_PAR_EL1, read_par_el1());
1541 	write_ctx_reg(ctx, CTX_FAR_EL1, read_far_el1());
1542 	write_ctx_reg(ctx, CTX_AFSR0_EL1, read_afsr0_el1());
1543 	write_ctx_reg(ctx, CTX_AFSR1_EL1, read_afsr1_el1());
1544 	write_ctx_reg(ctx, CTX_CONTEXTIDR_EL1, read_contextidr_el1());
1545 	write_ctx_reg(ctx, CTX_VBAR_EL1, read_vbar_el1());
1546 	write_ctx_reg(ctx, CTX_MDCCINT_EL1, read_mdccint_el1());
1547 	write_ctx_reg(ctx, CTX_MDSCR_EL1, read_mdscr_el1());
1548 
1549 #if CTX_INCLUDE_AARCH32_REGS
1550 	write_ctx_reg(ctx, CTX_SPSR_ABT, read_spsr_abt());
1551 	write_ctx_reg(ctx, CTX_SPSR_UND, read_spsr_und());
1552 	write_ctx_reg(ctx, CTX_SPSR_IRQ, read_spsr_irq());
1553 	write_ctx_reg(ctx, CTX_SPSR_FIQ, read_spsr_fiq());
1554 	write_ctx_reg(ctx, CTX_DACR32_EL2, read_dacr32_el2());
1555 	write_ctx_reg(ctx, CTX_IFSR32_EL2, read_ifsr32_el2());
1556 #endif /* CTX_INCLUDE_AARCH32_REGS */
1557 
1558 #if NS_TIMER_SWITCH
1559 	write_ctx_reg(ctx, CTX_CNTP_CTL_EL0, read_cntp_ctl_el0());
1560 	write_ctx_reg(ctx, CTX_CNTP_CVAL_EL0, read_cntp_cval_el0());
1561 	write_ctx_reg(ctx, CTX_CNTV_CTL_EL0, read_cntv_ctl_el0());
1562 	write_ctx_reg(ctx, CTX_CNTV_CVAL_EL0, read_cntv_cval_el0());
1563 	write_ctx_reg(ctx, CTX_CNTKCTL_EL1, read_cntkctl_el1());
1564 #endif /* NS_TIMER_SWITCH */
1565 
1566 #if ENABLE_FEAT_MTE2
1567 	write_ctx_reg(ctx, CTX_TFSRE0_EL1, read_tfsre0_el1());
1568 	write_ctx_reg(ctx, CTX_TFSR_EL1, read_tfsr_el1());
1569 	write_ctx_reg(ctx, CTX_RGSR_EL1, read_rgsr_el1());
1570 	write_ctx_reg(ctx, CTX_GCR_EL1, read_gcr_el1());
1571 #endif /* ENABLE_FEAT_MTE2 */
1572 
1573 #if ENABLE_FEAT_RAS
1574 	if (is_feat_ras_supported()) {
1575 		write_ctx_reg(ctx, CTX_DISR_EL1, read_disr_el1());
1576 	}
1577 #endif
1578 
1579 #if ENABLE_FEAT_S1PIE
1580 	if (is_feat_s1pie_supported()) {
1581 		write_ctx_reg(ctx, CTX_PIRE0_EL1, read_pire0_el1());
1582 		write_ctx_reg(ctx, CTX_PIR_EL1, read_pir_el1());
1583 	}
1584 #endif
1585 
1586 #if ENABLE_FEAT_S1POE
1587 	if (is_feat_s1poe_supported()) {
1588 		write_ctx_reg(ctx, CTX_POR_EL1, read_por_el1());
1589 	}
1590 #endif
1591 
1592 #if ENABLE_FEAT_S2POE
1593 	if (is_feat_s2poe_supported()) {
1594 		write_ctx_reg(ctx, CTX_S2POR_EL1, read_s2por_el1());
1595 	}
1596 #endif
1597 
1598 #if ENABLE_FEAT_TCR2
1599 	if (is_feat_tcr2_supported()) {
1600 		write_ctx_reg(ctx, CTX_TCR2_EL1, read_tcr2_el1());
1601 	}
1602 #endif
1603 
1604 #if ENABLE_TRF_FOR_NS
1605 	if (is_feat_trf_supported()) {
1606 		write_ctx_reg(ctx, CTX_TRFCR_EL1, read_trfcr_el1());
1607 	}
1608 #endif
1609 
1610 #if ENABLE_FEAT_CSV2_2
1611 	if (is_feat_csv2_2_supported()) {
1612 		write_ctx_reg(ctx, CTX_SCXTNUM_EL0, read_scxtnum_el0());
1613 		write_ctx_reg(ctx, CTX_SCXTNUM_EL1, read_scxtnum_el1());
1614 	}
1615 #endif
1616 
1617 #if ENABLE_FEAT_GCS
1618 	if (is_feat_gcs_supported()) {
1619 		write_ctx_reg(ctx, CTX_GCSCR_EL1, read_gcscr_el1());
1620 		write_ctx_reg(ctx, CTX_GCSCRE0_EL1, read_gcscre0_el1());
1621 		write_ctx_reg(ctx, CTX_GCSPR_EL1, read_gcspr_el1());
1622 		write_ctx_reg(ctx, CTX_GCSPR_EL0, read_gcspr_el0());
1623 	}
1624 #endif
1625 }
1626 
1627 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1628 {
1629 	write_spsr_el1(read_ctx_reg(ctx, CTX_SPSR_EL1));
1630 	write_elr_el1(read_ctx_reg(ctx, CTX_ELR_EL1));
1631 
1632 #if !ERRATA_SPECULATIVE_AT
1633 	write_sctlr_el1(read_ctx_reg(ctx, CTX_SCTLR_EL1));
1634 	write_tcr_el1(read_ctx_reg(ctx, CTX_TCR_EL1));
1635 #endif /* (!ERRATA_SPECULATIVE_AT) */
1636 
1637 	write_cpacr_el1(read_ctx_reg(ctx, CTX_CPACR_EL1));
1638 	write_csselr_el1(read_ctx_reg(ctx, CTX_CSSELR_EL1));
1639 	write_sp_el1(read_ctx_reg(ctx, CTX_SP_EL1));
1640 	write_esr_el1(read_ctx_reg(ctx, CTX_ESR_EL1));
1641 	write_ttbr0_el1(read_ctx_reg(ctx, CTX_TTBR0_EL1));
1642 	write_ttbr1_el1(read_ctx_reg(ctx, CTX_TTBR1_EL1));
1643 	write_mair_el1(read_ctx_reg(ctx, CTX_MAIR_EL1));
1644 	write_amair_el1(read_ctx_reg(ctx, CTX_AMAIR_EL1));
1645 	write_actlr_el1(read_ctx_reg(ctx, CTX_ACTLR_EL1));
1646 	write_tpidr_el1(read_ctx_reg(ctx, CTX_TPIDR_EL1));
1647 	write_tpidr_el0(read_ctx_reg(ctx, CTX_TPIDR_EL0));
1648 	write_tpidrro_el0(read_ctx_reg(ctx, CTX_TPIDRRO_EL0));
1649 	write_par_el1(read_ctx_reg(ctx, CTX_PAR_EL1));
1650 	write_far_el1(read_ctx_reg(ctx, CTX_FAR_EL1));
1651 	write_afsr0_el1(read_ctx_reg(ctx, CTX_AFSR0_EL1));
1652 	write_afsr1_el1(read_ctx_reg(ctx, CTX_AFSR1_EL1));
1653 	write_contextidr_el1(read_ctx_reg(ctx, CTX_CONTEXTIDR_EL1));
1654 	write_vbar_el1(read_ctx_reg(ctx, CTX_VBAR_EL1));
1655 	write_mdccint_el1(read_ctx_reg(ctx, CTX_MDCCINT_EL1));
1656 	write_mdscr_el1(read_ctx_reg(ctx, CTX_MDSCR_EL1));
1657 
1658 #if CTX_INCLUDE_AARCH32_REGS
1659 	write_spsr_abt(read_ctx_reg(ctx, CTX_SPSR_ABT));
1660 	write_spsr_und(read_ctx_reg(ctx, CTX_SPSR_UND));
1661 	write_spsr_irq(read_ctx_reg(ctx, CTX_SPSR_IRQ));
1662 	write_spsr_fiq(read_ctx_reg(ctx, CTX_SPSR_FIQ));
1663 	write_dacr32_el2(read_ctx_reg(ctx, CTX_DACR32_EL2));
1664 	write_ifsr32_el2(read_ctx_reg(ctx, CTX_IFSR32_EL2));
1665 #endif /* CTX_INCLUDE_AARCH32_REGS */
1666 
1667 #if NS_TIMER_SWITCH
1668 	write_cntp_ctl_el0(read_ctx_reg(ctx, CTX_CNTP_CTL_EL0));
1669 	write_cntp_cval_el0(read_ctx_reg(ctx, CTX_CNTP_CVAL_EL0));
1670 	write_cntv_ctl_el0(read_ctx_reg(ctx, CTX_CNTV_CTL_EL0));
1671 	write_cntv_cval_el0(read_ctx_reg(ctx, CTX_CNTV_CVAL_EL0));
1672 	write_cntkctl_el1(read_ctx_reg(ctx, CTX_CNTKCTL_EL1));
1673 #endif /* NS_TIMER_SWITCH */
1674 
1675 #if ENABLE_FEAT_MTE2
1676 	write_tfsre0_el1(read_ctx_reg(ctx, CTX_TFSRE0_EL1));
1677 	write_tfsr_el1(read_ctx_reg(ctx, CTX_TFSR_EL1));
1678 	write_rgsr_el1(read_ctx_reg(ctx, CTX_RGSR_EL1));
1679 	write_gcr_el1(read_ctx_reg(ctx, CTX_GCR_EL1));
1680 #endif /* ENABLE_FEAT_MTE2 */
1681 
1682 #if ENABLE_FEAT_RAS
1683 	if (is_feat_ras_supported()) {
1684 		write_disr_el1(read_ctx_reg(ctx, CTX_DISR_EL1));
1685 	}
1686 #endif
1687 
1688 #if ENABLE_FEAT_S1PIE
1689 	if (is_feat_s1pie_supported()) {
1690 		write_pire0_el1(read_ctx_reg(ctx, CTX_PIRE0_EL1));
1691 		write_pir_el1(read_ctx_reg(ctx, CTX_PIR_EL1));
1692 	}
1693 #endif
1694 
1695 #if ENABLE_FEAT_S1POE
1696 	if (is_feat_s1poe_supported()) {
1697 		write_por_el1(read_ctx_reg(ctx, CTX_POR_EL1));
1698 	}
1699 #endif
1700 
1701 #if ENABLE_FEAT_S2POE
1702 	if (is_feat_s2poe_supported()) {
1703 		write_s2por_el1(read_ctx_reg(ctx, CTX_S2POR_EL1));
1704 	}
1705 #endif
1706 
1707 #if ENABLE_FEAT_TCR2
1708 	if (is_feat_tcr2_supported()) {
1709 		write_tcr2_el1(read_ctx_reg(ctx, CTX_TCR2_EL1));
1710 	}
1711 #endif
1712 
1713 #if ENABLE_TRF_FOR_NS
1714 	if (is_feat_trf_supported()) {
1715 		write_trfcr_el1(read_ctx_reg(ctx, CTX_TRFCR_EL1));
1716 	}
1717 #endif
1718 
1719 #if ENABLE_FEAT_CSV2_2
1720 	if (is_feat_csv2_2_supported()) {
1721 		write_scxtnum_el0(read_ctx_reg(ctx, CTX_SCXTNUM_EL0));
1722 		write_scxtnum_el1(read_ctx_reg(ctx, CTX_SCXTNUM_EL1));
1723 	}
1724 #endif
1725 
1726 #if ENABLE_FEAT_GCS
1727 	if (is_feat_gcs_supported()) {
1728 		write_gcscr_el1(read_ctx_reg(ctx, CTX_GCSCR_EL1));
1729 		write_gcscre0_el1(read_ctx_reg(ctx, CTX_GCSCRE0_EL1));
1730 		write_gcspr_el1(read_ctx_reg(ctx, CTX_GCSPR_EL1));
1731 		write_gcspr_el0(read_ctx_reg(ctx, CTX_GCSPR_EL0));
1732 	}
1733 #endif
1734 }
1735 
1736 /*******************************************************************************
1737  * The next four functions are used by runtime services to save and restore
1738  * EL1 context on the 'cpu_context' structure for the specified security
1739  * state.
1740  ******************************************************************************/
1741 void cm_el1_sysregs_context_save(uint32_t security_state)
1742 {
1743 	cpu_context_t *ctx;
1744 
1745 	ctx = cm_get_context(security_state);
1746 	assert(ctx != NULL);
1747 
1748 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1749 
1750 #if IMAGE_BL31
1751 	if (security_state == SECURE)
1752 		PUBLISH_EVENT(cm_exited_secure_world);
1753 	else
1754 		PUBLISH_EVENT(cm_exited_normal_world);
1755 #endif
1756 }
1757 
1758 void cm_el1_sysregs_context_restore(uint32_t security_state)
1759 {
1760 	cpu_context_t *ctx;
1761 
1762 	ctx = cm_get_context(security_state);
1763 	assert(ctx != NULL);
1764 
1765 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1766 
1767 #if IMAGE_BL31
1768 	if (security_state == SECURE)
1769 		PUBLISH_EVENT(cm_entering_secure_world);
1770 	else
1771 		PUBLISH_EVENT(cm_entering_normal_world);
1772 #endif
1773 }
1774 
1775 /*******************************************************************************
1776  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1777  * given security state with the given entrypoint
1778  ******************************************************************************/
1779 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1780 {
1781 	cpu_context_t *ctx;
1782 	el3_state_t *state;
1783 
1784 	ctx = cm_get_context(security_state);
1785 	assert(ctx != NULL);
1786 
1787 	/* Populate EL3 state so that ERET jumps to the correct entry */
1788 	state = get_el3state_ctx(ctx);
1789 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1790 }
1791 
1792 /*******************************************************************************
1793  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1794  * pertaining to the given security state
1795  ******************************************************************************/
1796 void cm_set_elr_spsr_el3(uint32_t security_state,
1797 			uintptr_t entrypoint, uint32_t spsr)
1798 {
1799 	cpu_context_t *ctx;
1800 	el3_state_t *state;
1801 
1802 	ctx = cm_get_context(security_state);
1803 	assert(ctx != NULL);
1804 
1805 	/* Populate EL3 state so that ERET jumps to the correct entry */
1806 	state = get_el3state_ctx(ctx);
1807 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1808 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1809 }
1810 
1811 /*******************************************************************************
1812  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1813  * pertaining to the given security state using the value and bit position
1814  * specified in the parameters. It preserves all other bits.
1815  ******************************************************************************/
1816 void cm_write_scr_el3_bit(uint32_t security_state,
1817 			  uint32_t bit_pos,
1818 			  uint32_t value)
1819 {
1820 	cpu_context_t *ctx;
1821 	el3_state_t *state;
1822 	u_register_t scr_el3;
1823 
1824 	ctx = cm_get_context(security_state);
1825 	assert(ctx != NULL);
1826 
1827 	/* Ensure that the bit position is a valid one */
1828 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1829 
1830 	/* Ensure that the 'value' is only a bit wide */
1831 	assert(value <= 1U);
1832 
1833 	/*
1834 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1835 	 * and set it to its new value.
1836 	 */
1837 	state = get_el3state_ctx(ctx);
1838 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1839 	scr_el3 &= ~(1UL << bit_pos);
1840 	scr_el3 |= (u_register_t)value << bit_pos;
1841 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1842 }
1843 
1844 /*******************************************************************************
1845  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1846  * given security state.
1847  ******************************************************************************/
1848 u_register_t cm_get_scr_el3(uint32_t security_state)
1849 {
1850 	cpu_context_t *ctx;
1851 	el3_state_t *state;
1852 
1853 	ctx = cm_get_context(security_state);
1854 	assert(ctx != NULL);
1855 
1856 	/* Populate EL3 state so that ERET jumps to the correct entry */
1857 	state = get_el3state_ctx(ctx);
1858 	return read_ctx_reg(state, CTX_SCR_EL3);
1859 }
1860 
1861 /*******************************************************************************
1862  * This function is used to program the context that's used for exception
1863  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1864  * the required security state
1865  ******************************************************************************/
1866 void cm_set_next_eret_context(uint32_t security_state)
1867 {
1868 	cpu_context_t *ctx;
1869 
1870 	ctx = cm_get_context(security_state);
1871 	assert(ctx != NULL);
1872 
1873 	cm_set_next_context(ctx);
1874 }
1875