xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision aa05796e471e2a1a06508c0fb3771f01b44a1d20)
1 /*
2  * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/cpus/cpu_ops.h>
23 #include <lib/cpus/errata.h>
24 #include <lib/el3_runtime/context_mgmt.h>
25 #include <lib/el3_runtime/cpu_data.h>
26 #include <lib/el3_runtime/pubsub_events.h>
27 #include <lib/extensions/amu.h>
28 #include <lib/extensions/brbe.h>
29 #include <lib/extensions/cpa2.h>
30 #include <lib/extensions/debug_v8p9.h>
31 #include <lib/extensions/fgt2.h>
32 #include <lib/extensions/fpmr.h>
33 #include <lib/extensions/mpam.h>
34 #include <lib/extensions/pauth.h>
35 #include <lib/extensions/pmuv3.h>
36 #include <lib/extensions/sme.h>
37 #include <lib/extensions/spe.h>
38 #include <lib/extensions/sve.h>
39 #include <lib/extensions/sysreg128.h>
40 #include <lib/extensions/sys_reg_trace.h>
41 #include <lib/extensions/tcr2.h>
42 #include <lib/extensions/trbe.h>
43 #include <lib/extensions/trf.h>
44 #include <lib/utils.h>
45 
46 #if ENABLE_FEAT_TWED
47 /* Make sure delay value fits within the range(0-15) */
48 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
49 #endif /* ENABLE_FEAT_TWED */
50 
51 per_world_context_t per_world_context[CPU_CONTEXT_NUM];
52 
53 static void manage_extensions_nonsecure(cpu_context_t *ctx);
54 static void manage_extensions_secure(cpu_context_t *ctx);
55 
56 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
57 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
58 {
59 	u_register_t sctlr_elx, actlr_elx;
60 
61 	/*
62 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
63 	 * execution state setting all fields rather than relying on the hw.
64 	 * Some fields have architecturally UNKNOWN reset values and these are
65 	 * set to zero.
66 	 *
67 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
68 	 *
69 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
70 	 * required by PSCI specification)
71 	 */
72 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
73 	if (GET_RW(ep->spsr) == MODE_RW_64) {
74 		sctlr_elx |= SCTLR_EL1_RES1;
75 	} else {
76 		/*
77 		 * If the target execution state is AArch32 then the following
78 		 * fields need to be set.
79 		 *
80 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
81 		 *  instructions are not trapped to EL1.
82 		 *
83 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
84 		 *  instructions are not trapped to EL1.
85 		 *
86 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
87 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
88 		 */
89 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
90 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
91 	}
92 
93 	/*
94 	 * If workaround of errata 764081 for Cortex-A75 is used then set
95 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
96 	 */
97 	if (errata_a75_764081_applies()) {
98 		sctlr_elx |= SCTLR_IESB_BIT;
99 	}
100 
101 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
102 	write_ctx_sctlr_el1_reg_errata(ctx, sctlr_elx);
103 
104 	/*
105 	 * Base the context ACTLR_EL1 on the current value, as it is
106 	 * implementation defined. The context restore process will write
107 	 * the value from the context to the actual register and can cause
108 	 * problems for processor cores that don't expect certain bits to
109 	 * be zero.
110 	 */
111 	actlr_elx = read_actlr_el1();
112 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx);
113 }
114 #endif /* (IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)) */
115 
116 /******************************************************************************
117  * This function performs initializations that are specific to SECURE state
118  * and updates the cpu context specified by 'ctx'.
119  *****************************************************************************/
120 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
121 {
122 	u_register_t scr_el3;
123 	el3_state_t *state;
124 
125 	state = get_el3state_ctx(ctx);
126 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
127 
128 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
129 	/*
130 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
131 	 * indicated by the interrupt routing model for BL31.
132 	 */
133 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
134 #endif
135 
136 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
137 	if (is_feat_mte2_supported()) {
138 		scr_el3 |= SCR_ATA_BIT;
139 	}
140 
141 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
142 
143 	/*
144 	 * Initialize EL1 context registers unless SPMC is running
145 	 * at S-EL2.
146 	 */
147 #if (!SPMD_SPM_AT_SEL2)
148 	setup_el1_context(ctx, ep);
149 #endif
150 
151 	manage_extensions_secure(ctx);
152 }
153 
154 #if ENABLE_RME && IMAGE_BL31
155 /******************************************************************************
156  * This function performs initializations that are specific to REALM state
157  * and updates the cpu context specified by 'ctx'.
158  *
159  * NOTE: any changes to this function must be verified by an RMMD maintainer.
160  *****************************************************************************/
161 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
162 {
163 	u_register_t scr_el3;
164 	el3_state_t *state;
165 	el2_sysregs_t *el2_ctx;
166 
167 	state = get_el3state_ctx(ctx);
168 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
169 	el2_ctx = get_el2_sysregs_ctx(ctx);
170 
171 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
172 
173 	write_el2_ctx_common(el2_ctx, spsr_el2, SPSR_EL2_REALM);
174 
175 	/* CSV2 version 2 and above */
176 	if (is_feat_csv2_2_supported()) {
177 		/* Enable access to the SCXTNUM_ELx registers. */
178 		scr_el3 |= SCR_EnSCXT_BIT;
179 	}
180 
181 	if (is_feat_sctlr2_supported()) {
182 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
183 		 * SCTLR2_ELx registers.
184 		 */
185 		scr_el3 |= SCR_SCTLR2En_BIT;
186 	}
187 
188 	if (is_feat_d128_supported()) {
189 		/*
190 		 * Set the D128En bit in SCR_EL3 to enable access to 128-bit
191 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
192 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
193 		 */
194 		scr_el3 |= SCR_D128En_BIT;
195 	}
196 
197 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
198 
199 	if (is_feat_fgt2_supported()) {
200 		fgt2_enable(ctx);
201 	}
202 
203 	if (is_feat_debugv8p9_supported()) {
204 		debugv8p9_extended_bp_wp_enable(ctx);
205 	}
206 
207 	if (is_feat_brbe_supported()) {
208 		brbe_enable(ctx);
209 	}
210 
211 	/*
212 	 * Enable access to TPIDR2_EL0 if SME/SME2 is enabled for Non Secure world.
213 	 */
214 	if (is_feat_sme_supported()) {
215 		sme_enable(ctx);
216 	}
217 
218 	if (is_feat_spe_supported()) {
219 		spe_disable_realm(ctx);
220 	}
221 
222 	if (is_feat_trbe_supported()) {
223 		trbe_disable_realm(ctx);
224 	}
225 }
226 #endif /* ENABLE_RME && IMAGE_BL31 */
227 
228 /******************************************************************************
229  * This function performs initializations that are specific to NON-SECURE state
230  * and updates the cpu context specified by 'ctx'.
231  *****************************************************************************/
232 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
233 {
234 	u_register_t scr_el3;
235 	el3_state_t *state;
236 
237 	state = get_el3state_ctx(ctx);
238 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
239 
240 	/* SCR_NS: Set the NS bit */
241 	scr_el3 |= SCR_NS_BIT;
242 
243 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
244 	if (is_feat_mte2_supported()) {
245 		scr_el3 |= SCR_ATA_BIT;
246 	}
247 
248 	/*
249 	 * Pointer Authentication feature, if present, is always enabled by
250 	 * default for Non secure lower exception levels. We do not have an
251 	 * explicit flag to set it. To prevent the leakage between the worlds
252 	 * during world switch, we enable it only for the non-secure world.
253 	 *
254 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
255 	 * exception levels of secure and realm worlds.
256 	 *
257 	 * If the Secure/realm world wants to use pointer authentication,
258 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
259 	 * it will be enabled globally for all the contexts.
260 	 *
261 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
262 	 *  other than EL3
263 	 *
264 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
265 	 *  than EL3
266 	 */
267 	if (!is_ctx_pauth_supported()) {
268 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
269 	}
270 
271 #if HANDLE_EA_EL3_FIRST_NS
272 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
273 	scr_el3 |= SCR_EA_BIT;
274 #endif
275 
276 #if RAS_TRAP_NS_ERR_REC_ACCESS
277 	/*
278 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
279 	 * and RAS ERX registers from EL1 and EL2(from any security state)
280 	 * are trapped to EL3.
281 	 * Set here to trap only for NS EL1/EL2
282 	 */
283 	scr_el3 |= SCR_TERR_BIT;
284 #endif
285 
286 	/* CSV2 version 2 and above */
287 	if (is_feat_csv2_2_supported()) {
288 		/* Enable access to the SCXTNUM_ELx registers. */
289 		scr_el3 |= SCR_EnSCXT_BIT;
290 	}
291 
292 #ifdef IMAGE_BL31
293 	/*
294 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
295 	 *  indicated by the interrupt routing model for BL31.
296 	 */
297 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
298 #endif
299 
300 	if (is_feat_the_supported()) {
301 		/* Set the RCWMASKEn bit in SCR_EL3 to enable access to
302 		 * RCWMASK_EL1 and RCWSMASK_EL1 registers.
303 		 */
304 		scr_el3 |= SCR_RCWMASKEn_BIT;
305 	}
306 
307 	if (is_feat_sctlr2_supported()) {
308 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
309 		 * SCTLR2_ELx registers.
310 		 */
311 		scr_el3 |= SCR_SCTLR2En_BIT;
312 	}
313 
314 	if (is_feat_d128_supported()) {
315 		/* Set the D128En bit in SCR_EL3 to enable access to 128-bit
316 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
317 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
318 		 */
319 		scr_el3 |= SCR_D128En_BIT;
320 	}
321 
322 	if (is_feat_fpmr_supported()) {
323 		/* Set the EnFPM bit in SCR_EL3 to enable access to FPMR
324 		 * register.
325 		 */
326 		scr_el3 |= SCR_EnFPM_BIT;
327 	}
328 
329 	if (is_feat_aie_supported()) {
330 		/* Set the AIEn bit in SCR_EL3 to enable access to (A)MAIR2
331 		 * system registers from NS world.
332 		 */
333 		scr_el3 |= SCR_AIEn_BIT;
334 	}
335 
336 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
337 
338 	/* Initialize EL2 context registers */
339 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
340 	if (is_feat_hcx_supported()) {
341 		/*
342 		 * Initialize register HCRX_EL2 with its init value.
343 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
344 		 * chance that this can lead to unexpected behavior in lower
345 		 * ELs that have not been updated since the introduction of
346 		 * this feature if not properly initialized, especially when
347 		 * it comes to those bits that enable/disable traps.
348 		 */
349 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
350 			HCRX_EL2_INIT_VAL);
351 	}
352 
353 	if (is_feat_fgt_supported()) {
354 		/*
355 		 * Initialize HFG*_EL2 registers with a default value so legacy
356 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
357 		 * of initialization for this feature.
358 		 */
359 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
360 			HFGITR_EL2_INIT_VAL);
361 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
362 			HFGRTR_EL2_INIT_VAL);
363 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
364 			HFGWTR_EL2_INIT_VAL);
365 	}
366 #else
367 	/* Initialize EL1 context registers */
368 	setup_el1_context(ctx, ep);
369 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
370 
371 	manage_extensions_nonsecure(ctx);
372 }
373 
374 /*******************************************************************************
375  * The following function performs initialization of the cpu_context 'ctx'
376  * for first use that is common to all security states, and sets the
377  * initial entrypoint state as specified by the entry_point_info structure.
378  *
379  * The EE and ST attributes are used to configure the endianness and secure
380  * timer availability for the new execution context.
381  ******************************************************************************/
382 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
383 {
384 	u_register_t scr_el3;
385 	u_register_t mdcr_el3;
386 	el3_state_t *state;
387 	gp_regs_t *gp_regs;
388 
389 	state = get_el3state_ctx(ctx);
390 
391 	/* Clear any residual register values from the context */
392 	zeromem(ctx, sizeof(*ctx));
393 
394 	/*
395 	 * The lower-EL context is zeroed so that no stale values leak to a world.
396 	 * It is assumed that an all-zero lower-EL context is good enough for it
397 	 * to boot correctly. However, there are very few registers where this
398 	 * is not true and some values need to be recreated.
399 	 */
400 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
401 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
402 
403 	/*
404 	 * These bits are set in the gicv3 driver. Losing them (especially the
405 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
406 	 */
407 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
408 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
409 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
410 
411 	/*
412 	 * The actlr_el2 register can be initialized in platform's reset handler
413 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
414 	 */
415 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
416 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
417 
418 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
419 	scr_el3 = SCR_RESET_VAL;
420 
421 	/*
422 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
423 	 *  EL2, EL1 and EL0 are not trapped to EL3.
424 	 *
425 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
426 	 *  EL2, EL1 and EL0 are not trapped to EL3.
427 	 *
428 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
429 	 *  both Security states and both Execution states.
430 	 *
431 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
432 	 *  Non-secure memory.
433 	 */
434 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
435 
436 	scr_el3 |= SCR_SIF_BIT;
437 
438 	/*
439 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
440 	 *  Exception level as specified by SPSR.
441 	 */
442 	if (GET_RW(ep->spsr) == MODE_RW_64) {
443 		scr_el3 |= SCR_RW_BIT;
444 	}
445 
446 	/*
447 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
448 	 * Secure timer registers to EL3, from AArch64 state only, if specified
449 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
450 	 * bit always behaves as 1 (i.e. secure physical timer register access
451 	 * is not trapped)
452 	 */
453 	if (EP_GET_ST(ep->h.attr) != 0U) {
454 		scr_el3 |= SCR_ST_BIT;
455 	}
456 
457 	/*
458 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
459 	 * SCR_EL3.HXEn.
460 	 */
461 	if (is_feat_hcx_supported()) {
462 		scr_el3 |= SCR_HXEn_BIT;
463 	}
464 
465 	/*
466 	 * If FEAT_LS64_ACCDATA is enabled, enable access to ACCDATA_EL1 by
467 	 * setting SCR_EL3.ADEn and allow the ST64BV0 instruction by setting
468 	 * SCR_EL3.EnAS0.
469 	 */
470 	if (is_feat_ls64_accdata_supported()) {
471 		scr_el3 |= SCR_ADEn_BIT | SCR_EnAS0_BIT;
472 	}
473 
474 	/*
475 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
476 	 * registers are trapped to EL3.
477 	 */
478 	if (is_feat_rng_trap_supported()) {
479 		scr_el3 |= SCR_TRNDR_BIT;
480 	}
481 
482 #if FAULT_INJECTION_SUPPORT
483 	/* Enable fault injection from lower ELs */
484 	scr_el3 |= SCR_FIEN_BIT;
485 #endif
486 
487 	/*
488 	 * Enable Pointer Authentication globally for all the worlds.
489 	 *
490 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
491 	 *  other than EL3
492 	 *
493 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
494 	 *  than EL3
495 	 */
496 	if (is_ctx_pauth_supported()) {
497 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
498 	}
499 
500 	/*
501 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
502 	 * registers for AArch64 if present.
503 	 */
504 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
505 		scr_el3 |= SCR_PIEN_BIT;
506 	}
507 
508 	/*
509 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
510 	 */
511 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
512 		scr_el3 |= SCR_GCSEn_BIT;
513 	}
514 
515 	/*
516 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
517 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
518 	 * next mode is Hyp.
519 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
520 	 * same conditions as HVC instructions and when the processor supports
521 	 * ARMv8.6-FGT.
522 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
523 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
524 	 * and when the processor supports ECV.
525 	 */
526 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
527 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
528 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
529 		scr_el3 |= SCR_HCE_BIT;
530 
531 		if (is_feat_fgt_supported()) {
532 			scr_el3 |= SCR_FGTEN_BIT;
533 		}
534 
535 		if (is_feat_ecv_supported()) {
536 			scr_el3 |= SCR_ECVEN_BIT;
537 		}
538 	}
539 
540 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
541 	if (is_feat_twed_supported()) {
542 		/* Set delay in SCR_EL3 */
543 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
544 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
545 				<< SCR_TWEDEL_SHIFT);
546 
547 		/* Enable WFE delay */
548 		scr_el3 |= SCR_TWEDEn_BIT;
549 	}
550 
551 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
552 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
553 	if (is_feat_sel2_supported()) {
554 		scr_el3 |= SCR_EEL2_BIT;
555 	}
556 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
557 
558 	if (is_feat_mec_supported()) {
559 		scr_el3 |= SCR_MECEn_BIT;
560 	}
561 
562 	/*
563 	 * Populate EL3 state so that we've the right context
564 	 * before doing ERET
565 	 */
566 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
567 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
568 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
569 
570 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
571 	mdcr_el3 = MDCR_EL3_RESET_VAL;
572 
573 	/* ---------------------------------------------------------------------
574 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
575 	 * Some fields are architecturally UNKNOWN on reset.
576 	 *
577 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
578 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
579 	 *  disabled from all ELs in Secure state.
580 	 *
581 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
582 	 *  privileged debug from S-EL1.
583 	 *
584 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
585 	 *  access to the powerdown debug registers do not trap to EL3.
586 	 *
587 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
588 	 *  debug registers, other than those registers that are controlled by
589 	 *  MDCR_EL3.TDOSA.
590 	 */
591 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
592 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
593 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
594 
595 #if IMAGE_BL31
596 	/* Enable FEAT_TRF for Non-Secure and prohibit for Secure state. */
597 	if (is_feat_trf_supported()) {
598 		trf_enable(ctx);
599 	}
600 
601 	if (is_feat_tcr2_supported()) {
602 		tcr2_enable(ctx);
603 	}
604 
605 	pmuv3_enable(ctx);
606 
607 #if CTX_INCLUDE_EL2_REGS
608 	/*
609 	 * Initialize SCTLR_EL2 context register with reset value.
610 	 */
611 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
612 #endif /* CTX_INCLUDE_EL2_REGS */
613 #endif /* IMAGE_BL31 */
614 
615 	/*
616 	 * Store the X0-X7 value from the entrypoint into the context
617 	 * Use memcpy as we are in control of the layout of the structures
618 	 */
619 	gp_regs = get_gpregs_ctx(ctx);
620 	memcpy((void *)gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
621 }
622 
623 /*******************************************************************************
624  * Context management library initialization routine. This library is used by
625  * runtime services to share pointers to 'cpu_context' structures for secure
626  * non-secure and realm states. Management of the structures and their associated
627  * memory is not done by the context management library e.g. the PSCI service
628  * manages the cpu context used for entry from and exit to the non-secure state.
629  * The Secure payload dispatcher service manages the context(s) corresponding to
630  * the secure state. It also uses this library to get access to the non-secure
631  * state cpu context pointers.
632  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
633  * which will be used for programming an entry into a lower EL. The same context
634  * will be used to save state upon exception entry from that EL.
635  ******************************************************************************/
636 void __init cm_init(void)
637 {
638 	/*
639 	 * The context management library has only global data to initialize, but
640 	 * that will be done when the BSS is zeroed out.
641 	 */
642 }
643 
644 /*******************************************************************************
645  * This is the high-level function used to initialize the cpu_context 'ctx' for
646  * first use. It performs initializations that are common to all security states
647  * and initializations specific to the security state specified in 'ep'
648  ******************************************************************************/
649 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
650 {
651 	size_t security_state;
652 
653 	assert(ctx != NULL);
654 
655 	/*
656 	 * Perform initializations that are common
657 	 * to all security states
658 	 */
659 	setup_context_common(ctx, ep);
660 
661 	security_state = GET_SECURITY_STATE(ep->h.attr);
662 
663 	/* Perform security state specific initializations */
664 	switch (security_state) {
665 	case SECURE:
666 		setup_secure_context(ctx, ep);
667 		break;
668 #if ENABLE_RME && IMAGE_BL31
669 	case REALM:
670 		setup_realm_context(ctx, ep);
671 		break;
672 #endif
673 	case NON_SECURE:
674 		setup_ns_context(ctx, ep);
675 		break;
676 	default:
677 		ERROR("Invalid security state\n");
678 		panic();
679 		break;
680 	}
681 }
682 
683 /*******************************************************************************
684  * Enable architecture extensions for EL3 execution. This function only updates
685  * registers in-place which are expected to either never change or be
686  * overwritten by el3_exit. Expects the core_pos of the current core as argument.
687  ******************************************************************************/
688 #if IMAGE_BL31
689 void __no_pauth cm_manage_extensions_el3(unsigned int my_idx)
690 {
691 	if (is_feat_pauth_supported()) {
692 		pauth_init_enable_el3();
693 	}
694 
695 	if (is_feat_sve_supported()) {
696 		sve_init_el3();
697 	}
698 
699 	if (is_feat_amu_supported()) {
700 		amu_init_el3(my_idx);
701 	}
702 
703 	if (is_feat_sme_supported()) {
704 		sme_init_el3();
705 	}
706 
707 	if (is_feat_fgwte3_supported()) {
708 		write_fgwte3_el3(FGWTE3_EL3_EARLY_INIT_VAL);
709 	}
710 
711 	if (is_feat_mpam_supported()) {
712 		mpam_init_el3();
713 	}
714 
715 	if (is_feat_cpa2_supported()) {
716 		cpa2_enable_el3();
717 	}
718 
719 	pmuv3_init_el3();
720 }
721 
722 /******************************************************************************
723  * Function to initialise the registers with the RESET values in the context
724  * memory, which are maintained per world.
725  ******************************************************************************/
726 static void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
727 {
728 	/*
729 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
730 	 *
731 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
732 	 *  by Advanced SIMD, floating-point or SVE instructions (if
733 	 *  implemented) do not trap to EL3.
734 	 *
735 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
736 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
737 	 */
738 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
739 
740 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
741 
742 	/*
743 	 * Initialize MPAM3_EL3 to its default reset value
744 	 *
745 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
746 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
747 	 */
748 
749 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
750 }
751 
752 /*******************************************************************************
753  * Initialise per_world_context for Non-Secure world.
754  * This function enables the architecture extensions, which have same value
755  * across the cores for the non-secure world.
756  ******************************************************************************/
757 static void manage_extensions_nonsecure_per_world(void)
758 {
759 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
760 
761 	if (is_feat_sme_supported()) {
762 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
763 	}
764 
765 	if (is_feat_sve_supported()) {
766 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
767 	}
768 
769 	if (is_feat_amu_supported()) {
770 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
771 	}
772 
773 	if (is_feat_sys_reg_trace_supported()) {
774 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
775 	}
776 
777 	if (is_feat_mpam_supported()) {
778 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
779 	}
780 
781 	if (is_feat_fpmr_supported()) {
782 		fpmr_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
783 	}
784 }
785 
786 /*******************************************************************************
787  * Initialise per_world_context for Secure world.
788  * This function enables the architecture extensions, which have same value
789  * across the cores for the secure world.
790  ******************************************************************************/
791 static void manage_extensions_secure_per_world(void)
792 {
793 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
794 
795 	if (is_feat_sme_supported()) {
796 
797 		if (ENABLE_SME_FOR_SWD) {
798 		/*
799 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
800 		 * SME, SVE, and FPU/SIMD context properly managed.
801 		 */
802 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
803 		} else {
804 		/*
805 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
806 		 * world can safely use the associated registers.
807 		 */
808 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
809 		}
810 	}
811 	if (is_feat_sve_supported()) {
812 		if (ENABLE_SVE_FOR_SWD) {
813 		/*
814 		 * Enable SVE and FPU in secure context, SPM must ensure
815 		 * that the SVE and FPU register contexts are properly managed.
816 		 */
817 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
818 		} else {
819 		/*
820 		 * Disable SVE and FPU in secure context so non-secure world
821 		 * can safely use them.
822 		 */
823 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
824 		}
825 	}
826 
827 	/* NS can access this but Secure shouldn't */
828 	if (is_feat_sys_reg_trace_supported()) {
829 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
830 	}
831 }
832 
833 static void manage_extensions_realm_per_world(void)
834 {
835 #if ENABLE_RME
836 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_REALM]);
837 
838 	if (is_feat_sve_supported()) {
839 	/*
840 	 * Enable SVE and FPU in realm context when it is enabled for NS.
841 	 * Realm manager must ensure that the SVE and FPU register
842 	 * contexts are properly managed.
843 	 */
844 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
845 	}
846 
847 	/* NS can access this but Realm shouldn't */
848 	if (is_feat_sys_reg_trace_supported()) {
849 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
850 	}
851 
852 	/*
853 	 * If SME/SME2 is supported and enabled for NS world, then disable trapping
854 	 * of SME instructions for Realm world. RMM will save/restore required
855 	 * registers that are shared with SVE/FPU so that Realm can use FPU or SVE.
856 	 */
857 	if (is_feat_sme_supported()) {
858 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
859 	}
860 
861 	/*
862 	 * If FEAT_MPAM is supported and enabled, then disable trapping access
863 	 * to the MPAM registers for Realm world. Instead, RMM will configure
864 	 * the access to be trapped by itself so it can inject undefined aborts
865 	 * back to the Realm.
866 	 */
867 	if (is_feat_mpam_supported()) {
868 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
869 	}
870 #endif /* ENABLE_RME */
871 }
872 
873 void cm_manage_extensions_per_world(void)
874 {
875 	manage_extensions_nonsecure_per_world();
876 	manage_extensions_secure_per_world();
877 	manage_extensions_realm_per_world();
878 }
879 #endif /* IMAGE_BL31 */
880 
881 /*******************************************************************************
882  * Enable architecture extensions on first entry to Non-secure world.
883  ******************************************************************************/
884 static void manage_extensions_nonsecure(cpu_context_t *ctx)
885 {
886 #if IMAGE_BL31
887 	/* NOTE: registers are not context switched */
888 	if (is_feat_amu_supported()) {
889 		amu_enable(ctx);
890 	}
891 
892 	if (is_feat_sme_supported()) {
893 		sme_enable(ctx);
894 	}
895 
896 	if (is_feat_fgt2_supported()) {
897 		fgt2_enable(ctx);
898 	}
899 
900 	if (is_feat_debugv8p9_supported()) {
901 		debugv8p9_extended_bp_wp_enable(ctx);
902 	}
903 
904 	if (is_feat_spe_supported()) {
905 		spe_enable_ns(ctx);
906 	}
907 
908 	if (is_feat_trbe_supported()) {
909 		if (check_if_trbe_disable_affected_core()) {
910 			trbe_disable_ns(ctx);
911 		} else {
912 			trbe_enable_ns(ctx);
913 		}
914 	}
915 
916 	if (is_feat_brbe_supported()) {
917 		brbe_enable(ctx);
918 	}
919 #endif /* IMAGE_BL31 */
920 }
921 
922 #if INIT_UNUSED_NS_EL2
923 /*******************************************************************************
924  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
925  * world when EL2 is empty and unused.
926  ******************************************************************************/
927 static void manage_extensions_nonsecure_el2_unused(void)
928 {
929 #if IMAGE_BL31
930 	if (is_feat_spe_supported()) {
931 		spe_init_el2_unused();
932 	}
933 
934 	if (is_feat_amu_supported()) {
935 		amu_init_el2_unused();
936 	}
937 
938 	if (is_feat_mpam_supported()) {
939 		mpam_init_el2_unused();
940 	}
941 
942 	if (is_feat_trbe_supported()) {
943 		trbe_init_el2_unused();
944 	}
945 
946 	if (is_feat_sys_reg_trace_supported()) {
947 		sys_reg_trace_init_el2_unused();
948 	}
949 
950 	if (is_feat_trf_supported()) {
951 		trf_init_el2_unused();
952 	}
953 
954 	pmuv3_init_el2_unused();
955 
956 	if (is_feat_sve_supported()) {
957 		sve_init_el2_unused();
958 	}
959 
960 	if (is_feat_sme_supported()) {
961 		sme_init_el2_unused();
962 	}
963 
964 	if (is_feat_mops_supported() && is_feat_hcx_supported()) {
965 		write_hcrx_el2(read_hcrx_el2() | HCRX_EL2_MSCEn_BIT);
966 	}
967 
968 	if (is_feat_pauth_supported()) {
969 		pauth_enable_el2();
970 	}
971 #endif /* IMAGE_BL31 */
972 }
973 #endif /* INIT_UNUSED_NS_EL2 */
974 
975 /*******************************************************************************
976  * Enable architecture extensions on first entry to Secure world.
977  ******************************************************************************/
978 static void manage_extensions_secure(cpu_context_t *ctx)
979 {
980 #if IMAGE_BL31
981 	if (is_feat_sme_supported()) {
982 		if (ENABLE_SME_FOR_SWD) {
983 		/*
984 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
985 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
986 		 */
987 			sme_init_el3();
988 			sme_enable(ctx);
989 		} else {
990 		/*
991 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
992 		 * world can safely use the associated registers.
993 		 */
994 			sme_disable(ctx);
995 		}
996 	}
997 
998 	if (is_feat_spe_supported()) {
999 		spe_disable_secure(ctx);
1000 	}
1001 
1002 	if (is_feat_trbe_supported()) {
1003 		trbe_disable_secure(ctx);
1004 	}
1005 #endif /* IMAGE_BL31 */
1006 }
1007 
1008 /*******************************************************************************
1009  * The following function initializes the cpu_context for the current CPU
1010  * for first use, and sets the initial entrypoint state as specified by the
1011  * entry_point_info structure.
1012  ******************************************************************************/
1013 void cm_init_my_context(const entry_point_info_t *ep)
1014 {
1015 	cpu_context_t *ctx;
1016 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
1017 	cm_setup_context(ctx, ep);
1018 }
1019 
1020 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
1021 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
1022 {
1023 #if INIT_UNUSED_NS_EL2
1024 	u_register_t hcr_el2 = HCR_RESET_VAL;
1025 	u_register_t mdcr_el2;
1026 	u_register_t scr_el3;
1027 
1028 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1029 
1030 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
1031 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
1032 		hcr_el2 |= HCR_RW_BIT;
1033 	}
1034 
1035 	write_hcr_el2(hcr_el2);
1036 
1037 	/*
1038 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
1039 	 * All fields have architecturally UNKNOWN reset values.
1040 	 */
1041 	write_cptr_el2(CPTR_EL2_RESET_VAL);
1042 
1043 	/*
1044 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
1045 	 * reset and are set to zero except for field(s) listed below.
1046 	 *
1047 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
1048 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
1049 	 *
1050 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
1051 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
1052 	 */
1053 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
1054 
1055 	/*
1056 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
1057 	 * UNKNOWN value.
1058 	 */
1059 	write_cntvoff_el2(0);
1060 
1061 	/*
1062 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
1063 	 * respectively.
1064 	 */
1065 	write_vpidr_el2(read_midr_el1());
1066 	write_vmpidr_el2(read_mpidr_el1());
1067 
1068 	/*
1069 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
1070 	 *
1071 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
1072 	 * translation is disabled, cache maintenance operations depend on the
1073 	 * VMID.
1074 	 *
1075 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
1076 	 * disabled.
1077 	 */
1078 	write_vttbr_el2(VTTBR_RESET_VAL &
1079 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
1080 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
1081 
1082 	/*
1083 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
1084 	 * Some fields are architecturally UNKNOWN on reset.
1085 	 *
1086 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
1087 	 * register accesses to the Debug ROM registers are not trapped to EL2.
1088 	 *
1089 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
1090 	 * accesses to the powerdown debug registers are not trapped to EL2.
1091 	 *
1092 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
1093 	 * debug registers do not trap to EL2.
1094 	 *
1095 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
1096 	 * EL2.
1097 	 */
1098 	mdcr_el2 = MDCR_EL2_RESET_VAL &
1099 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
1100 		   MDCR_EL2_TDE_BIT);
1101 
1102 	write_mdcr_el2(mdcr_el2);
1103 
1104 	/*
1105 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
1106 	 *
1107 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
1108 	 * EL1 accesses to System registers do not trap to EL2.
1109 	 */
1110 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
1111 
1112 	/*
1113 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
1114 	 * reset.
1115 	 *
1116 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1117 	 * and prevent timer interrupts.
1118 	 */
1119 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1120 
1121 	manage_extensions_nonsecure_el2_unused();
1122 #endif /* INIT_UNUSED_NS_EL2 */
1123 }
1124 
1125 /*******************************************************************************
1126  * Prepare the CPU system registers for first entry into realm, secure, or
1127  * normal world.
1128  *
1129  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1130  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1131  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1132  * For all entries, the EL1 registers are initialized from the cpu_context
1133  ******************************************************************************/
1134 void cm_prepare_el3_exit(size_t security_state)
1135 {
1136 	u_register_t sctlr_el2, scr_el3;
1137 	cpu_context_t *ctx = cm_get_context(security_state);
1138 
1139 	assert(ctx != NULL);
1140 
1141 	if (security_state == NON_SECURE) {
1142 		uint64_t el2_implemented = el_implemented(2);
1143 
1144 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1145 						 CTX_SCR_EL3);
1146 
1147 		if (el2_implemented != EL_IMPL_NONE) {
1148 
1149 			/*
1150 			 * If context is not being used for EL2, initialize
1151 			 * HCRX_EL2 with its init value here.
1152 			 */
1153 			if (is_feat_hcx_supported()) {
1154 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1155 			}
1156 
1157 			/*
1158 			 * Initialize Fine-grained trap registers introduced
1159 			 * by FEAT_FGT so all traps are initially disabled when
1160 			 * switching to EL2 or a lower EL, preventing undesired
1161 			 * behavior.
1162 			 */
1163 			if (is_feat_fgt_supported()) {
1164 				/*
1165 				 * Initialize HFG*_EL2 registers with a default
1166 				 * value so legacy systems unaware of FEAT_FGT
1167 				 * do not get trapped due to their lack of
1168 				 * initialization for this feature.
1169 				 */
1170 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1171 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1172 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1173 			}
1174 
1175 			/* Condition to ensure EL2 is being used. */
1176 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1177 				/* Initialize SCTLR_EL2 register with reset value. */
1178 				sctlr_el2 = SCTLR_EL2_RES1;
1179 
1180 				/*
1181 				 * If workaround of errata 764081 for Cortex-A75
1182 				 * is used then set SCTLR_EL2.IESB to enable
1183 				 * Implicit Error Synchronization Barrier.
1184 				 */
1185 				if (errata_a75_764081_applies()) {
1186 					sctlr_el2 |= SCTLR_IESB_BIT;
1187 				}
1188 
1189 				write_sctlr_el2(sctlr_el2);
1190 			} else {
1191 				/*
1192 				 * (scr_el3 & SCR_HCE_BIT==0)
1193 				 * EL2 implemented but unused.
1194 				 */
1195 				init_nonsecure_el2_unused(ctx);
1196 			}
1197 		}
1198 
1199 		if (is_feat_fgwte3_supported()) {
1200 			/*
1201 			 * TCR_EL3 and ACTLR_EL3 could be overwritten
1202 			 * by platforms and hence is locked a bit late.
1203 			 */
1204 			write_fgwte3_el3(FGWTE3_EL3_LATE_INIT_VAL);
1205 		}
1206 	}
1207 #if (!CTX_INCLUDE_EL2_REGS)
1208 	/* Restore EL1 system registers, only when CTX_INCLUDE_EL2_REGS=0 */
1209 	cm_el1_sysregs_context_restore(security_state);
1210 #endif
1211 	cm_set_next_eret_context(security_state);
1212 }
1213 
1214 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1215 
1216 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1217 {
1218 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1219 	if (is_feat_amu_supported()) {
1220 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1221 	}
1222 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1223 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1224 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1225 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1226 }
1227 
1228 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1229 {
1230 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1231 	if (is_feat_amu_supported()) {
1232 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1233 	}
1234 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1235 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1236 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1237 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1238 }
1239 
1240 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1241 {
1242 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1243 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1244 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1245 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1246 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1247 }
1248 
1249 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1250 {
1251 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1252 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1253 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1254 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1255 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1256 }
1257 
1258 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1259 {
1260 	u_register_t mpam_idr = read_mpamidr_el1();
1261 
1262 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1263 
1264 	/*
1265 	 * The context registers that we intend to save would be part of the
1266 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1267 	 */
1268 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1269 		return;
1270 	}
1271 
1272 	/*
1273 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1274 	 * MPAMIDR_HAS_HCR_BIT == 1.
1275 	 */
1276 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1277 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1278 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1279 
1280 	/*
1281 	 * The number of MPAMVPM registers is implementation defined, their
1282 	 * number is stored in the MPAMIDR_EL1 register.
1283 	 */
1284 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1285 	case 7:
1286 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1287 		__fallthrough;
1288 	case 6:
1289 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1290 		__fallthrough;
1291 	case 5:
1292 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1293 		__fallthrough;
1294 	case 4:
1295 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1296 		__fallthrough;
1297 	case 3:
1298 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1299 		__fallthrough;
1300 	case 2:
1301 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1302 		__fallthrough;
1303 	case 1:
1304 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1305 		break;
1306 	}
1307 }
1308 
1309 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1310 {
1311 	u_register_t mpam_idr = read_mpamidr_el1();
1312 
1313 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1314 
1315 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1316 		return;
1317 	}
1318 
1319 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1320 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1321 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1322 
1323 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1324 	case 7:
1325 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1326 		__fallthrough;
1327 	case 6:
1328 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1329 		__fallthrough;
1330 	case 5:
1331 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1332 		__fallthrough;
1333 	case 4:
1334 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1335 		__fallthrough;
1336 	case 3:
1337 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1338 		__fallthrough;
1339 	case 2:
1340 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1341 		__fallthrough;
1342 	case 1:
1343 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1344 		break;
1345 	}
1346 }
1347 
1348 /* ---------------------------------------------------------------------------
1349  * The following registers are not added:
1350  * ICH_AP0R<n>_EL2
1351  * ICH_AP1R<n>_EL2
1352  * ICH_LR<n>_EL2
1353  *
1354  * NOTE: For a system with S-EL2 present but not enabled, accessing
1355  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1356  * SCR_EL3.NS = 1 before accessing this register.
1357  * ---------------------------------------------------------------------------
1358  */
1359 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx, uint32_t security_state)
1360 {
1361 	u_register_t scr_el3 = read_scr_el3();
1362 
1363 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1364 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1365 #else
1366 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1367 	isb();
1368 
1369 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1370 
1371 	write_scr_el3(scr_el3);
1372 	isb();
1373 #endif
1374 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1375 
1376 	if (errata_ich_vmcr_el2_applies()) {
1377 		if (security_state == SECURE) {
1378 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1379 		} else {
1380 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1381 		}
1382 		isb();
1383 	}
1384 
1385 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1386 
1387 	if (errata_ich_vmcr_el2_applies()) {
1388 		write_scr_el3(scr_el3);
1389 		isb();
1390 	}
1391 }
1392 
1393 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx, uint32_t security_state)
1394 {
1395 	u_register_t scr_el3 = read_scr_el3();
1396 
1397 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1398 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1399 #else
1400 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1401 	isb();
1402 
1403 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1404 
1405 	write_scr_el3(scr_el3);
1406 	isb();
1407 #endif
1408 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1409 
1410 	if (errata_ich_vmcr_el2_applies()) {
1411 		if (security_state == SECURE) {
1412 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1413 		} else {
1414 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1415 		}
1416 		isb();
1417 	}
1418 
1419 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1420 
1421 	if (errata_ich_vmcr_el2_applies()) {
1422 		write_scr_el3(scr_el3);
1423 		isb();
1424 	}
1425 }
1426 
1427 /* -----------------------------------------------------
1428  * The following registers are not added:
1429  * AMEVCNTVOFF0<n>_EL2
1430  * AMEVCNTVOFF1<n>_EL2
1431  * -----------------------------------------------------
1432  */
1433 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1434 {
1435 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1436 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1437 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1438 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1439 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1440 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1441 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1442 	if (CTX_INCLUDE_AARCH32_REGS) {
1443 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1444 	}
1445 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1446 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1447 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1448 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1449 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1450 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1451 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1452 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1453 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1454 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1455 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1456 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1457 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1458 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1459 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1460 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1461 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1462 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1463 
1464 	write_el2_ctx_common_sysreg128(ctx, ttbr0_el2, read_ttbr0_el2());
1465 	write_el2_ctx_common_sysreg128(ctx, vttbr_el2, read_vttbr_el2());
1466 }
1467 
1468 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1469 {
1470 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1471 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1472 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1473 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1474 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1475 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1476 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1477 	if (CTX_INCLUDE_AARCH32_REGS) {
1478 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1479 	}
1480 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1481 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1482 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1483 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1484 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1485 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1486 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1487 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1488 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1489 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1490 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1491 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1492 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1493 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1494 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1495 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1496 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1497 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1498 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1499 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1500 }
1501 
1502 /*******************************************************************************
1503  * Save EL2 sysreg context
1504  ******************************************************************************/
1505 void cm_el2_sysregs_context_save(uint32_t security_state)
1506 {
1507 	cpu_context_t *ctx;
1508 	el2_sysregs_t *el2_sysregs_ctx;
1509 
1510 	ctx = cm_get_context(security_state);
1511 	assert(ctx != NULL);
1512 
1513 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1514 
1515 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1516 	el2_sysregs_context_save_gic(el2_sysregs_ctx, security_state);
1517 
1518 	if (is_feat_mte2_supported()) {
1519 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1520 	}
1521 
1522 	if (is_feat_mpam_supported()) {
1523 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1524 	}
1525 
1526 	if (is_feat_fgt_supported()) {
1527 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1528 	}
1529 
1530 	if (is_feat_fgt2_supported()) {
1531 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1532 	}
1533 
1534 	if (is_feat_ecv_v2_supported()) {
1535 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1536 	}
1537 
1538 	if (is_feat_vhe_supported()) {
1539 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1540 					read_contextidr_el2());
1541 		write_el2_ctx_vhe_sysreg128(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1542 	}
1543 
1544 	if (is_feat_ras_supported()) {
1545 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1546 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1547 	}
1548 
1549 	if (is_feat_nv2_supported()) {
1550 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1551 	}
1552 
1553 	if (is_feat_trf_supported()) {
1554 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1555 	}
1556 
1557 	if (is_feat_csv2_2_supported()) {
1558 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1559 					read_scxtnum_el2());
1560 	}
1561 
1562 	if (is_feat_hcx_supported()) {
1563 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1564 	}
1565 
1566 	if (is_feat_tcr2_supported()) {
1567 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1568 	}
1569 
1570 	if (is_feat_sxpie_supported()) {
1571 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1572 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1573 	}
1574 
1575 	if (is_feat_sxpoe_supported()) {
1576 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1577 	}
1578 
1579 	if (is_feat_brbe_supported()) {
1580 		write_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2, read_brbcr_el2());
1581 	}
1582 
1583 	if (is_feat_s2pie_supported()) {
1584 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1585 	}
1586 
1587 	if (is_feat_gcs_supported()) {
1588 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1589 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1590 	}
1591 
1592 	if (is_feat_sctlr2_supported()) {
1593 		write_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2, read_sctlr2_el2());
1594 	}
1595 }
1596 
1597 /*******************************************************************************
1598  * Restore EL2 sysreg context
1599  ******************************************************************************/
1600 void cm_el2_sysregs_context_restore(uint32_t security_state)
1601 {
1602 	cpu_context_t *ctx;
1603 	el2_sysregs_t *el2_sysregs_ctx;
1604 
1605 	ctx = cm_get_context(security_state);
1606 	assert(ctx != NULL);
1607 
1608 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1609 
1610 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1611 	el2_sysregs_context_restore_gic(el2_sysregs_ctx, security_state);
1612 
1613 	if (is_feat_mte2_supported()) {
1614 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1615 	}
1616 
1617 	if (is_feat_mpam_supported()) {
1618 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1619 	}
1620 
1621 	if (is_feat_fgt_supported()) {
1622 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1623 	}
1624 
1625 	if (is_feat_fgt2_supported()) {
1626 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1627 	}
1628 
1629 	if (is_feat_ecv_v2_supported()) {
1630 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1631 	}
1632 
1633 	if (is_feat_vhe_supported()) {
1634 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1635 					contextidr_el2));
1636 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1637 	}
1638 
1639 	if (is_feat_ras_supported()) {
1640 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1641 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1642 	}
1643 
1644 	if (is_feat_nv2_supported()) {
1645 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1646 	}
1647 
1648 	if (is_feat_trf_supported()) {
1649 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1650 	}
1651 
1652 	if (is_feat_csv2_2_supported()) {
1653 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1654 					scxtnum_el2));
1655 	}
1656 
1657 	if (is_feat_hcx_supported()) {
1658 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1659 	}
1660 
1661 	if (is_feat_tcr2_supported()) {
1662 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1663 	}
1664 
1665 	if (is_feat_sxpie_supported()) {
1666 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1667 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1668 	}
1669 
1670 	if (is_feat_sxpoe_supported()) {
1671 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1672 	}
1673 
1674 	if (is_feat_s2pie_supported()) {
1675 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1676 	}
1677 
1678 	if (is_feat_gcs_supported()) {
1679 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1680 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1681 	}
1682 
1683 	if (is_feat_sctlr2_supported()) {
1684 		write_sctlr2_el2(read_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2));
1685 	}
1686 
1687 	if (is_feat_brbe_supported()) {
1688 		write_brbcr_el2(read_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2));
1689 	}
1690 }
1691 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1692 
1693 /*******************************************************************************
1694  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1695  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1696  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1697  * cm_prepare_el3_exit function.
1698  ******************************************************************************/
1699 void cm_prepare_el3_exit_ns(void)
1700 {
1701 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1702 #if ENABLE_ASSERTIONS
1703 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1704 	assert(ctx != NULL);
1705 
1706 	/* Assert that EL2 is used. */
1707 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1708 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1709 			(el_implemented(2U) != EL_IMPL_NONE));
1710 #endif /* ENABLE_ASSERTIONS */
1711 
1712 	/* Restore EL2 sysreg contexts */
1713 	cm_el2_sysregs_context_restore(NON_SECURE);
1714 	cm_set_next_eret_context(NON_SECURE);
1715 #else
1716 	cm_prepare_el3_exit(NON_SECURE);
1717 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1718 }
1719 
1720 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
1721 /*******************************************************************************
1722  * The next set of six functions are used by runtime services to save and restore
1723  * EL1 context on the 'cpu_context' structure for the specified security state.
1724  ******************************************************************************/
1725 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1726 {
1727 	write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1());
1728 	write_el1_ctx_common(ctx, elr_el1, read_elr_el1());
1729 
1730 #if (!ERRATA_SPECULATIVE_AT)
1731 	write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1());
1732 	write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1());
1733 #endif /* (!ERRATA_SPECULATIVE_AT) */
1734 
1735 	write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1());
1736 	write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1());
1737 	write_el1_ctx_common(ctx, sp_el1, read_sp_el1());
1738 	write_el1_ctx_common(ctx, esr_el1, read_esr_el1());
1739 	write_el1_ctx_common(ctx, mair_el1, read_mair_el1());
1740 	write_el1_ctx_common(ctx, amair_el1, read_amair_el1());
1741 	write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1());
1742 	write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1());
1743 	write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0());
1744 	write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0());
1745 	write_el1_ctx_common(ctx, far_el1, read_far_el1());
1746 	write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1());
1747 	write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1());
1748 	write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1());
1749 	write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1());
1750 	write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1());
1751 	write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1());
1752 
1753 	write_el1_ctx_common_sysreg128(ctx, par_el1, read_par_el1());
1754 	write_el1_ctx_common_sysreg128(ctx, ttbr0_el1, read_ttbr0_el1());
1755 	write_el1_ctx_common_sysreg128(ctx, ttbr1_el1, read_ttbr1_el1());
1756 
1757 	if (CTX_INCLUDE_AARCH32_REGS) {
1758 		/* Save Aarch32 registers */
1759 		write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt());
1760 		write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und());
1761 		write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq());
1762 		write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq());
1763 		write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2());
1764 		write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2());
1765 	}
1766 
1767 	/* Save counter-timer kernel control register */
1768 	write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1());
1769 #if NS_TIMER_SWITCH
1770 	/* Save NS Timer registers */
1771 	write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0());
1772 	write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0());
1773 	write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0());
1774 	write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0());
1775 #endif
1776 
1777 	if (is_feat_mte2_supported()) {
1778 		write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1());
1779 		write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1());
1780 		write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1());
1781 		write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1());
1782 	}
1783 
1784 	if (is_feat_ras_supported()) {
1785 		write_el1_ctx_ras(ctx, disr_el1, read_disr_el1());
1786 	}
1787 
1788 	if (is_feat_s1pie_supported()) {
1789 		write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1());
1790 		write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1());
1791 	}
1792 
1793 	if (is_feat_s1poe_supported()) {
1794 		write_el1_ctx_s1poe(ctx, por_el1, read_por_el1());
1795 	}
1796 
1797 	if (is_feat_s2poe_supported()) {
1798 		write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1());
1799 	}
1800 
1801 	if (is_feat_tcr2_supported()) {
1802 		write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1());
1803 	}
1804 
1805 	if (is_feat_trf_supported()) {
1806 		write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1());
1807 	}
1808 
1809 	if (is_feat_csv2_2_supported()) {
1810 		write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0());
1811 		write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1());
1812 	}
1813 
1814 	if (is_feat_gcs_supported()) {
1815 		write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1());
1816 		write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1());
1817 		write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1());
1818 		write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0());
1819 	}
1820 
1821 	if (is_feat_the_supported()) {
1822 		write_el1_ctx_the_sysreg128(ctx, rcwmask_el1, read_rcwmask_el1());
1823 		write_el1_ctx_the_sysreg128(ctx, rcwsmask_el1, read_rcwsmask_el1());
1824 	}
1825 
1826 	if (is_feat_sctlr2_supported()) {
1827 		write_el1_ctx_sctlr2(ctx, sctlr2_el1, read_sctlr2_el1());
1828 	}
1829 
1830 	if (is_feat_ls64_accdata_supported()) {
1831 		write_el1_ctx_ls64(ctx, accdata_el1, read_accdata_el1());
1832 	}
1833 }
1834 
1835 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1836 {
1837 	write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1));
1838 	write_elr_el1(read_el1_ctx_common(ctx, elr_el1));
1839 
1840 #if (!ERRATA_SPECULATIVE_AT)
1841 	write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1));
1842 	write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1));
1843 #endif /* (!ERRATA_SPECULATIVE_AT) */
1844 
1845 	write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1));
1846 	write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1));
1847 	write_sp_el1(read_el1_ctx_common(ctx, sp_el1));
1848 	write_esr_el1(read_el1_ctx_common(ctx, esr_el1));
1849 	write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1));
1850 	write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1));
1851 	write_mair_el1(read_el1_ctx_common(ctx, mair_el1));
1852 	write_amair_el1(read_el1_ctx_common(ctx, amair_el1));
1853 	write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1));
1854 	write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1));
1855 	write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0));
1856 	write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0));
1857 	write_par_el1(read_el1_ctx_common(ctx, par_el1));
1858 	write_far_el1(read_el1_ctx_common(ctx, far_el1));
1859 	write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1));
1860 	write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1));
1861 	write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1));
1862 	write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1));
1863 	write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1));
1864 	write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1));
1865 
1866 	if (CTX_INCLUDE_AARCH32_REGS) {
1867 		/* Restore Aarch32 registers */
1868 		write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt));
1869 		write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und));
1870 		write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq));
1871 		write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq));
1872 		write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2));
1873 		write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2));
1874 	}
1875 
1876 	/* Restore counter-timer kernel control register */
1877 	write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1));
1878 #if NS_TIMER_SWITCH
1879 	/* Restore NS Timer registers */
1880 	write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0));
1881 	write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0));
1882 	write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0));
1883 	write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0));
1884 #endif
1885 
1886 	if (is_feat_mte2_supported()) {
1887 		write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1));
1888 		write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1));
1889 		write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1));
1890 		write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1));
1891 	}
1892 
1893 	if (is_feat_ras_supported()) {
1894 		write_disr_el1(read_el1_ctx_ras(ctx, disr_el1));
1895 	}
1896 
1897 	if (is_feat_s1pie_supported()) {
1898 		write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1));
1899 		write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1));
1900 	}
1901 
1902 	if (is_feat_s1poe_supported()) {
1903 		write_por_el1(read_el1_ctx_s1poe(ctx, por_el1));
1904 	}
1905 
1906 	if (is_feat_s2poe_supported()) {
1907 		write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1));
1908 	}
1909 
1910 	if (is_feat_tcr2_supported()) {
1911 		write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1));
1912 	}
1913 
1914 	if (is_feat_trf_supported()) {
1915 		write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1));
1916 	}
1917 
1918 	if (is_feat_csv2_2_supported()) {
1919 		write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0));
1920 		write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1));
1921 	}
1922 
1923 	if (is_feat_gcs_supported()) {
1924 		write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1));
1925 		write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1));
1926 		write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1));
1927 		write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0));
1928 	}
1929 
1930 	if (is_feat_the_supported()) {
1931 		write_rcwmask_el1(read_el1_ctx_the(ctx, rcwmask_el1));
1932 		write_rcwsmask_el1(read_el1_ctx_the(ctx, rcwsmask_el1));
1933 	}
1934 
1935 	if (is_feat_sctlr2_supported()) {
1936 		write_sctlr2_el1(read_el1_ctx_sctlr2(ctx, sctlr2_el1));
1937 	}
1938 
1939 	if (is_feat_ls64_accdata_supported()) {
1940 		write_accdata_el1(read_el1_ctx_ls64(ctx, accdata_el1));
1941 	}
1942 }
1943 
1944 /*******************************************************************************
1945  * The next couple of functions are used by runtime services to save and restore
1946  * EL1 context on the 'cpu_context' structure for the specified security state.
1947  ******************************************************************************/
1948 void cm_el1_sysregs_context_save(uint32_t security_state)
1949 {
1950 	cpu_context_t *ctx;
1951 
1952 	ctx = cm_get_context(security_state);
1953 	assert(ctx != NULL);
1954 
1955 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1956 
1957 #if IMAGE_BL31
1958 	if (security_state == SECURE) {
1959 		PUBLISH_EVENT(cm_exited_secure_world);
1960 	} else {
1961 		PUBLISH_EVENT(cm_exited_normal_world);
1962 	}
1963 #endif
1964 }
1965 
1966 void cm_el1_sysregs_context_restore(uint32_t security_state)
1967 {
1968 	cpu_context_t *ctx;
1969 
1970 	ctx = cm_get_context(security_state);
1971 	assert(ctx != NULL);
1972 
1973 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1974 
1975 #if IMAGE_BL31
1976 	if (security_state == SECURE) {
1977 		PUBLISH_EVENT(cm_entering_secure_world);
1978 	} else {
1979 		PUBLISH_EVENT(cm_entering_normal_world);
1980 	}
1981 #endif
1982 }
1983 
1984 #endif /* ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) */
1985 
1986 /*******************************************************************************
1987  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1988  * given security state with the given entrypoint
1989  ******************************************************************************/
1990 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1991 {
1992 	cpu_context_t *ctx;
1993 	el3_state_t *state;
1994 
1995 	ctx = cm_get_context(security_state);
1996 	assert(ctx != NULL);
1997 
1998 	/* Populate EL3 state so that ERET jumps to the correct entry */
1999 	state = get_el3state_ctx(ctx);
2000 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
2001 }
2002 
2003 /*******************************************************************************
2004  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
2005  * pertaining to the given security state
2006  ******************************************************************************/
2007 void cm_set_elr_spsr_el3(uint32_t security_state,
2008 			uintptr_t entrypoint, uint32_t spsr)
2009 {
2010 	cpu_context_t *ctx;
2011 	el3_state_t *state;
2012 
2013 	ctx = cm_get_context(security_state);
2014 	assert(ctx != NULL);
2015 
2016 	/* Populate EL3 state so that ERET jumps to the correct entry */
2017 	state = get_el3state_ctx(ctx);
2018 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
2019 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
2020 }
2021 
2022 /*******************************************************************************
2023  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
2024  * pertaining to the given security state using the value and bit position
2025  * specified in the parameters. It preserves all other bits.
2026  ******************************************************************************/
2027 void cm_write_scr_el3_bit(uint32_t security_state,
2028 			  uint32_t bit_pos,
2029 			  uint32_t value)
2030 {
2031 	cpu_context_t *ctx;
2032 	el3_state_t *state;
2033 	u_register_t scr_el3;
2034 
2035 	ctx = cm_get_context(security_state);
2036 	assert(ctx != NULL);
2037 
2038 	/* Ensure that the bit position is a valid one */
2039 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
2040 
2041 	/* Ensure that the 'value' is only a bit wide */
2042 	assert(value <= 1U);
2043 
2044 	/*
2045 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
2046 	 * and set it to its new value.
2047 	 */
2048 	state = get_el3state_ctx(ctx);
2049 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
2050 	scr_el3 &= ~(1UL << bit_pos);
2051 	scr_el3 |= (u_register_t)value << bit_pos;
2052 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
2053 }
2054 
2055 /*******************************************************************************
2056  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
2057  * given security state.
2058  ******************************************************************************/
2059 u_register_t cm_get_scr_el3(uint32_t security_state)
2060 {
2061 	const cpu_context_t *ctx;
2062 	const el3_state_t *state;
2063 
2064 	ctx = cm_get_context(security_state);
2065 	assert(ctx != NULL);
2066 
2067 	/* Populate EL3 state so that ERET jumps to the correct entry */
2068 	state = get_el3state_ctx(ctx);
2069 	return read_ctx_reg(state, CTX_SCR_EL3);
2070 }
2071 
2072 /*******************************************************************************
2073  * This function is used to program the context that's used for exception
2074  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
2075  * the required security state
2076  ******************************************************************************/
2077 void cm_set_next_eret_context(uint32_t security_state)
2078 {
2079 	cpu_context_t *ctx;
2080 
2081 	ctx = cm_get_context(security_state);
2082 	assert(ctx != NULL);
2083 
2084 	cm_set_next_context(ctx);
2085 }
2086