xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision a760277d83a16575c2feaf5b2368f40d4bc720c7)
1 /*
2  * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/cpus/cpu_ops.h>
23 #include <lib/cpus/errata.h>
24 #include <lib/el3_runtime/context_mgmt.h>
25 #include <lib/el3_runtime/cpu_data.h>
26 #include <lib/el3_runtime/pubsub_events.h>
27 #include <lib/extensions/amu.h>
28 #include <lib/extensions/brbe.h>
29 #include <lib/extensions/cpa2.h>
30 #include <lib/extensions/debug_v8p9.h>
31 #include <lib/extensions/fgt2.h>
32 #include <lib/extensions/idte3.h>
33 #include <lib/extensions/mpam.h>
34 #include <lib/extensions/pauth.h>
35 #include <lib/extensions/pmuv3.h>
36 #include <lib/extensions/sme.h>
37 #include <lib/extensions/spe.h>
38 #include <lib/extensions/sve.h>
39 #include <lib/extensions/sysreg128.h>
40 #include <lib/extensions/sys_reg_trace.h>
41 #include <lib/extensions/tcr2.h>
42 #include <lib/extensions/trbe.h>
43 #include <lib/extensions/trf.h>
44 #include <lib/utils.h>
45 
46 #if ENABLE_FEAT_TWED
47 /* Make sure delay value fits within the range(0-15) */
48 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
49 #endif /* ENABLE_FEAT_TWED */
50 
51 per_world_context_t per_world_context[CPU_CONTEXT_NUM];
52 PER_CPU_DEFINE(world_amu_regs_t, world_amu_ctx[CPU_CONTEXT_NUM]);
53 
54 static void manage_extensions_nonsecure(cpu_context_t *ctx);
55 static void manage_extensions_secure(cpu_context_t *ctx);
56 
57 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
58 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
59 {
60 	u_register_t sctlr_elx, actlr_elx;
61 
62 	/*
63 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
64 	 * execution state setting all fields rather than relying on the hw.
65 	 * Some fields have architecturally UNKNOWN reset values and these are
66 	 * set to zero.
67 	 *
68 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
69 	 *
70 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
71 	 * required by PSCI specification)
72 	 */
73 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
74 	if (GET_RW(ep->spsr) == MODE_RW_64) {
75 		sctlr_elx |= SCTLR_EL1_RES1;
76 	} else {
77 		/*
78 		 * If the target execution state is AArch32 then the following
79 		 * fields need to be set.
80 		 *
81 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
82 		 *  instructions are not trapped to EL1.
83 		 *
84 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
85 		 *  instructions are not trapped to EL1.
86 		 *
87 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
88 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
89 		 */
90 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
91 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
92 	}
93 
94 	/*
95 	 * If workaround of errata 764081 for Cortex-A75 is used then set
96 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
97 	 */
98 	if (errata_a75_764081_applies()) {
99 		sctlr_elx |= SCTLR_IESB_BIT;
100 	}
101 
102 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
103 	write_ctx_sctlr_el1_reg_errata(ctx, sctlr_elx);
104 
105 	/*
106 	 * Base the context ACTLR_EL1 on the current value, as it is
107 	 * implementation defined. The context restore process will write
108 	 * the value from the context to the actual register and can cause
109 	 * problems for processor cores that don't expect certain bits to
110 	 * be zero.
111 	 */
112 	actlr_elx = read_actlr_el1();
113 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx);
114 }
115 #endif /* (IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)) */
116 
117 /******************************************************************************
118  * This function performs initializations that are specific to SECURE state
119  * and updates the cpu context specified by 'ctx'.
120  *****************************************************************************/
121 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
122 {
123 	u_register_t scr_el3;
124 	el3_state_t *state;
125 
126 	state = get_el3state_ctx(ctx);
127 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
128 
129 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
130 	/*
131 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
132 	 * indicated by the interrupt routing model for BL31.
133 	 */
134 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
135 #endif
136 
137 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
138 	if (is_feat_mte2_supported()) {
139 		scr_el3 |= SCR_ATA_BIT;
140 	}
141 
142 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
143 
144 	/*
145 	 * Initialize EL1 context registers unless SPMC is running
146 	 * at S-EL2.
147 	 */
148 #if !CTX_INCLUDE_EL2_REGS || IMAGE_BL1
149 	setup_el1_context(ctx, ep);
150 #endif
151 
152 	manage_extensions_secure(ctx);
153 }
154 
155 #if ENABLE_RME && IMAGE_BL31
156 /******************************************************************************
157  * This function performs initializations that are specific to REALM state
158  * and updates the cpu context specified by 'ctx'.
159  *
160  * NOTE: any changes to this function must be verified by an RMMD maintainer.
161  *****************************************************************************/
162 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
163 {
164 	u_register_t scr_el3;
165 	el3_state_t *state;
166 	el2_sysregs_t *el2_ctx;
167 
168 	state = get_el3state_ctx(ctx);
169 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
170 	el2_ctx = get_el2_sysregs_ctx(ctx);
171 
172 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
173 
174 	write_el2_ctx_common(el2_ctx, spsr_el2, SPSR_EL2_REALM);
175 
176 	/* CSV2 version 2 and above */
177 	if (is_feat_csv2_2_supported()) {
178 		/* Enable access to the SCXTNUM_ELx registers. */
179 		scr_el3 |= SCR_EnSCXT_BIT;
180 	}
181 
182 	if (is_feat_sctlr2_supported()) {
183 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
184 		 * SCTLR2_ELx registers.
185 		 */
186 		scr_el3 |= SCR_SCTLR2En_BIT;
187 	}
188 
189 	if (is_feat_d128_supported()) {
190 		/*
191 		 * Set the D128En bit in SCR_EL3 to enable access to 128-bit
192 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
193 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
194 		 */
195 		scr_el3 |= SCR_D128En_BIT;
196 	}
197 
198 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
199 
200 	if (is_feat_fgt2_supported()) {
201 		fgt2_enable(ctx);
202 	}
203 
204 	if (is_feat_debugv8p9_supported()) {
205 		debugv8p9_extended_bp_wp_enable(ctx);
206 	}
207 
208 	if (is_feat_brbe_supported()) {
209 		brbe_enable(ctx);
210 	}
211 
212 	/*
213 	 * Enable access to TPIDR2_EL0 if SME/SME2 is enabled for Non Secure world.
214 	 */
215 	if (is_feat_sme_supported()) {
216 		sme_enable(ctx);
217 	}
218 
219 	if (is_feat_spe_supported()) {
220 		spe_disable_realm(ctx);
221 	}
222 
223 	if (is_feat_trbe_supported()) {
224 		trbe_disable_realm(ctx);
225 	}
226 }
227 #endif /* ENABLE_RME && IMAGE_BL31 */
228 
229 /******************************************************************************
230  * This function performs initializations that are specific to NON-SECURE state
231  * and updates the cpu context specified by 'ctx'.
232  *****************************************************************************/
233 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
234 {
235 	u_register_t scr_el3;
236 	el3_state_t *state;
237 
238 	state = get_el3state_ctx(ctx);
239 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
240 
241 	/* SCR_NS: Set the NS bit */
242 	scr_el3 |= SCR_NS_BIT;
243 
244 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
245 	if (is_feat_mte2_supported()) {
246 		scr_el3 |= SCR_ATA_BIT;
247 	}
248 
249 	/*
250 	 * Pointer Authentication feature, if present, is always enabled by
251 	 * default for Non secure lower exception levels. We do not have an
252 	 * explicit flag to set it. To prevent the leakage between the worlds
253 	 * during world switch, we enable it only for the non-secure world.
254 	 *
255 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
256 	 * exception levels of secure and realm worlds.
257 	 *
258 	 * If the Secure/realm world wants to use pointer authentication,
259 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
260 	 * it will be enabled globally for all the contexts.
261 	 *
262 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
263 	 *  other than EL3
264 	 *
265 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
266 	 *  than EL3
267 	 */
268 	if (!is_ctx_pauth_supported()) {
269 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
270 	}
271 
272 #if HANDLE_EA_EL3_FIRST_NS
273 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
274 	scr_el3 |= SCR_EA_BIT;
275 #endif
276 
277 #if RAS_TRAP_NS_ERR_REC_ACCESS
278 	/*
279 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
280 	 * and RAS ERX registers from EL1 and EL2(from any security state)
281 	 * are trapped to EL3.
282 	 * Set here to trap only for NS EL1/EL2
283 	 */
284 	scr_el3 |= SCR_TERR_BIT;
285 #endif
286 
287 	/* CSV2 version 2 and above */
288 	if (is_feat_csv2_2_supported()) {
289 		/* Enable access to the SCXTNUM_ELx registers. */
290 		scr_el3 |= SCR_EnSCXT_BIT;
291 	}
292 
293 #ifdef IMAGE_BL31
294 	/*
295 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
296 	 *  indicated by the interrupt routing model for BL31.
297 	 */
298 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
299 #endif
300 
301 	if (is_feat_the_supported()) {
302 		/* Set the RCWMASKEn bit in SCR_EL3 to enable access to
303 		 * RCWMASK_EL1 and RCWSMASK_EL1 registers.
304 		 */
305 		scr_el3 |= SCR_RCWMASKEn_BIT;
306 	}
307 
308 	if (is_feat_sctlr2_supported()) {
309 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
310 		 * SCTLR2_ELx registers.
311 		 */
312 		scr_el3 |= SCR_SCTLR2En_BIT;
313 	}
314 
315 	if (is_feat_d128_supported()) {
316 		/* Set the D128En bit in SCR_EL3 to enable access to 128-bit
317 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
318 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
319 		 */
320 		scr_el3 |= SCR_D128En_BIT;
321 	}
322 
323 	if (is_feat_fpmr_supported()) {
324 		/* Set the EnFPM bit in SCR_EL3 to enable access to FPMR
325 		 * register.
326 		 */
327 		scr_el3 |= SCR_EnFPM_BIT;
328 	}
329 
330 	if (is_feat_aie_supported()) {
331 		/* Set the AIEn bit in SCR_EL3 to enable access to (A)MAIR2
332 		 * system registers from NS world.
333 		 */
334 		scr_el3 |= SCR_AIEn_BIT;
335 	}
336 
337 	if (is_feat_pfar_supported()) {
338 		/* Set the PFAREn bit in SCR_EL3 to enable access to the PFAR
339 		 * system registers from NS world.
340 		 */
341 		scr_el3 |= SCR_PFAREn_BIT;
342 	}
343 
344 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
345 
346 	/* Initialize EL2 context registers */
347 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
348 	if (is_feat_hcx_supported()) {
349 		/*
350 		 * Initialize register HCRX_EL2 with its init value.
351 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
352 		 * chance that this can lead to unexpected behavior in lower
353 		 * ELs that have not been updated since the introduction of
354 		 * this feature if not properly initialized, especially when
355 		 * it comes to those bits that enable/disable traps.
356 		 */
357 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
358 			HCRX_EL2_INIT_VAL);
359 	}
360 
361 	if (is_feat_fgt_supported()) {
362 		/*
363 		 * Initialize HFG*_EL2 registers with a default value so legacy
364 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
365 		 * of initialization for this feature.
366 		 */
367 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
368 			HFGITR_EL2_INIT_VAL);
369 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
370 			HFGRTR_EL2_INIT_VAL);
371 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
372 			HFGWTR_EL2_INIT_VAL);
373 	}
374 #else
375 	/* Initialize EL1 context registers */
376 	setup_el1_context(ctx, ep);
377 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
378 
379 	manage_extensions_nonsecure(ctx);
380 }
381 
382 static inline ddc_cap_t read_ddc_el0 (void)
383 {
384 	ddc_cap_t val = NULL;
385 #if ENABLE_FEAT_MORELLO
386 	__asm__ volatile ("msr spsel, #1 \n"
387 			 "mrs %0, ddc \n"
388 			 "msr spsel, #0 \n"
389 			 : "=C"(val)
390 			 :
391 			 : "memory"
392 	);
393 #endif
394 	return val;
395 }
396 
397 /*******************************************************************************
398  * The following function performs initialization of the cpu_context 'ctx'
399  * for first use that is common to all security states, and sets the
400  * initial entrypoint state as specified by the entry_point_info structure.
401  *
402  * The EE and ST attributes are used to configure the endianness and secure
403  * timer availability for the new execution context.
404  ******************************************************************************/
405 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
406 {
407 	u_register_t scr_el3;
408 	u_register_t mdcr_el3;
409 	el3_state_t *state;
410 	gp_regs_t *gp_regs;
411 
412 	state = get_el3state_ctx(ctx);
413 
414 	/* Clear any residual register values from the context */
415 	zeromem(ctx, sizeof(*ctx));
416 
417 	/*
418 	 * The lower-EL context is zeroed so that no stale values leak to a world.
419 	 * It is assumed that an all-zero lower-EL context is good enough for it
420 	 * to boot correctly. However, there are very few registers where this
421 	 * is not true and some values need to be recreated.
422 	 */
423 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
424 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
425 
426 	/*
427 	 * These bits are set in the gicv3 driver. Losing them (especially the
428 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
429 	 */
430 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
431 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
432 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
433 
434 	/*
435 	 * The actlr_el2 register can be initialized in platform's reset handler
436 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
437 	 */
438 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
439 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
440 
441 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
442 	scr_el3 = SCR_RESET_VAL;
443 
444 	/*
445 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
446 	 *  EL2, EL1 and EL0 are not trapped to EL3.
447 	 *
448 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
449 	 *  EL2, EL1 and EL0 are not trapped to EL3.
450 	 *
451 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
452 	 *  both Security states and both Execution states.
453 	 *
454 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
455 	 *  Non-secure memory.
456 	 */
457 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
458 
459 	scr_el3 |= SCR_SIF_BIT;
460 
461 	/*
462 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
463 	 *  Exception level as specified by SPSR.
464 	 */
465 	if (GET_RW(ep->spsr) == MODE_RW_64) {
466 		scr_el3 |= SCR_RW_BIT;
467 	}
468 
469 	/*
470 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
471 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
472 	 * next mode is Hyp.
473 	 */
474 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
475 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
476 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
477 		scr_el3 |= SCR_HCE_BIT;
478 	}
479 
480 	/*
481 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
482 	 * Secure timer registers to EL3, from AArch64 state only, if specified
483 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
484 	 * bit always behaves as 1 (i.e. secure physical timer register access
485 	 * is not trapped)
486 	 */
487 	if (EP_GET_ST(ep->h.attr) != 0U) {
488 		scr_el3 |= SCR_ST_BIT;
489 	}
490 
491 	/*
492 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
493 	 * SCR_EL3.HXEn.
494 	 */
495 	if (is_feat_hcx_supported()) {
496 		scr_el3 |= SCR_HXEn_BIT;
497 	}
498 
499 	/*
500 	 * If FEAT_LS64_ACCDATA is enabled, enable access to ACCDATA_EL1 by
501 	 * setting SCR_EL3.ADEn and allow the ST64BV0 instruction by setting
502 	 * SCR_EL3.EnAS0.
503 	 */
504 	if (is_feat_ls64_accdata_supported()) {
505 		scr_el3 |= SCR_ADEn_BIT | SCR_EnAS0_BIT;
506 	}
507 
508 	/*
509 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
510 	 * registers are trapped to EL3.
511 	 */
512 	if (is_feat_rng_trap_supported()) {
513 		scr_el3 |= SCR_TRNDR_BIT;
514 	}
515 
516 #if FAULT_INJECTION_SUPPORT
517 	/* Enable fault injection from lower ELs */
518 	scr_el3 |= SCR_FIEN_BIT;
519 #endif
520 
521 	/*
522 	 * Enable Pointer Authentication globally for all the worlds.
523 	 *
524 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
525 	 *  other than EL3
526 	 *
527 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
528 	 *  than EL3
529 	 */
530 	if (is_ctx_pauth_supported()) {
531 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
532 	}
533 
534 	/*
535 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
536 	 * registers for AArch64 if present.
537 	 */
538 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
539 		scr_el3 |= SCR_PIEN_BIT;
540 	}
541 
542 	/* SCR_EL3.GCSEn: Enable GCS registers. */
543 	if (is_feat_gcs_supported()) {
544 		scr_el3 |= SCR_GCSEn_BIT;
545 	}
546 
547 	/* SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps */
548 	if (is_feat_fgt_supported()) {
549 		scr_el3 |= SCR_FGTEN_BIT;
550 	}
551 
552 	/* SCR_EL3.ECVEn: Do not trap the CNTPOFF_EL2 register */
553 	if (is_feat_ecv_supported()) {
554 		scr_el3 |= SCR_ECVEN_BIT;
555 	}
556 
557 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
558 	if (is_feat_twed_supported()) {
559 		/* Set delay in SCR_EL3 */
560 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
561 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
562 				<< SCR_TWEDEL_SHIFT);
563 
564 		/* Enable WFE delay */
565 		scr_el3 |= SCR_TWEDEn_BIT;
566 	}
567 
568 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
569 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
570 	if (is_feat_sel2_supported()) {
571 		scr_el3 |= SCR_EEL2_BIT;
572 	}
573 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
574 
575 	if (is_feat_mec_supported()) {
576 		scr_el3 |= SCR_MECEn_BIT;
577 	}
578 
579 	/*
580 	 * Populate EL3 state so that we've the right context
581 	 * before doing ERET
582 	 */
583 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
584 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
585 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
586 
587 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
588 	mdcr_el3 = MDCR_EL3_RESET_VAL;
589 
590 	/* ---------------------------------------------------------------------
591 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
592 	 * Some fields are architecturally UNKNOWN on reset.
593 	 *
594 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
595 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
596 	 *  disabled from all ELs in Secure state.
597 	 *
598 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
599 	 *  privileged debug from S-EL1.
600 	 *
601 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
602 	 *  access to the powerdown debug registers do not trap to EL3.
603 	 *
604 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
605 	 *  debug registers, other than those registers that are controlled by
606 	 *  MDCR_EL3.TDOSA.
607 	 */
608 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
609 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
610 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
611 
612 #if IMAGE_BL31
613 	/* Enable FEAT_TRF for Non-Secure and prohibit for Secure state. */
614 	if (is_feat_trf_supported()) {
615 		trf_enable(ctx);
616 	}
617 
618 	if (is_feat_tcr2_supported()) {
619 		tcr2_enable(ctx);
620 	}
621 
622 	pmuv3_enable(ctx);
623 
624 	if (is_feat_idte3_supported()) {
625 		idte3_enable(ctx);
626 	}
627 
628 #if CTX_INCLUDE_EL2_REGS && IMAGE_BL31
629 	/*
630 	 * Initialize SCTLR_EL2 context register with reset value.
631 	 */
632 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
633 #endif /* CTX_INCLUDE_EL2_REGS */
634 #endif /* IMAGE_BL31 */
635 
636 	if (is_feat_morello_supported()) {
637 		ctx->ddc_el0 = read_ddc_el0();
638 	}
639 
640 	/*
641 	 * Store the X0-X7 value from the entrypoint into the context
642 	 * Use memcpy as we are in control of the layout of the structures
643 	 */
644 	gp_regs = get_gpregs_ctx(ctx);
645 	memcpy((void *)gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
646 }
647 
648 /*******************************************************************************
649  * Context management library initialization routine. This library is used by
650  * runtime services to share pointers to 'cpu_context' structures for secure
651  * non-secure and realm states. Management of the structures and their associated
652  * memory is not done by the context management library e.g. the PSCI service
653  * manages the cpu context used for entry from and exit to the non-secure state.
654  * The Secure payload dispatcher service manages the context(s) corresponding to
655  * the secure state. It also uses this library to get access to the non-secure
656  * state cpu context pointers.
657  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
658  * which will be used for programming an entry into a lower EL. The same context
659  * will be used to save state upon exception entry from that EL.
660  ******************************************************************************/
661 void __init cm_init(void)
662 {
663 	/*
664 	 * The context management library has only global data to initialize, but
665 	 * that will be done when the BSS is zeroed out.
666 	 */
667 }
668 
669 /*******************************************************************************
670  * This is the high-level function used to initialize the cpu_context 'ctx' for
671  * first use. It performs initializations that are common to all security states
672  * and initializations specific to the security state specified in 'ep'
673  ******************************************************************************/
674 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
675 {
676 	size_t security_state;
677 
678 	assert(ctx != NULL);
679 
680 	/*
681 	 * Perform initializations that are common
682 	 * to all security states
683 	 */
684 	setup_context_common(ctx, ep);
685 
686 	security_state = GET_SECURITY_STATE(ep->h.attr);
687 
688 	/* Perform security state specific initializations */
689 	switch (security_state) {
690 	case SECURE:
691 		setup_secure_context(ctx, ep);
692 		break;
693 #if ENABLE_RME && IMAGE_BL31
694 	case REALM:
695 		setup_realm_context(ctx, ep);
696 		break;
697 #endif
698 	case NON_SECURE:
699 		setup_ns_context(ctx, ep);
700 		break;
701 	default:
702 		ERROR("Invalid security state\n");
703 		panic();
704 		break;
705 	}
706 }
707 
708 /*******************************************************************************
709  * Enable architecture extensions for EL3 execution. This function only updates
710  * registers in-place which are expected to either never change or be
711  * overwritten by el3_exit. Expects the core_pos of the current core as argument.
712  ******************************************************************************/
713 void __no_pauth cm_manage_extensions_el3(unsigned int my_idx)
714 {
715 	if (is_feat_pauth_supported()) {
716 		pauth_init_enable_el3();
717 	}
718 
719 #if IMAGE_BL31
720 	if (is_feat_sve_supported()) {
721 		sve_init_el3();
722 	}
723 
724 	if (is_feat_amu_supported()) {
725 		amu_init_el3(my_idx);
726 	}
727 
728 	if (is_feat_sme_supported()) {
729 		sme_init_el3();
730 	}
731 
732 	if (is_feat_mpam_supported()) {
733 		mpam_init_el3();
734 	}
735 
736 	if (is_feat_cpa2_supported()) {
737 		cpa2_enable_el3();
738 	}
739 
740 	pmuv3_init_el3();
741 
742 	/* NOTE: must be done last, makes the configuration immutable */
743 	if (is_feat_fgwte3_supported()) {
744 		write_fgwte3_el3(FGWTE3_EL3_EARLY_INIT_VAL);
745 	}
746 #endif /* IMAGE_BL31 */
747 }
748 
749 /******************************************************************************
750  * Function to initialise the registers with the RESET values in the context
751  * memory, which are maintained per world.
752  ******************************************************************************/
753 static void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
754 {
755 	per_world_ctx->ctx_cptr_el3 = CPTR_EL3_RESET_VAL;
756 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
757 }
758 
759 /*******************************************************************************
760  * Initialise per_world_context for Non-Secure world.
761  * This function enables the architecture extensions, which have same value
762  * across the cores for the non-secure world.
763  ******************************************************************************/
764 static void manage_extensions_nonsecure_per_world(void)
765 {
766 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
767 
768 #if IMAGE_BL31
769 	if (is_feat_sme_supported()) {
770 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
771 	}
772 
773 	if (is_feat_sve_supported()) {
774 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
775 	}
776 
777 	if (is_feat_amu_supported()) {
778 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
779 	}
780 
781 	if (is_feat_sys_reg_trace_supported()) {
782 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
783 	}
784 
785 	if (is_feat_mpam_supported()) {
786 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
787 	}
788 
789 	if (is_feat_idte3_supported()) {
790 		idte3_init_cached_idregs_per_world(CPU_CONTEXT_NS);
791 	}
792 #endif /* IMAGE_BL31 */
793 }
794 
795 /*******************************************************************************
796  * Initialise per_world_context for Secure world.
797  * This function enables the architecture extensions, which have same value
798  * across the cores for the secure world.
799  ******************************************************************************/
800 static void manage_extensions_secure_per_world(void)
801 {
802 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
803 
804 #if IMAGE_BL31
805 	if (is_feat_sme_supported()) {
806 
807 		if (ENABLE_SME_FOR_SWD) {
808 		/*
809 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
810 		 * SME, SVE, and FPU/SIMD context properly managed.
811 		 */
812 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
813 		} else {
814 		/*
815 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
816 		 * world can safely use the associated registers.
817 		 */
818 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
819 		}
820 	}
821 	if (is_feat_sve_supported()) {
822 		if (ENABLE_SVE_FOR_SWD) {
823 		/*
824 		 * Enable SVE and FPU in secure context, SPM must ensure
825 		 * that the SVE and FPU register contexts are properly managed.
826 		 */
827 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
828 		} else {
829 		/*
830 		 * Disable SVE and FPU in secure context so non-secure world
831 		 * can safely use them.
832 		 */
833 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
834 		}
835 	}
836 
837 	/* NS can access this but Secure shouldn't */
838 	if (is_feat_sys_reg_trace_supported()) {
839 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
840 	}
841 
842 	if (is_feat_idte3_supported()) {
843 		idte3_init_cached_idregs_per_world(CPU_CONTEXT_SECURE);
844 	}
845 #endif /* IMAGE_BL31 */
846 }
847 
848 static void manage_extensions_realm_per_world(void)
849 {
850 #if ENABLE_RME && IMAGE_BL31
851 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_REALM]);
852 
853 	if (is_feat_sve_supported()) {
854 	/*
855 	 * Enable SVE and FPU in realm context when it is enabled for NS.
856 	 * Realm manager must ensure that the SVE and FPU register
857 	 * contexts are properly managed.
858 	 */
859 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
860 	}
861 
862 	/* NS can access this but Realm shouldn't */
863 	if (is_feat_sys_reg_trace_supported()) {
864 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
865 	}
866 
867 	/*
868 	 * If SME/SME2 is supported and enabled for NS world, then disable trapping
869 	 * of SME instructions for Realm world. RMM will save/restore required
870 	 * registers that are shared with SVE/FPU so that Realm can use FPU or SVE.
871 	 */
872 	if (is_feat_sme_supported()) {
873 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
874 	}
875 
876 	/*
877 	 * If FEAT_MPAM is supported and enabled, then disable trapping access
878 	 * to the MPAM registers for Realm world. Instead, RMM will configure
879 	 * the access to be trapped by itself so it can inject undefined aborts
880 	 * back to the Realm.
881 	 */
882 	if (is_feat_mpam_supported()) {
883 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
884 	}
885 
886 	if (is_feat_idte3_supported()) {
887 		idte3_init_cached_idregs_per_world(CPU_CONTEXT_REALM);
888 	}
889 #endif /* ENABLE_RME && IMAGE_BL31 */
890 }
891 
892 void cm_manage_extensions_per_world(void)
893 {
894 	manage_extensions_nonsecure_per_world();
895 	manage_extensions_secure_per_world();
896 	manage_extensions_realm_per_world();
897 }
898 
899 void cm_init_percpu_once_regs(void)
900 {
901 #if IMAGE_BL31
902 	if (is_feat_idte3_supported()) {
903 		idte3_init_percpu_once_regs(CPU_CONTEXT_NS);
904 		idte3_init_percpu_once_regs(CPU_CONTEXT_SECURE);
905 #if ENABLE_RME
906 		idte3_init_percpu_once_regs(CPU_CONTEXT_REALM);
907 #endif /* ENABLE_RME */
908 	}
909 #endif /* IMAGE_BL31 */
910 }
911 
912 /*******************************************************************************
913  * Enable architecture extensions on first entry to Non-secure world.
914  ******************************************************************************/
915 static void manage_extensions_nonsecure(cpu_context_t *ctx)
916 {
917 #if IMAGE_BL31
918 	/* NOTE: registers are not context switched */
919 	if (is_feat_amu_supported()) {
920 		amu_enable(ctx);
921 	}
922 
923 	if (is_feat_sme_supported()) {
924 		sme_enable(ctx);
925 	}
926 
927 	if (is_feat_fgt2_supported()) {
928 		fgt2_enable(ctx);
929 	}
930 
931 	if (is_feat_debugv8p9_supported()) {
932 		debugv8p9_extended_bp_wp_enable(ctx);
933 	}
934 
935 	if (is_feat_spe_supported()) {
936 		spe_enable_ns(ctx);
937 	}
938 
939 	if (is_feat_trbe_supported()) {
940 		if (check_if_trbe_disable_affected_core()) {
941 			trbe_disable_ns(ctx);
942 		} else {
943 			trbe_enable_ns(ctx);
944 		}
945 	}
946 
947 	if (is_feat_brbe_supported()) {
948 		brbe_enable(ctx);
949 	}
950 #endif /* IMAGE_BL31 */
951 }
952 
953 #if INIT_UNUSED_NS_EL2
954 /*******************************************************************************
955  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
956  * world when EL2 is empty and unused.
957  ******************************************************************************/
958 static void manage_extensions_nonsecure_el2_unused(void)
959 {
960 #if IMAGE_BL31
961 	if (is_feat_spe_supported()) {
962 		spe_init_el2_unused();
963 	}
964 
965 	if (is_feat_amu_supported()) {
966 		amu_init_el2_unused();
967 	}
968 
969 	if (is_feat_mpam_supported()) {
970 		mpam_init_el2_unused();
971 	}
972 
973 	if (is_feat_trbe_supported()) {
974 		trbe_init_el2_unused();
975 	}
976 
977 	if (is_feat_sys_reg_trace_supported()) {
978 		sys_reg_trace_init_el2_unused();
979 	}
980 
981 	if (is_feat_trf_supported()) {
982 		trf_init_el2_unused();
983 	}
984 
985 	pmuv3_init_el2_unused();
986 
987 	if (is_feat_sve_supported()) {
988 		sve_init_el2_unused();
989 	}
990 
991 	if (is_feat_sme_supported()) {
992 		sme_init_el2_unused();
993 	}
994 
995 	if (is_feat_mops_supported() && is_feat_hcx_supported()) {
996 		write_hcrx_el2(read_hcrx_el2() | HCRX_EL2_MSCEn_BIT);
997 	}
998 
999 	if (is_feat_pauth_supported()) {
1000 		pauth_enable_el2();
1001 	}
1002 #endif /* IMAGE_BL31 */
1003 }
1004 #endif /* INIT_UNUSED_NS_EL2 */
1005 
1006 /*******************************************************************************
1007  * Enable architecture extensions on first entry to Secure world.
1008  ******************************************************************************/
1009 static void manage_extensions_secure(cpu_context_t *ctx)
1010 {
1011 #if IMAGE_BL31
1012 	if (is_feat_sme_supported()) {
1013 		if (ENABLE_SME_FOR_SWD) {
1014 		/*
1015 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
1016 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
1017 		 */
1018 			sme_init_el3();
1019 			sme_enable(ctx);
1020 		} else {
1021 		/*
1022 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
1023 		 * world can safely use the associated registers.
1024 		 */
1025 			sme_disable(ctx);
1026 		}
1027 	}
1028 
1029 	if (is_feat_spe_supported()) {
1030 		spe_disable_secure(ctx);
1031 	}
1032 
1033 	if (is_feat_trbe_supported()) {
1034 		trbe_disable_secure(ctx);
1035 	}
1036 #endif /* IMAGE_BL31 */
1037 }
1038 
1039 /*******************************************************************************
1040  * The following function initializes the cpu_context for the current CPU
1041  * for first use, and sets the initial entrypoint state as specified by the
1042  * entry_point_info structure.
1043  ******************************************************************************/
1044 void cm_init_my_context(const entry_point_info_t *ep)
1045 {
1046 	cpu_context_t *ctx;
1047 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
1048 	cm_setup_context(ctx, ep);
1049 }
1050 
1051 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
1052 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
1053 {
1054 #if INIT_UNUSED_NS_EL2
1055 	u_register_t hcr_el2 = HCR_RESET_VAL;
1056 	u_register_t mdcr_el2;
1057 	u_register_t scr_el3;
1058 
1059 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1060 
1061 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
1062 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
1063 		hcr_el2 |= HCR_RW_BIT;
1064 	}
1065 
1066 	write_hcr_el2(hcr_el2);
1067 
1068 	/*
1069 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
1070 	 * All fields have architecturally UNKNOWN reset values.
1071 	 */
1072 	write_cptr_el2(CPTR_EL2_RESET_VAL);
1073 
1074 	/*
1075 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
1076 	 * reset and are set to zero except for field(s) listed below.
1077 	 *
1078 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
1079 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
1080 	 *
1081 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
1082 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
1083 	 */
1084 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
1085 
1086 	/*
1087 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
1088 	 * UNKNOWN value.
1089 	 */
1090 	write_cntvoff_el2(0);
1091 
1092 	/*
1093 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
1094 	 * respectively.
1095 	 */
1096 	write_vpidr_el2(read_midr_el1());
1097 	write_vmpidr_el2(read_mpidr_el1());
1098 
1099 	/*
1100 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
1101 	 *
1102 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
1103 	 * translation is disabled, cache maintenance operations depend on the
1104 	 * VMID.
1105 	 *
1106 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
1107 	 * disabled.
1108 	 */
1109 	write_vttbr_el2(VTTBR_RESET_VAL &
1110 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
1111 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
1112 
1113 	/*
1114 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
1115 	 * Some fields are architecturally UNKNOWN on reset.
1116 	 *
1117 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
1118 	 * register accesses to the Debug ROM registers are not trapped to EL2.
1119 	 *
1120 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
1121 	 * accesses to the powerdown debug registers are not trapped to EL2.
1122 	 *
1123 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
1124 	 * debug registers do not trap to EL2.
1125 	 *
1126 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
1127 	 * EL2.
1128 	 */
1129 	mdcr_el2 = MDCR_EL2_RESET_VAL &
1130 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
1131 		   MDCR_EL2_TDE_BIT);
1132 
1133 	write_mdcr_el2(mdcr_el2);
1134 
1135 	/*
1136 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
1137 	 *
1138 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
1139 	 * EL1 accesses to System registers do not trap to EL2.
1140 	 */
1141 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
1142 
1143 	/*
1144 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
1145 	 * reset.
1146 	 *
1147 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1148 	 * and prevent timer interrupts.
1149 	 */
1150 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1151 
1152 	manage_extensions_nonsecure_el2_unused();
1153 #endif /* INIT_UNUSED_NS_EL2 */
1154 }
1155 
1156 /*******************************************************************************
1157  * Prepare the CPU system registers for first entry into realm, secure, or
1158  * normal world.
1159  *
1160  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1161  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1162  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1163  * For all entries, the EL1 registers are initialized from the cpu_context
1164  ******************************************************************************/
1165 void cm_prepare_el3_exit(size_t security_state)
1166 {
1167 	u_register_t sctlr_el2, scr_el3;
1168 	cpu_context_t *ctx = cm_get_context(security_state);
1169 
1170 	assert(ctx != NULL);
1171 
1172 	if (security_state == NON_SECURE) {
1173 		uint64_t el2_implemented = el_implemented(2);
1174 
1175 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1176 						 CTX_SCR_EL3);
1177 
1178 		if (el2_implemented != EL_IMPL_NONE) {
1179 
1180 			/*
1181 			 * If context is not being used for EL2, initialize
1182 			 * HCRX_EL2 with its init value here.
1183 			 */
1184 			if (is_feat_hcx_supported()) {
1185 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1186 			}
1187 
1188 			/*
1189 			 * Initialize Fine-grained trap registers introduced
1190 			 * by FEAT_FGT so all traps are initially disabled when
1191 			 * switching to EL2 or a lower EL, preventing undesired
1192 			 * behavior.
1193 			 */
1194 			if (is_feat_fgt_supported()) {
1195 				/*
1196 				 * Initialize HFG*_EL2 registers with a default
1197 				 * value so legacy systems unaware of FEAT_FGT
1198 				 * do not get trapped due to their lack of
1199 				 * initialization for this feature.
1200 				 */
1201 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1202 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1203 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1204 			}
1205 
1206 			/* Condition to ensure EL2 is being used. */
1207 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1208 				/* Initialize SCTLR_EL2 register with reset value. */
1209 				sctlr_el2 = SCTLR_EL2_RES1;
1210 
1211 				/*
1212 				 * If workaround of errata 764081 for Cortex-A75
1213 				 * is used then set SCTLR_EL2.IESB to enable
1214 				 * Implicit Error Synchronization Barrier.
1215 				 */
1216 				if (errata_a75_764081_applies()) {
1217 					sctlr_el2 |= SCTLR_IESB_BIT;
1218 				}
1219 
1220 				write_sctlr_el2(sctlr_el2);
1221 			} else {
1222 				/*
1223 				 * (scr_el3 & SCR_HCE_BIT==0)
1224 				 * EL2 implemented but unused.
1225 				 */
1226 				init_nonsecure_el2_unused(ctx);
1227 			}
1228 		}
1229 
1230 		if (is_feat_fgwte3_supported()) {
1231 			/*
1232 			 * TCR_EL3 and ACTLR_EL3 could be overwritten
1233 			 * by platforms and hence is locked a bit late.
1234 			 */
1235 			write_fgwte3_el3(FGWTE3_EL3_LATE_INIT_VAL);
1236 		}
1237 	}
1238 #if !CTX_INCLUDE_EL2_REGS || IMAGE_BL1
1239 	/* Restore EL1 system registers, only when CTX_INCLUDE_EL2_REGS=0 */
1240 	cm_el1_sysregs_context_restore(security_state);
1241 #endif
1242 	cm_set_next_eret_context(security_state);
1243 }
1244 
1245 /* Assumes prepare_el3_entry() has disabled counters 2 and 3 */
1246 void cm_sysregs_context_save_amu(unsigned int security_state)
1247 {
1248 	world_amu_regs_t *ctx = PER_CPU_CUR(world_amu_ctx[get_cpu_context_index(security_state)]);
1249 
1250 	ctx->amevcntr02_el0 = read_amevcntr02_el0();
1251 	ctx->amevcntr03_el0 = read_amevcntr03_el0();
1252 }
1253 
1254 void cm_sysregs_context_restore_amu(unsigned int security_state)
1255 {
1256 	world_amu_regs_t *ctx = PER_CPU_CUR(world_amu_ctx[get_cpu_context_index(security_state)]);
1257 
1258 	write_amevcntr02_el0(ctx->amevcntr02_el0);
1259 	write_amevcntr03_el0(ctx->amevcntr03_el0);
1260 }
1261 
1262 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1263 
1264 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1265 {
1266 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1267 	if (is_feat_amu_supported()) {
1268 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1269 	}
1270 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1271 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1272 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1273 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1274 }
1275 
1276 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1277 {
1278 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1279 	if (is_feat_amu_supported()) {
1280 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1281 	}
1282 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1283 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1284 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1285 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1286 }
1287 
1288 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1289 {
1290 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1291 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1292 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1293 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1294 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1295 }
1296 
1297 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1298 {
1299 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1300 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1301 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1302 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1303 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1304 }
1305 
1306 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1307 {
1308 	u_register_t mpam_idr = read_mpamidr_el1();
1309 
1310 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1311 
1312 	/*
1313 	 * The context registers that we intend to save would be part of the
1314 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1315 	 */
1316 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1317 		return;
1318 	}
1319 
1320 	/*
1321 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1322 	 * MPAMIDR_HAS_HCR_BIT == 1.
1323 	 */
1324 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1325 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1326 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1327 
1328 	/*
1329 	 * The number of MPAMVPM registers is implementation defined, their
1330 	 * number is stored in the MPAMIDR_EL1 register.
1331 	 */
1332 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1333 	case 7:
1334 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1335 		__fallthrough;
1336 	case 6:
1337 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1338 		__fallthrough;
1339 	case 5:
1340 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1341 		__fallthrough;
1342 	case 4:
1343 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1344 		__fallthrough;
1345 	case 3:
1346 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1347 		__fallthrough;
1348 	case 2:
1349 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1350 		__fallthrough;
1351 	case 1:
1352 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1353 		break;
1354 	}
1355 }
1356 
1357 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1358 {
1359 	u_register_t mpam_idr = read_mpamidr_el1();
1360 
1361 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1362 
1363 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1364 		return;
1365 	}
1366 
1367 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1368 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1369 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1370 
1371 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1372 	case 7:
1373 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1374 		__fallthrough;
1375 	case 6:
1376 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1377 		__fallthrough;
1378 	case 5:
1379 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1380 		__fallthrough;
1381 	case 4:
1382 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1383 		__fallthrough;
1384 	case 3:
1385 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1386 		__fallthrough;
1387 	case 2:
1388 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1389 		__fallthrough;
1390 	case 1:
1391 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1392 		break;
1393 	}
1394 }
1395 
1396 /* ---------------------------------------------------------------------------
1397  * The following registers are not added:
1398  * ICH_AP0R<n>_EL2
1399  * ICH_AP1R<n>_EL2
1400  * ICH_LR<n>_EL2
1401  *
1402  * NOTE: For a system with S-EL2 present but not enabled, accessing
1403  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1404  * SCR_EL3.NS = 1 before accessing this register.
1405  * ---------------------------------------------------------------------------
1406  */
1407 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx, uint32_t security_state)
1408 {
1409 	u_register_t scr_el3 = read_scr_el3();
1410 
1411 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1412 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1413 #else
1414 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1415 	isb();
1416 
1417 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1418 
1419 	write_scr_el3(scr_el3);
1420 	isb();
1421 #endif
1422 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1423 
1424 	if (errata_ich_vmcr_el2_applies()) {
1425 		if (security_state == SECURE) {
1426 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1427 		} else {
1428 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1429 		}
1430 		isb();
1431 	}
1432 
1433 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1434 
1435 	if (errata_ich_vmcr_el2_applies()) {
1436 		write_scr_el3(scr_el3);
1437 		isb();
1438 	}
1439 }
1440 
1441 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx, uint32_t security_state)
1442 {
1443 	u_register_t scr_el3 = read_scr_el3();
1444 
1445 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1446 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1447 #else
1448 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1449 	isb();
1450 
1451 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1452 
1453 	write_scr_el3(scr_el3);
1454 	isb();
1455 #endif
1456 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1457 
1458 	if (errata_ich_vmcr_el2_applies()) {
1459 		if (security_state == SECURE) {
1460 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1461 		} else {
1462 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1463 		}
1464 		isb();
1465 	}
1466 
1467 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1468 
1469 	if (errata_ich_vmcr_el2_applies()) {
1470 		write_scr_el3(scr_el3);
1471 		isb();
1472 	}
1473 }
1474 
1475 /* -----------------------------------------------------
1476  * The following registers are not added:
1477  * AMEVCNTVOFF0<n>_EL2
1478  * AMEVCNTVOFF1<n>_EL2
1479  * -----------------------------------------------------
1480  */
1481 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1482 {
1483 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1484 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1485 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1486 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1487 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1488 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1489 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1490 	if (CTX_INCLUDE_AARCH32_REGS) {
1491 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1492 	}
1493 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1494 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1495 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1496 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1497 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1498 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1499 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1500 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1501 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1502 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1503 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1504 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1505 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1506 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1507 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1508 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1509 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1510 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1511 
1512 	write_el2_ctx_common_sysreg128(ctx, ttbr0_el2, read_ttbr0_el2());
1513 	write_el2_ctx_common_sysreg128(ctx, vttbr_el2, read_vttbr_el2());
1514 }
1515 
1516 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1517 {
1518 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1519 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1520 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1521 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1522 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1523 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1524 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1525 	if (CTX_INCLUDE_AARCH32_REGS) {
1526 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1527 	}
1528 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1529 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1530 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1531 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1532 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1533 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1534 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1535 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1536 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1537 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1538 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1539 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1540 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1541 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1542 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1543 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1544 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1545 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1546 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1547 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1548 }
1549 
1550 /*******************************************************************************
1551  * Save EL2 sysreg context
1552  ******************************************************************************/
1553 void cm_el2_sysregs_context_save(uint32_t security_state)
1554 {
1555 	cpu_context_t *ctx;
1556 	el2_sysregs_t *el2_sysregs_ctx;
1557 
1558 	ctx = cm_get_context(security_state);
1559 	assert(ctx != NULL);
1560 
1561 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1562 
1563 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1564 	el2_sysregs_context_save_gic(el2_sysregs_ctx, security_state);
1565 
1566 	if (is_feat_mte2_supported()) {
1567 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1568 	}
1569 
1570 	if (is_feat_mpam_supported()) {
1571 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1572 	}
1573 
1574 	if (is_feat_fgt_supported()) {
1575 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1576 	}
1577 
1578 	if (is_feat_fgt2_supported()) {
1579 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1580 	}
1581 
1582 	if (is_feat_ecv_v2_supported()) {
1583 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1584 	}
1585 
1586 	if (is_feat_vhe_supported()) {
1587 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1588 					read_contextidr_el2());
1589 		write_el2_ctx_vhe_sysreg128(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1590 	}
1591 
1592 	if (is_feat_ras_supported()) {
1593 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1594 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1595 	}
1596 
1597 	if (is_feat_nv2_supported()) {
1598 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1599 	}
1600 
1601 	if (is_feat_trf_supported()) {
1602 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1603 	}
1604 
1605 	if (is_feat_csv2_2_supported()) {
1606 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1607 					read_scxtnum_el2());
1608 	}
1609 
1610 	if (is_feat_hcx_supported()) {
1611 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1612 	}
1613 
1614 	if (is_feat_tcr2_supported()) {
1615 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1616 	}
1617 
1618 	if (is_feat_s1pie_supported()) {
1619 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1620 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1621 	}
1622 
1623 	if (is_feat_s1poe_supported()) {
1624 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1625 	}
1626 
1627 	if (is_feat_brbe_supported()) {
1628 		write_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2, read_brbcr_el2());
1629 	}
1630 
1631 	if (is_feat_s2pie_supported()) {
1632 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1633 	}
1634 
1635 	if (is_feat_gcs_supported()) {
1636 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1637 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1638 	}
1639 
1640 	if (is_feat_sctlr2_supported()) {
1641 		write_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2, read_sctlr2_el2());
1642 	}
1643 
1644 	if (is_feat_amu_supported()) {
1645 		cm_sysregs_context_save_amu(security_state);
1646 	}
1647 }
1648 
1649 /*******************************************************************************
1650  * Restore EL2 sysreg context
1651  ******************************************************************************/
1652 void cm_el2_sysregs_context_restore(uint32_t security_state)
1653 {
1654 	cpu_context_t *ctx;
1655 	el2_sysregs_t *el2_sysregs_ctx;
1656 
1657 	ctx = cm_get_context(security_state);
1658 	assert(ctx != NULL);
1659 
1660 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1661 
1662 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1663 	el2_sysregs_context_restore_gic(el2_sysregs_ctx, security_state);
1664 
1665 	if (is_feat_mte2_supported()) {
1666 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1667 	}
1668 
1669 	if (is_feat_mpam_supported()) {
1670 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1671 	}
1672 
1673 	if (is_feat_fgt_supported()) {
1674 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1675 	}
1676 
1677 	if (is_feat_fgt2_supported()) {
1678 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1679 	}
1680 
1681 	if (is_feat_ecv_v2_supported()) {
1682 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1683 	}
1684 
1685 	if (is_feat_vhe_supported()) {
1686 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1687 					contextidr_el2));
1688 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1689 	}
1690 
1691 	if (is_feat_ras_supported()) {
1692 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1693 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1694 	}
1695 
1696 	if (is_feat_nv2_supported()) {
1697 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1698 	}
1699 
1700 	if (is_feat_trf_supported()) {
1701 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1702 	}
1703 
1704 	if (is_feat_csv2_2_supported()) {
1705 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1706 					scxtnum_el2));
1707 	}
1708 
1709 	if (is_feat_hcx_supported()) {
1710 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1711 	}
1712 
1713 	if (is_feat_tcr2_supported()) {
1714 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1715 	}
1716 
1717 	if (is_feat_s1pie_supported()) {
1718 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1719 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1720 	}
1721 
1722 	if (is_feat_s1poe_supported()) {
1723 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1724 	}
1725 
1726 	if (is_feat_s2pie_supported()) {
1727 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1728 	}
1729 
1730 	if (is_feat_gcs_supported()) {
1731 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1732 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1733 	}
1734 
1735 	if (is_feat_sctlr2_supported()) {
1736 		write_sctlr2_el2(read_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2));
1737 	}
1738 
1739 	if (is_feat_brbe_supported()) {
1740 		write_brbcr_el2(read_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2));
1741 	}
1742 
1743 	if (is_feat_amu_supported()) {
1744 		cm_sysregs_context_restore_amu(security_state);
1745 	}
1746 }
1747 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1748 
1749 /*******************************************************************************
1750  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1751  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1752  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1753  * cm_prepare_el3_exit function.
1754  ******************************************************************************/
1755 void cm_prepare_el3_exit_ns(void)
1756 {
1757 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1758 #if ENABLE_ASSERTIONS
1759 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1760 	assert(ctx != NULL);
1761 
1762 	/* Assert that EL2 is used. */
1763 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1764 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1765 			(el_implemented(2U) != EL_IMPL_NONE));
1766 #endif /* ENABLE_ASSERTIONS */
1767 
1768 	/* Restore EL2 sysreg contexts */
1769 	cm_el2_sysregs_context_restore(NON_SECURE);
1770 	cm_set_next_eret_context(NON_SECURE);
1771 #else
1772 	cm_prepare_el3_exit(NON_SECURE);
1773 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1774 
1775 	if (is_feat_amu_supported()) {
1776 		cm_sysregs_context_restore_amu(NON_SECURE);
1777 	}
1778 }
1779 
1780 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
1781 /*******************************************************************************
1782  * The next set of six functions are used by runtime services to save and restore
1783  * EL1 context on the 'cpu_context' structure for the specified security state.
1784  ******************************************************************************/
1785 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1786 {
1787 	write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1());
1788 	write_el1_ctx_common(ctx, elr_el1, read_elr_el1());
1789 
1790 #if (!ERRATA_SPECULATIVE_AT)
1791 	write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1());
1792 	write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1());
1793 #endif /* (!ERRATA_SPECULATIVE_AT) */
1794 
1795 	write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1());
1796 	write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1());
1797 	write_el1_ctx_common(ctx, sp_el1, read_sp_el1());
1798 	write_el1_ctx_common(ctx, esr_el1, read_esr_el1());
1799 	write_el1_ctx_common(ctx, mair_el1, read_mair_el1());
1800 	write_el1_ctx_common(ctx, amair_el1, read_amair_el1());
1801 	write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1());
1802 	write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1());
1803 	write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0());
1804 	write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0());
1805 	write_el1_ctx_common(ctx, far_el1, read_far_el1());
1806 	write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1());
1807 	write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1());
1808 	write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1());
1809 	write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1());
1810 	write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1());
1811 	write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1());
1812 
1813 	write_el1_ctx_common_sysreg128(ctx, par_el1, read_par_el1());
1814 	write_el1_ctx_common_sysreg128(ctx, ttbr0_el1, read_ttbr0_el1());
1815 	write_el1_ctx_common_sysreg128(ctx, ttbr1_el1, read_ttbr1_el1());
1816 
1817 	if (CTX_INCLUDE_AARCH32_REGS) {
1818 		/* Save Aarch32 registers */
1819 		write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt());
1820 		write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und());
1821 		write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq());
1822 		write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq());
1823 		write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2());
1824 		write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2());
1825 	}
1826 
1827 	/* Save counter-timer kernel control register */
1828 	write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1());
1829 #if NS_TIMER_SWITCH
1830 	/* Save NS Timer registers */
1831 	write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0());
1832 	write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0());
1833 	write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0());
1834 	write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0());
1835 #endif
1836 
1837 	if (is_feat_mte2_supported()) {
1838 		write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1());
1839 		write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1());
1840 		write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1());
1841 		write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1());
1842 	}
1843 
1844 	if (is_feat_ras_supported()) {
1845 		write_el1_ctx_ras(ctx, disr_el1, read_disr_el1());
1846 	}
1847 
1848 	if (is_feat_s1pie_supported()) {
1849 		write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1());
1850 		write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1());
1851 	}
1852 
1853 	if (is_feat_s1poe_supported()) {
1854 		write_el1_ctx_s1poe(ctx, por_el1, read_por_el1());
1855 	}
1856 
1857 	if (is_feat_s2poe_supported()) {
1858 		write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1());
1859 	}
1860 
1861 	if (is_feat_tcr2_supported()) {
1862 		write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1());
1863 	}
1864 
1865 	if (is_feat_trf_supported()) {
1866 		write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1());
1867 	}
1868 
1869 	if (is_feat_csv2_2_supported()) {
1870 		write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0());
1871 		write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1());
1872 	}
1873 
1874 	if (is_feat_gcs_supported()) {
1875 		write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1());
1876 		write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1());
1877 		write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1());
1878 		write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0());
1879 	}
1880 
1881 	if (is_feat_the_supported()) {
1882 		write_el1_ctx_the_sysreg128(ctx, rcwmask_el1, read_rcwmask_el1());
1883 		write_el1_ctx_the_sysreg128(ctx, rcwsmask_el1, read_rcwsmask_el1());
1884 	}
1885 
1886 	if (is_feat_sctlr2_supported()) {
1887 		write_el1_ctx_sctlr2(ctx, sctlr2_el1, read_sctlr2_el1());
1888 	}
1889 
1890 	if (is_feat_ls64_accdata_supported()) {
1891 		write_el1_ctx_ls64(ctx, accdata_el1, read_accdata_el1());
1892 	}
1893 }
1894 
1895 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1896 {
1897 	write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1));
1898 	write_elr_el1(read_el1_ctx_common(ctx, elr_el1));
1899 
1900 #if (!ERRATA_SPECULATIVE_AT)
1901 	write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1));
1902 	write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1));
1903 #endif /* (!ERRATA_SPECULATIVE_AT) */
1904 
1905 	write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1));
1906 	write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1));
1907 	write_sp_el1(read_el1_ctx_common(ctx, sp_el1));
1908 	write_esr_el1(read_el1_ctx_common(ctx, esr_el1));
1909 	write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1));
1910 	write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1));
1911 	write_mair_el1(read_el1_ctx_common(ctx, mair_el1));
1912 	write_amair_el1(read_el1_ctx_common(ctx, amair_el1));
1913 	write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1));
1914 	write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1));
1915 	write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0));
1916 	write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0));
1917 	write_par_el1(read_el1_ctx_common(ctx, par_el1));
1918 	write_far_el1(read_el1_ctx_common(ctx, far_el1));
1919 	write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1));
1920 	write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1));
1921 	write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1));
1922 	write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1));
1923 	write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1));
1924 	write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1));
1925 
1926 	if (CTX_INCLUDE_AARCH32_REGS) {
1927 		/* Restore Aarch32 registers */
1928 		write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt));
1929 		write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und));
1930 		write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq));
1931 		write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq));
1932 		write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2));
1933 		write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2));
1934 	}
1935 
1936 	/* Restore counter-timer kernel control register */
1937 	write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1));
1938 #if NS_TIMER_SWITCH
1939 	/* Restore NS Timer registers */
1940 	write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0));
1941 	write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0));
1942 	write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0));
1943 	write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0));
1944 #endif
1945 
1946 	if (is_feat_mte2_supported()) {
1947 		write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1));
1948 		write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1));
1949 		write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1));
1950 		write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1));
1951 	}
1952 
1953 	if (is_feat_ras_supported()) {
1954 		write_disr_el1(read_el1_ctx_ras(ctx, disr_el1));
1955 	}
1956 
1957 	if (is_feat_s1pie_supported()) {
1958 		write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1));
1959 		write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1));
1960 	}
1961 
1962 	if (is_feat_s1poe_supported()) {
1963 		write_por_el1(read_el1_ctx_s1poe(ctx, por_el1));
1964 	}
1965 
1966 	if (is_feat_s2poe_supported()) {
1967 		write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1));
1968 	}
1969 
1970 	if (is_feat_tcr2_supported()) {
1971 		write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1));
1972 	}
1973 
1974 	if (is_feat_trf_supported()) {
1975 		write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1));
1976 	}
1977 
1978 	if (is_feat_csv2_2_supported()) {
1979 		write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0));
1980 		write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1));
1981 	}
1982 
1983 	if (is_feat_gcs_supported()) {
1984 		write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1));
1985 		write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1));
1986 		write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1));
1987 		write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0));
1988 	}
1989 
1990 	if (is_feat_the_supported()) {
1991 		write_rcwmask_el1(read_el1_ctx_the(ctx, rcwmask_el1));
1992 		write_rcwsmask_el1(read_el1_ctx_the(ctx, rcwsmask_el1));
1993 	}
1994 
1995 	if (is_feat_sctlr2_supported()) {
1996 		write_sctlr2_el1(read_el1_ctx_sctlr2(ctx, sctlr2_el1));
1997 	}
1998 
1999 	if (is_feat_ls64_accdata_supported()) {
2000 		write_accdata_el1(read_el1_ctx_ls64(ctx, accdata_el1));
2001 	}
2002 }
2003 
2004 /*******************************************************************************
2005  * The next couple of functions are used by runtime services to save and restore
2006  * EL1 context on the 'cpu_context' structure for the specified security state.
2007  ******************************************************************************/
2008 void cm_el1_sysregs_context_save(uint32_t security_state)
2009 {
2010 	cpu_context_t *ctx;
2011 
2012 	ctx = cm_get_context(security_state);
2013 	assert(ctx != NULL);
2014 
2015 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
2016 
2017 #if IMAGE_BL31
2018 	if (is_feat_amu_supported()) {
2019 		cm_sysregs_context_save_amu(security_state);
2020 	}
2021 
2022 	if (security_state == SECURE) {
2023 		PUBLISH_EVENT(cm_exited_secure_world);
2024 	} else {
2025 		PUBLISH_EVENT(cm_exited_normal_world);
2026 	}
2027 #endif
2028 }
2029 
2030 void cm_el1_sysregs_context_restore(uint32_t security_state)
2031 {
2032 	cpu_context_t *ctx;
2033 
2034 	ctx = cm_get_context(security_state);
2035 	assert(ctx != NULL);
2036 
2037 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
2038 
2039 #if IMAGE_BL31
2040 	if (is_feat_amu_supported()) {
2041 		cm_sysregs_context_restore_amu(security_state);
2042 	}
2043 
2044 	if (security_state == SECURE) {
2045 		PUBLISH_EVENT(cm_entering_secure_world);
2046 	} else {
2047 		PUBLISH_EVENT(cm_entering_normal_world);
2048 	}
2049 #endif
2050 }
2051 
2052 #endif /* ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) */
2053 
2054 /*******************************************************************************
2055  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
2056  * given security state with the given entrypoint
2057  ******************************************************************************/
2058 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
2059 {
2060 	cpu_context_t *ctx;
2061 	el3_state_t *state;
2062 
2063 	ctx = cm_get_context(security_state);
2064 	assert(ctx != NULL);
2065 
2066 	/* Populate EL3 state so that ERET jumps to the correct entry */
2067 	state = get_el3state_ctx(ctx);
2068 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
2069 }
2070 
2071 /*******************************************************************************
2072  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
2073  * pertaining to the given security state
2074  ******************************************************************************/
2075 void cm_set_elr_spsr_el3(uint32_t security_state,
2076 			uintptr_t entrypoint, uint32_t spsr)
2077 {
2078 	cpu_context_t *ctx;
2079 	el3_state_t *state;
2080 
2081 	ctx = cm_get_context(security_state);
2082 	assert(ctx != NULL);
2083 
2084 	/* Populate EL3 state so that ERET jumps to the correct entry */
2085 	state = get_el3state_ctx(ctx);
2086 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
2087 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
2088 }
2089 
2090 /*******************************************************************************
2091  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
2092  * pertaining to the given security state using the value and bit position
2093  * specified in the parameters. It preserves all other bits.
2094  ******************************************************************************/
2095 void cm_write_scr_el3_bit(uint32_t security_state,
2096 			  uint32_t bit_pos,
2097 			  uint32_t value)
2098 {
2099 	cpu_context_t *ctx;
2100 	el3_state_t *state;
2101 	u_register_t scr_el3;
2102 
2103 	ctx = cm_get_context(security_state);
2104 	assert(ctx != NULL);
2105 
2106 	/* Ensure that the bit position is a valid one */
2107 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
2108 
2109 	/* Ensure that the 'value' is only a bit wide */
2110 	assert(value <= 1U);
2111 
2112 	/*
2113 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
2114 	 * and set it to its new value.
2115 	 */
2116 	state = get_el3state_ctx(ctx);
2117 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
2118 	scr_el3 &= ~(1UL << bit_pos);
2119 	scr_el3 |= (u_register_t)value << bit_pos;
2120 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
2121 }
2122 
2123 /*******************************************************************************
2124  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
2125  * given security state.
2126  ******************************************************************************/
2127 u_register_t cm_get_scr_el3(uint32_t security_state)
2128 {
2129 	const cpu_context_t *ctx;
2130 	const el3_state_t *state;
2131 
2132 	ctx = cm_get_context(security_state);
2133 	assert(ctx != NULL);
2134 
2135 	/* Populate EL3 state so that ERET jumps to the correct entry */
2136 	state = get_el3state_ctx(ctx);
2137 	return read_ctx_reg(state, CTX_SCR_EL3);
2138 }
2139 
2140 /*******************************************************************************
2141  * This function is used to program the context that's used for exception
2142  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
2143  * the required security state
2144  ******************************************************************************/
2145 void cm_set_next_eret_context(uint32_t security_state)
2146 {
2147 	cpu_context_t *ctx;
2148 
2149 	ctx = cm_get_context(security_state);
2150 	assert(ctx != NULL);
2151 
2152 	cm_set_next_context(ctx);
2153 }
2154