xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision a4c394561af31ae0417ed9ff3b3152adb7cd5355)
1 /*
2  * Copyright (c) 2013-2022, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_helpers.h>
15 #include <arch_features.h>
16 #include <bl31/interrupt_mgmt.h>
17 #include <common/bl_common.h>
18 #include <context.h>
19 #include <drivers/arm/gicv3.h>
20 #include <lib/el3_runtime/context_mgmt.h>
21 #include <lib/el3_runtime/pubsub_events.h>
22 #include <lib/extensions/amu.h>
23 #include <lib/extensions/mpam.h>
24 #include <lib/extensions/sme.h>
25 #include <lib/extensions/spe.h>
26 #include <lib/extensions/sve.h>
27 #include <lib/extensions/sys_reg_trace.h>
28 #include <lib/extensions/trbe.h>
29 #include <lib/extensions/trf.h>
30 #include <lib/utils.h>
31 
32 #if ENABLE_FEAT_TWED
33 /* Make sure delay value fits within the range(0-15) */
34 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
35 #endif /* ENABLE_FEAT_TWED */
36 
37 static void manage_extensions_secure(cpu_context_t *ctx);
38 /******************************************************************************
39  * This function performs initializations that are specific to SECURE state
40  * and updates the cpu context specified by 'ctx'.
41  *****************************************************************************/
42 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
43 {
44 	u_register_t scr_el3;
45 	el3_state_t *state;
46 
47 	state = get_el3state_ctx(ctx);
48 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
49 
50 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
51 	/*
52 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
53 	 * indicated by the interrupt routing model for BL31.
54 	 */
55 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
56 #endif
57 
58 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
59 	/* Get Memory Tagging Extension support level */
60 	unsigned int mte = get_armv8_5_mte_support();
61 #endif
62 	/*
63 	 * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS
64 	 * is set, or when MTE is only implemented at EL0.
65 	 */
66 #if CTX_INCLUDE_MTE_REGS
67 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
68 	scr_el3 |= SCR_ATA_BIT;
69 #else
70 	if (mte == MTE_IMPLEMENTED_EL0) {
71 		scr_el3 |= SCR_ATA_BIT;
72 	}
73 #endif /* CTX_INCLUDE_MTE_REGS */
74 
75 	/* Enable S-EL2 if the next EL is EL2 and S-EL2 is present */
76 	if ((GET_EL(ep->spsr) == MODE_EL2) && is_armv8_4_sel2_present()) {
77 		if (GET_RW(ep->spsr) != MODE_RW_64) {
78 			ERROR("S-EL2 can not be used in AArch32\n.");
79 			panic();
80 		}
81 
82 		scr_el3 |= SCR_EEL2_BIT;
83 	}
84 
85 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
86 
87 	manage_extensions_secure(ctx);
88 }
89 
90 #if ENABLE_RME
91 /******************************************************************************
92  * This function performs initializations that are specific to REALM state
93  * and updates the cpu context specified by 'ctx'.
94  *****************************************************************************/
95 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
96 {
97 	u_register_t scr_el3;
98 	el3_state_t *state;
99 
100 	state = get_el3state_ctx(ctx);
101 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
102 
103 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT | SCR_EnSCXT_BIT;
104 
105 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
106 }
107 #endif /* ENABLE_RME */
108 
109 /******************************************************************************
110  * This function performs initializations that are specific to NON-SECURE state
111  * and updates the cpu context specified by 'ctx'.
112  *****************************************************************************/
113 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
114 {
115 	u_register_t scr_el3;
116 	el3_state_t *state;
117 
118 	state = get_el3state_ctx(ctx);
119 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
120 
121 	/* SCR_NS: Set the NS bit */
122 	scr_el3 |= SCR_NS_BIT;
123 
124 #if !CTX_INCLUDE_PAUTH_REGS
125 	/*
126 	 * If the pointer authentication registers aren't saved during world
127 	 * switches the value of the registers can be leaked from the Secure to
128 	 * the Non-secure world. To prevent this, rather than enabling pointer
129 	 * authentication everywhere, we only enable it in the Non-secure world.
130 	 *
131 	 * If the Secure world wants to use pointer authentication,
132 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
133 	 */
134 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
135 #endif /* !CTX_INCLUDE_PAUTH_REGS */
136 
137 	/* Allow access to Allocation Tags when MTE is implemented. */
138 	scr_el3 |= SCR_ATA_BIT;
139 
140 #ifdef IMAGE_BL31
141 	/*
142 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
143 	 *  indicated by the interrupt routing model for BL31.
144 	 */
145 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
146 #endif
147 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
148 
149 	/* Initialize EL2 context registers */
150 #if CTX_INCLUDE_EL2_REGS
151 
152 	/*
153 	 * Initialize SCTLR_EL2 context register using Endianness value
154 	 * taken from the entrypoint attribute.
155 	 */
156 	u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
157 	sctlr_el2 |= SCTLR_EL2_RES1;
158 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2,
159 			sctlr_el2);
160 
161 	/*
162 	 * The GICv3 driver initializes the ICC_SRE_EL2 register during
163 	 * platform setup. Use the same setting for the corresponding
164 	 * context register to make sure the correct bits are set when
165 	 * restoring NS context.
166 	 */
167 	u_register_t icc_sre_el2 = read_icc_sre_el2();
168 	icc_sre_el2 |= (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT);
169 	icc_sre_el2 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
170 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_ICC_SRE_EL2,
171 			icc_sre_el2);
172 #endif /* CTX_INCLUDE_EL2_REGS */
173 }
174 
175 /*******************************************************************************
176  * The following function performs initialization of the cpu_context 'ctx'
177  * for first use that is common to all security states, and sets the
178  * initial entrypoint state as specified by the entry_point_info structure.
179  *
180  * The EE and ST attributes are used to configure the endianness and secure
181  * timer availability for the new execution context.
182  ******************************************************************************/
183 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
184 {
185 	u_register_t scr_el3;
186 	el3_state_t *state;
187 	gp_regs_t *gp_regs;
188 	u_register_t sctlr_elx, actlr_elx;
189 
190 	/* Clear any residual register values from the context */
191 	zeromem(ctx, sizeof(*ctx));
192 
193 	/*
194 	 * SCR_EL3 was initialised during reset sequence in macro
195 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
196 	 * affect the next EL.
197 	 *
198 	 * The following fields are initially set to zero and then updated to
199 	 * the required value depending on the state of the SPSR_EL3 and the
200 	 * Security state and entrypoint attributes of the next EL.
201 	 */
202 	scr_el3 = read_scr();
203 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
204 			SCR_ST_BIT | SCR_HCE_BIT | SCR_NSE_BIT);
205 
206 	/*
207 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
208 	 *  Exception level as specified by SPSR.
209 	 */
210 	if (GET_RW(ep->spsr) == MODE_RW_64) {
211 		scr_el3 |= SCR_RW_BIT;
212 	}
213 
214 	/*
215 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
216 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
217 	 *  by the entrypoint attributes.
218 	 */
219 	if (EP_GET_ST(ep->h.attr) != 0U) {
220 		scr_el3 |= SCR_ST_BIT;
221 	}
222 
223 	/*
224 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
225 	 * SCR_EL3.HXEn.
226 	 */
227 #if ENABLE_FEAT_HCX
228 	scr_el3 |= SCR_HXEn_BIT;
229 #endif
230 
231 #if RAS_TRAP_LOWER_EL_ERR_ACCESS
232 	/*
233 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
234 	 * and RAS ERX registers from EL1 and EL2 are trapped to EL3.
235 	 */
236 	scr_el3 |= SCR_TERR_BIT;
237 #endif
238 
239 #if !HANDLE_EA_EL3_FIRST
240 	/*
241 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
242 	 * to EL3 when executing at a lower EL. When executing at EL3, External
243 	 * Aborts are taken to EL3.
244 	 */
245 	scr_el3 &= ~SCR_EA_BIT;
246 #endif
247 
248 #if FAULT_INJECTION_SUPPORT
249 	/* Enable fault injection from lower ELs */
250 	scr_el3 |= SCR_FIEN_BIT;
251 #endif
252 
253 	/*
254 	 * CPTR_EL3 was initialized out of reset, copy that value to the
255 	 * context register.
256 	 */
257 	write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3());
258 
259 	/*
260 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
261 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
262 	 * next mode is Hyp.
263 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
264 	 * same conditions as HVC instructions and when the processor supports
265 	 * ARMv8.6-FGT.
266 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
267 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
268 	 * and when the processor supports ECV.
269 	 */
270 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
271 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
272 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
273 		scr_el3 |= SCR_HCE_BIT;
274 
275 		if (is_armv8_6_fgt_present()) {
276 			scr_el3 |= SCR_FGTEN_BIT;
277 		}
278 
279 		if (get_armv8_6_ecv_support()
280 		    == ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) {
281 			scr_el3 |= SCR_ECVEN_BIT;
282 		}
283 	}
284 
285 	/*
286 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
287 	 * execution state setting all fields rather than relying of the hw.
288 	 * Some fields have architecturally UNKNOWN reset values and these are
289 	 * set to zero.
290 	 *
291 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
292 	 *
293 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
294 	 *  required by PSCI specification)
295 	 */
296 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
297 	if (GET_RW(ep->spsr) == MODE_RW_64) {
298 		sctlr_elx |= SCTLR_EL1_RES1;
299 	} else {
300 		/*
301 		 * If the target execution state is AArch32 then the following
302 		 * fields need to be set.
303 		 *
304 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
305 		 *  instructions are not trapped to EL1.
306 		 *
307 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
308 		 *  instructions are not trapped to EL1.
309 		 *
310 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
311 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
312 		 */
313 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
314 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
315 	}
316 
317 #if ERRATA_A75_764081
318 	/*
319 	 * If workaround of errata 764081 for Cortex-A75 is used then set
320 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
321 	 */
322 	sctlr_elx |= SCTLR_IESB_BIT;
323 #endif
324 
325 #if ENABLE_FEAT_TWED
326 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
327 	/* Set delay in SCR_EL3 */
328 	scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
329 	scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
330 			<< SCR_TWEDEL_SHIFT);
331 
332 	/* Enable WFE delay */
333 	scr_el3 |= SCR_TWEDEn_BIT;
334 #endif /* ENABLE_FEAT_TWED */
335 
336 	/*
337 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
338 	 * and other EL2 registers are set up by cm_prepare_el3_exit() as they
339 	 * are not part of the stored cpu_context.
340 	 */
341 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
342 
343 	/*
344 	 * Base the context ACTLR_EL1 on the current value, as it is
345 	 * implementation defined. The context restore process will write
346 	 * the value from the context to the actual register and can cause
347 	 * problems for processor cores that don't expect certain bits to
348 	 * be zero.
349 	 */
350 	actlr_elx = read_actlr_el1();
351 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
352 
353 	/*
354 	 * Populate EL3 state so that we've the right context
355 	 * before doing ERET
356 	 */
357 	state = get_el3state_ctx(ctx);
358 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
359 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
360 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
361 
362 	/*
363 	 * Store the X0-X7 value from the entrypoint into the context
364 	 * Use memcpy as we are in control of the layout of the structures
365 	 */
366 	gp_regs = get_gpregs_ctx(ctx);
367 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
368 }
369 
370 /*******************************************************************************
371  * Context management library initialization routine. This library is used by
372  * runtime services to share pointers to 'cpu_context' structures for secure
373  * non-secure and realm states. Management of the structures and their associated
374  * memory is not done by the context management library e.g. the PSCI service
375  * manages the cpu context used for entry from and exit to the non-secure state.
376  * The Secure payload dispatcher service manages the context(s) corresponding to
377  * the secure state. It also uses this library to get access to the non-secure
378  * state cpu context pointers.
379  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
380  * which will be used for programming an entry into a lower EL. The same context
381  * will be used to save state upon exception entry from that EL.
382  ******************************************************************************/
383 void __init cm_init(void)
384 {
385 	/*
386 	 * The context management library has only global data to intialize, but
387 	 * that will be done when the BSS is zeroed out.
388 	 */
389 }
390 
391 /*******************************************************************************
392  * This is the high-level function used to initialize the cpu_context 'ctx' for
393  * first use. It performs initializations that are common to all security states
394  * and initializations specific to the security state specified in 'ep'
395  ******************************************************************************/
396 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
397 {
398 	unsigned int security_state;
399 
400 	assert(ctx != NULL);
401 
402 	/*
403 	 * Perform initializations that are common
404 	 * to all security states
405 	 */
406 	setup_context_common(ctx, ep);
407 
408 	security_state = GET_SECURITY_STATE(ep->h.attr);
409 
410 	/* Perform security state specific initializations */
411 	switch (security_state) {
412 	case SECURE:
413 		setup_secure_context(ctx, ep);
414 		break;
415 #if ENABLE_RME
416 	case REALM:
417 		setup_realm_context(ctx, ep);
418 		break;
419 #endif
420 	case NON_SECURE:
421 		setup_ns_context(ctx, ep);
422 		break;
423 	default:
424 		ERROR("Invalid security state\n");
425 		panic();
426 		break;
427 	}
428 }
429 
430 /*******************************************************************************
431  * Enable architecture extensions on first entry to Non-secure world.
432  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
433  * it is zero.
434  ******************************************************************************/
435 static void manage_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx)
436 {
437 #if IMAGE_BL31
438 #if ENABLE_SPE_FOR_LOWER_ELS
439 	spe_enable(el2_unused);
440 #endif
441 
442 #if ENABLE_AMU
443 	amu_enable(el2_unused, ctx);
444 #endif
445 
446 #if ENABLE_SME_FOR_NS
447 	/* Enable SME, SVE, and FPU/SIMD for non-secure world. */
448 	sme_enable(ctx);
449 #elif ENABLE_SVE_FOR_NS
450 	/* Enable SVE and FPU/SIMD for non-secure world. */
451 	sve_enable(ctx);
452 #endif
453 
454 #if ENABLE_MPAM_FOR_LOWER_ELS
455 	mpam_enable(el2_unused);
456 #endif
457 
458 #if ENABLE_TRBE_FOR_NS
459 	trbe_enable();
460 #endif /* ENABLE_TRBE_FOR_NS */
461 
462 #if ENABLE_SYS_REG_TRACE_FOR_NS
463 	sys_reg_trace_enable(ctx);
464 #endif /* ENABLE_SYS_REG_TRACE_FOR_NS */
465 
466 #if ENABLE_TRF_FOR_NS
467 	trf_enable();
468 #endif /* ENABLE_TRF_FOR_NS */
469 #endif
470 }
471 
472 /*******************************************************************************
473  * Enable architecture extensions on first entry to Secure world.
474  ******************************************************************************/
475 static void manage_extensions_secure(cpu_context_t *ctx)
476 {
477 #if IMAGE_BL31
478  #if ENABLE_SME_FOR_NS
479   #if ENABLE_SME_FOR_SWD
480 	/*
481 	 * Enable SME, SVE, FPU/SIMD in secure context, secure manager must
482 	 * ensure SME, SVE, and FPU/SIMD context properly managed.
483 	 */
484 	sme_enable(ctx);
485   #else /* ENABLE_SME_FOR_SWD */
486 	/*
487 	 * Disable SME, SVE, FPU/SIMD in secure context so non-secure world can
488 	 * safely use the associated registers.
489 	 */
490 	sme_disable(ctx);
491   #endif /* ENABLE_SME_FOR_SWD */
492  #elif ENABLE_SVE_FOR_NS
493   #if ENABLE_SVE_FOR_SWD
494 	/*
495 	 * Enable SVE and FPU in secure context, secure manager must ensure that
496 	 * the SVE and FPU register contexts are properly managed.
497 	 */
498 	sve_enable(ctx);
499  #else /* ENABLE_SVE_FOR_SWD */
500 	/*
501 	 * Disable SVE and FPU in secure context so non-secure world can safely
502 	 * use them.
503 	 */
504 	sve_disable(ctx);
505   #endif /* ENABLE_SVE_FOR_SWD */
506  #endif /* ENABLE_SVE_FOR_NS */
507 #endif /* IMAGE_BL31 */
508 }
509 
510 /*******************************************************************************
511  * The following function initializes the cpu_context for a CPU specified by
512  * its `cpu_idx` for first use, and sets the initial entrypoint state as
513  * specified by the entry_point_info structure.
514  ******************************************************************************/
515 void cm_init_context_by_index(unsigned int cpu_idx,
516 			      const entry_point_info_t *ep)
517 {
518 	cpu_context_t *ctx;
519 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
520 	cm_setup_context(ctx, ep);
521 }
522 
523 /*******************************************************************************
524  * The following function initializes the cpu_context for the current CPU
525  * for first use, and sets the initial entrypoint state as specified by the
526  * entry_point_info structure.
527  ******************************************************************************/
528 void cm_init_my_context(const entry_point_info_t *ep)
529 {
530 	cpu_context_t *ctx;
531 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
532 	cm_setup_context(ctx, ep);
533 }
534 
535 /*******************************************************************************
536  * Prepare the CPU system registers for first entry into realm, secure, or
537  * normal world.
538  *
539  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
540  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
541  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
542  * For all entries, the EL1 registers are initialized from the cpu_context
543  ******************************************************************************/
544 void cm_prepare_el3_exit(uint32_t security_state)
545 {
546 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
547 	cpu_context_t *ctx = cm_get_context(security_state);
548 	bool el2_unused = false;
549 	uint64_t hcr_el2 = 0U;
550 
551 	assert(ctx != NULL);
552 
553 	if (security_state == NON_SECURE) {
554 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
555 						 CTX_SCR_EL3);
556 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
557 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
558 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
559 							   CTX_SCTLR_EL1);
560 			sctlr_elx &= SCTLR_EE_BIT;
561 			sctlr_elx |= SCTLR_EL2_RES1;
562 #if ERRATA_A75_764081
563 			/*
564 			 * If workaround of errata 764081 for Cortex-A75 is used
565 			 * then set SCTLR_EL2.IESB to enable Implicit Error
566 			 * Synchronization Barrier.
567 			 */
568 			sctlr_elx |= SCTLR_IESB_BIT;
569 #endif
570 			write_sctlr_el2(sctlr_elx);
571 		} else if (el_implemented(2) != EL_IMPL_NONE) {
572 			el2_unused = true;
573 
574 			/*
575 			 * EL2 present but unused, need to disable safely.
576 			 * SCTLR_EL2 can be ignored in this case.
577 			 *
578 			 * Set EL2 register width appropriately: Set HCR_EL2
579 			 * field to match SCR_EL3.RW.
580 			 */
581 			if ((scr_el3 & SCR_RW_BIT) != 0U)
582 				hcr_el2 |= HCR_RW_BIT;
583 
584 			/*
585 			 * For Armv8.3 pointer authentication feature, disable
586 			 * traps to EL2 when accessing key registers or using
587 			 * pointer authentication instructions from lower ELs.
588 			 */
589 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
590 
591 			write_hcr_el2(hcr_el2);
592 
593 			/*
594 			 * Initialise CPTR_EL2 setting all fields rather than
595 			 * relying on the hw. All fields have architecturally
596 			 * UNKNOWN reset values.
597 			 *
598 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
599 			 *  accesses to the CPACR_EL1 or CPACR from both
600 			 *  Execution states do not trap to EL2.
601 			 *
602 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
603 			 *  register accesses to the trace registers from both
604 			 *  Execution states do not trap to EL2.
605 			 *  If PE trace unit System registers are not implemented
606 			 *  then this bit is reserved, and must be set to zero.
607 			 *
608 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
609 			 *  to SIMD and floating-point functionality from both
610 			 *  Execution states do not trap to EL2.
611 			 */
612 			write_cptr_el2(CPTR_EL2_RESET_VAL &
613 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
614 					| CPTR_EL2_TFP_BIT));
615 
616 			/*
617 			 * Initialise CNTHCTL_EL2. All fields are
618 			 * architecturally UNKNOWN on reset and are set to zero
619 			 * except for field(s) listed below.
620 			 *
621 			 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to
622 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
623 			 *  physical timer registers.
624 			 *
625 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
626 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
627 			 *  physical counter registers.
628 			 */
629 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
630 						EL1PCEN_BIT | EL1PCTEN_BIT);
631 
632 			/*
633 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
634 			 * architecturally UNKNOWN value.
635 			 */
636 			write_cntvoff_el2(0);
637 
638 			/*
639 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
640 			 * MPIDR_EL1 respectively.
641 			 */
642 			write_vpidr_el2(read_midr_el1());
643 			write_vmpidr_el2(read_mpidr_el1());
644 
645 			/*
646 			 * Initialise VTTBR_EL2. All fields are architecturally
647 			 * UNKNOWN on reset.
648 			 *
649 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
650 			 *  2 address translation is disabled, cache maintenance
651 			 *  operations depend on the VMID.
652 			 *
653 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
654 			 *  translation is disabled.
655 			 */
656 			write_vttbr_el2(VTTBR_RESET_VAL &
657 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
658 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
659 
660 			/*
661 			 * Initialise MDCR_EL2, setting all fields rather than
662 			 * relying on hw. Some fields are architecturally
663 			 * UNKNOWN on reset.
664 			 *
665 			 * MDCR_EL2.HLP: Set to one so that event counter
666 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
667 			 *  occurs on the increment that changes
668 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
669 			 *  implemented. This bit is RES0 in versions of the
670 			 *  architecture earlier than ARMv8.5, setting it to 1
671 			 *  doesn't have any effect on them.
672 			 *
673 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
674 			 *  Filter Control register TRFCR_EL1 at EL1 is not
675 			 *  trapped to EL2. This bit is RES0 in versions of
676 			 *  the architecture earlier than ARMv8.4.
677 			 *
678 			 * MDCR_EL2.HPMD: Set to one so that event counting is
679 			 *  prohibited at EL2. This bit is RES0 in versions of
680 			 *  the architecture earlier than ARMv8.1, setting it
681 			 *  to 1 doesn't have any effect on them.
682 			 *
683 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
684 			 *  Statistical Profiling control registers from EL1
685 			 *  do not trap to EL2. This bit is RES0 when SPE is
686 			 *  not implemented.
687 			 *
688 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
689 			 *  EL1 System register accesses to the Debug ROM
690 			 *  registers are not trapped to EL2.
691 			 *
692 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
693 			 *  System register accesses to the powerdown debug
694 			 *  registers are not trapped to EL2.
695 			 *
696 			 * MDCR_EL2.TDA: Set to zero so that System register
697 			 *  accesses to the debug registers do not trap to EL2.
698 			 *
699 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
700 			 *  are not routed to EL2.
701 			 *
702 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
703 			 *  Monitors.
704 			 *
705 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
706 			 *  EL1 accesses to all Performance Monitors registers
707 			 *  are not trapped to EL2.
708 			 *
709 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
710 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
711 			 *  trapped to EL2.
712 			 *
713 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
714 			 *  architecturally-defined reset value.
715 			 *
716 			 * MDCR_EL2.E2TB: Set to zero so that the trace Buffer
717 			 *  owning exception level is NS-EL1 and, tracing is
718 			 *  prohibited at NS-EL2. These bits are RES0 when
719 			 *  FEAT_TRBE is not implemented.
720 			 */
721 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
722 				     MDCR_EL2_HPMD) |
723 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
724 				   >> PMCR_EL0_N_SHIFT)) &
725 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
726 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
727 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
728 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
729 				     MDCR_EL2_TPMCR_BIT |
730 				     MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1));
731 
732 			write_mdcr_el2(mdcr_el2);
733 
734 			/*
735 			 * Initialise HSTR_EL2. All fields are architecturally
736 			 * UNKNOWN on reset.
737 			 *
738 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
739 			 *  Non-secure EL0 or EL1 accesses to System registers
740 			 *  do not trap to EL2.
741 			 */
742 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
743 			/*
744 			 * Initialise CNTHP_CTL_EL2. All fields are
745 			 * architecturally UNKNOWN on reset.
746 			 *
747 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
748 			 *  physical timer and prevent timer interrupts.
749 			 */
750 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
751 						~(CNTHP_CTL_ENABLE_BIT));
752 		}
753 		manage_extensions_nonsecure(el2_unused, ctx);
754 	}
755 
756 	cm_el1_sysregs_context_restore(security_state);
757 	cm_set_next_eret_context(security_state);
758 }
759 
760 #if CTX_INCLUDE_EL2_REGS
761 /*******************************************************************************
762  * Save EL2 sysreg context
763  ******************************************************************************/
764 void cm_el2_sysregs_context_save(uint32_t security_state)
765 {
766 	u_register_t scr_el3 = read_scr();
767 
768 	/*
769 	 * Always save the non-secure and realm EL2 context, only save the
770 	 * S-EL2 context if S-EL2 is enabled.
771 	 */
772 	if ((security_state != SECURE) ||
773 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
774 		cpu_context_t *ctx;
775 
776 		ctx = cm_get_context(security_state);
777 		assert(ctx != NULL);
778 
779 		el2_sysregs_context_save(get_el2_sysregs_ctx(ctx));
780 	}
781 }
782 
783 /*******************************************************************************
784  * Restore EL2 sysreg context
785  ******************************************************************************/
786 void cm_el2_sysregs_context_restore(uint32_t security_state)
787 {
788 	u_register_t scr_el3 = read_scr();
789 
790 	/*
791 	 * Always restore the non-secure and realm EL2 context, only restore the
792 	 * S-EL2 context if S-EL2 is enabled.
793 	 */
794 	if ((security_state != SECURE) ||
795 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
796 		cpu_context_t *ctx;
797 
798 		ctx = cm_get_context(security_state);
799 		assert(ctx != NULL);
800 
801 		el2_sysregs_context_restore(get_el2_sysregs_ctx(ctx));
802 	}
803 }
804 #endif /* CTX_INCLUDE_EL2_REGS */
805 
806 /*******************************************************************************
807  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
808  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
809  * updating EL1 and EL2 registers. Otherwise, it calls the generic
810  * cm_prepare_el3_exit function.
811  ******************************************************************************/
812 void cm_prepare_el3_exit_ns(void)
813 {
814 #if CTX_INCLUDE_EL2_REGS
815 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
816 	assert(ctx != NULL);
817 
818 	/*
819 	 * Currently some extensions are configured using
820 	 * direct register updates. Therefore, do this here
821 	 * instead of when setting up context.
822 	 */
823 	manage_extensions_nonsecure(0, ctx);
824 
825 	/*
826 	 * Set the NS bit to be able to access the ICC_SRE_EL2
827 	 * register when restoring context.
828 	 */
829 	write_scr_el3(read_scr_el3() | SCR_NS_BIT);
830 
831 	/* Restore EL2 and EL1 sysreg contexts */
832 	cm_el2_sysregs_context_restore(NON_SECURE);
833 	cm_el1_sysregs_context_restore(NON_SECURE);
834 	cm_set_next_eret_context(NON_SECURE);
835 #else
836 	cm_prepare_el3_exit(NON_SECURE);
837 #endif /* CTX_INCLUDE_EL2_REGS */
838 }
839 
840 /*******************************************************************************
841  * The next four functions are used by runtime services to save and restore
842  * EL1 context on the 'cpu_context' structure for the specified security
843  * state.
844  ******************************************************************************/
845 void cm_el1_sysregs_context_save(uint32_t security_state)
846 {
847 	cpu_context_t *ctx;
848 
849 	ctx = cm_get_context(security_state);
850 	assert(ctx != NULL);
851 
852 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
853 
854 #if IMAGE_BL31
855 	if (security_state == SECURE)
856 		PUBLISH_EVENT(cm_exited_secure_world);
857 	else
858 		PUBLISH_EVENT(cm_exited_normal_world);
859 #endif
860 }
861 
862 void cm_el1_sysregs_context_restore(uint32_t security_state)
863 {
864 	cpu_context_t *ctx;
865 
866 	ctx = cm_get_context(security_state);
867 	assert(ctx != NULL);
868 
869 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
870 
871 #if IMAGE_BL31
872 	if (security_state == SECURE)
873 		PUBLISH_EVENT(cm_entering_secure_world);
874 	else
875 		PUBLISH_EVENT(cm_entering_normal_world);
876 #endif
877 }
878 
879 /*******************************************************************************
880  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
881  * given security state with the given entrypoint
882  ******************************************************************************/
883 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
884 {
885 	cpu_context_t *ctx;
886 	el3_state_t *state;
887 
888 	ctx = cm_get_context(security_state);
889 	assert(ctx != NULL);
890 
891 	/* Populate EL3 state so that ERET jumps to the correct entry */
892 	state = get_el3state_ctx(ctx);
893 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
894 }
895 
896 /*******************************************************************************
897  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
898  * pertaining to the given security state
899  ******************************************************************************/
900 void cm_set_elr_spsr_el3(uint32_t security_state,
901 			uintptr_t entrypoint, uint32_t spsr)
902 {
903 	cpu_context_t *ctx;
904 	el3_state_t *state;
905 
906 	ctx = cm_get_context(security_state);
907 	assert(ctx != NULL);
908 
909 	/* Populate EL3 state so that ERET jumps to the correct entry */
910 	state = get_el3state_ctx(ctx);
911 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
912 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
913 }
914 
915 /*******************************************************************************
916  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
917  * pertaining to the given security state using the value and bit position
918  * specified in the parameters. It preserves all other bits.
919  ******************************************************************************/
920 void cm_write_scr_el3_bit(uint32_t security_state,
921 			  uint32_t bit_pos,
922 			  uint32_t value)
923 {
924 	cpu_context_t *ctx;
925 	el3_state_t *state;
926 	u_register_t scr_el3;
927 
928 	ctx = cm_get_context(security_state);
929 	assert(ctx != NULL);
930 
931 	/* Ensure that the bit position is a valid one */
932 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
933 
934 	/* Ensure that the 'value' is only a bit wide */
935 	assert(value <= 1U);
936 
937 	/*
938 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
939 	 * and set it to its new value.
940 	 */
941 	state = get_el3state_ctx(ctx);
942 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
943 	scr_el3 &= ~(1UL << bit_pos);
944 	scr_el3 |= (u_register_t)value << bit_pos;
945 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
946 }
947 
948 /*******************************************************************************
949  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
950  * given security state.
951  ******************************************************************************/
952 u_register_t cm_get_scr_el3(uint32_t security_state)
953 {
954 	cpu_context_t *ctx;
955 	el3_state_t *state;
956 
957 	ctx = cm_get_context(security_state);
958 	assert(ctx != NULL);
959 
960 	/* Populate EL3 state so that ERET jumps to the correct entry */
961 	state = get_el3state_ctx(ctx);
962 	return read_ctx_reg(state, CTX_SCR_EL3);
963 }
964 
965 /*******************************************************************************
966  * This function is used to program the context that's used for exception
967  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
968  * the required security state
969  ******************************************************************************/
970 void cm_set_next_eret_context(uint32_t security_state)
971 {
972 	cpu_context_t *ctx;
973 
974 	ctx = cm_get_context(security_state);
975 	assert(ctx != NULL);
976 
977 	cm_set_next_context(ctx);
978 }
979