xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 93d1f4bc749e157cdfbe060b7e10351f460dedef)
1 /*
2  * Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/cpu_data.h>
24 #include <lib/el3_runtime/pubsub_events.h>
25 #include <lib/extensions/amu.h>
26 #include <lib/extensions/brbe.h>
27 #include <lib/extensions/mpam.h>
28 #include <lib/extensions/pmuv3.h>
29 #include <lib/extensions/sme.h>
30 #include <lib/extensions/spe.h>
31 #include <lib/extensions/sve.h>
32 #include <lib/extensions/sys_reg_trace.h>
33 #include <lib/extensions/trbe.h>
34 #include <lib/extensions/trf.h>
35 #include <lib/utils.h>
36 
37 #if ENABLE_FEAT_TWED
38 /* Make sure delay value fits within the range(0-15) */
39 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
40 #endif /* ENABLE_FEAT_TWED */
41 
42 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
43 static bool has_secure_perworld_init;
44 
45 static void manage_extensions_nonsecure(cpu_context_t *ctx);
46 static void manage_extensions_secure(cpu_context_t *ctx);
47 static void manage_extensions_secure_per_world(void);
48 
49 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
50 {
51 	u_register_t sctlr_elx, actlr_elx;
52 
53 	/*
54 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
55 	 * execution state setting all fields rather than relying on the hw.
56 	 * Some fields have architecturally UNKNOWN reset values and these are
57 	 * set to zero.
58 	 *
59 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
60 	 *
61 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
62 	 * required by PSCI specification)
63 	 */
64 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
65 	if (GET_RW(ep->spsr) == MODE_RW_64) {
66 		sctlr_elx |= SCTLR_EL1_RES1;
67 	} else {
68 		/*
69 		 * If the target execution state is AArch32 then the following
70 		 * fields need to be set.
71 		 *
72 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
73 		 *  instructions are not trapped to EL1.
74 		 *
75 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
76 		 *  instructions are not trapped to EL1.
77 		 *
78 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
79 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
80 		 */
81 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
82 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
83 	}
84 
85 #if ERRATA_A75_764081
86 	/*
87 	 * If workaround of errata 764081 for Cortex-A75 is used then set
88 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
89 	 */
90 	sctlr_elx |= SCTLR_IESB_BIT;
91 #endif
92 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
93 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
94 
95 	/*
96 	 * Base the context ACTLR_EL1 on the current value, as it is
97 	 * implementation defined. The context restore process will write
98 	 * the value from the context to the actual register and can cause
99 	 * problems for processor cores that don't expect certain bits to
100 	 * be zero.
101 	 */
102 	actlr_elx = read_actlr_el1();
103 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
104 }
105 
106 /******************************************************************************
107  * This function performs initializations that are specific to SECURE state
108  * and updates the cpu context specified by 'ctx'.
109  *****************************************************************************/
110 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
111 {
112 	u_register_t scr_el3;
113 	el3_state_t *state;
114 
115 	state = get_el3state_ctx(ctx);
116 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
117 
118 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
119 	/*
120 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
121 	 * indicated by the interrupt routing model for BL31.
122 	 */
123 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
124 #endif
125 
126 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
127 	/* Get Memory Tagging Extension support level */
128 	unsigned int mte = get_armv8_5_mte_support();
129 #endif
130 	/*
131 	 * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS
132 	 * is set, or when MTE is only implemented at EL0.
133 	 */
134 #if CTX_INCLUDE_MTE_REGS
135 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
136 	scr_el3 |= SCR_ATA_BIT;
137 #else
138 	if (mte == MTE_IMPLEMENTED_EL0) {
139 		scr_el3 |= SCR_ATA_BIT;
140 	}
141 #endif /* CTX_INCLUDE_MTE_REGS */
142 
143 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
144 
145 	/*
146 	 * Initialize EL1 context registers unless SPMC is running
147 	 * at S-EL2.
148 	 */
149 #if !SPMD_SPM_AT_SEL2
150 	setup_el1_context(ctx, ep);
151 #endif
152 
153 	manage_extensions_secure(ctx);
154 
155 	/**
156 	 * manage_extensions_secure_per_world api has to be executed once,
157 	 * as the registers getting initialised, maintain constant value across
158 	 * all the cpus for the secure world.
159 	 * Henceforth, this check ensures that the registers are initialised once
160 	 * and avoids re-initialization from multiple cores.
161 	 */
162 	if (!has_secure_perworld_init) {
163 		manage_extensions_secure_per_world();
164 	}
165 
166 }
167 
168 #if ENABLE_RME
169 /******************************************************************************
170  * This function performs initializations that are specific to REALM state
171  * and updates the cpu context specified by 'ctx'.
172  *****************************************************************************/
173 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
174 {
175 	u_register_t scr_el3;
176 	el3_state_t *state;
177 
178 	state = get_el3state_ctx(ctx);
179 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
180 
181 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
182 
183 	if (is_feat_csv2_2_supported()) {
184 		/* Enable access to the SCXTNUM_ELx registers. */
185 		scr_el3 |= SCR_EnSCXT_BIT;
186 	}
187 
188 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
189 }
190 #endif /* ENABLE_RME */
191 
192 /******************************************************************************
193  * This function performs initializations that are specific to NON-SECURE state
194  * and updates the cpu context specified by 'ctx'.
195  *****************************************************************************/
196 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
197 {
198 	u_register_t scr_el3;
199 	el3_state_t *state;
200 
201 	state = get_el3state_ctx(ctx);
202 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
203 
204 	/* SCR_NS: Set the NS bit */
205 	scr_el3 |= SCR_NS_BIT;
206 
207 	/* Allow access to Allocation Tags when MTE is implemented. */
208 	scr_el3 |= SCR_ATA_BIT;
209 
210 #if !CTX_INCLUDE_PAUTH_REGS
211 	/*
212 	 * Pointer Authentication feature, if present, is always enabled by default
213 	 * for Non secure lower exception levels. We do not have an explicit
214 	 * flag to set it.
215 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
216 	 * exception levels of secure and realm worlds.
217 	 *
218 	 * To prevent the leakage between the worlds during world switch,
219 	 * we enable it only for the non-secure world.
220 	 *
221 	 * If the Secure/realm world wants to use pointer authentication,
222 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
223 	 * it will be enabled globally for all the contexts.
224 	 *
225 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
226 	 *  other than EL3
227 	 *
228 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
229 	 *  than EL3
230 	 */
231 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
232 
233 #endif /* CTX_INCLUDE_PAUTH_REGS */
234 
235 #if HANDLE_EA_EL3_FIRST_NS
236 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
237 	scr_el3 |= SCR_EA_BIT;
238 #endif
239 
240 #if RAS_TRAP_NS_ERR_REC_ACCESS
241 	/*
242 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
243 	 * and RAS ERX registers from EL1 and EL2(from any security state)
244 	 * are trapped to EL3.
245 	 * Set here to trap only for NS EL1/EL2
246 	 *
247 	 */
248 	scr_el3 |= SCR_TERR_BIT;
249 #endif
250 
251 	if (is_feat_csv2_2_supported()) {
252 		/* Enable access to the SCXTNUM_ELx registers. */
253 		scr_el3 |= SCR_EnSCXT_BIT;
254 	}
255 
256 #ifdef IMAGE_BL31
257 	/*
258 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
259 	 *  indicated by the interrupt routing model for BL31.
260 	 */
261 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
262 #endif
263 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
264 
265 	/* Initialize EL1 context registers */
266 	setup_el1_context(ctx, ep);
267 
268 	/* Initialize EL2 context registers */
269 #if CTX_INCLUDE_EL2_REGS
270 
271 	/*
272 	 * Initialize SCTLR_EL2 context register using Endianness value
273 	 * taken from the entrypoint attribute.
274 	 */
275 	u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
276 	sctlr_el2 |= SCTLR_EL2_RES1;
277 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2,
278 			sctlr_el2);
279 
280 	if (is_feat_hcx_supported()) {
281 		/*
282 		 * Initialize register HCRX_EL2 with its init value.
283 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
284 		 * chance that this can lead to unexpected behavior in lower
285 		 * ELs that have not been updated since the introduction of
286 		 * this feature if not properly initialized, especially when
287 		 * it comes to those bits that enable/disable traps.
288 		 */
289 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HCRX_EL2,
290 			HCRX_EL2_INIT_VAL);
291 	}
292 
293 	if (is_feat_fgt_supported()) {
294 		/*
295 		 * Initialize HFG*_EL2 registers with a default value so legacy
296 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
297 		 * of initialization for this feature.
298 		 */
299 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGITR_EL2,
300 			HFGITR_EL2_INIT_VAL);
301 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGRTR_EL2,
302 			HFGRTR_EL2_INIT_VAL);
303 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGWTR_EL2,
304 			HFGWTR_EL2_INIT_VAL);
305 	}
306 #endif /* CTX_INCLUDE_EL2_REGS */
307 
308 	manage_extensions_nonsecure(ctx);
309 }
310 
311 /*******************************************************************************
312  * The following function performs initialization of the cpu_context 'ctx'
313  * for first use that is common to all security states, and sets the
314  * initial entrypoint state as specified by the entry_point_info structure.
315  *
316  * The EE and ST attributes are used to configure the endianness and secure
317  * timer availability for the new execution context.
318  ******************************************************************************/
319 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
320 {
321 	u_register_t scr_el3;
322 	el3_state_t *state;
323 	gp_regs_t *gp_regs;
324 
325 	state = get_el3state_ctx(ctx);
326 
327 	/* Clear any residual register values from the context */
328 	zeromem(ctx, sizeof(*ctx));
329 
330 	/*
331 	 * The lower-EL context is zeroed so that no stale values leak to a world.
332 	 * It is assumed that an all-zero lower-EL context is good enough for it
333 	 * to boot correctly. However, there are very few registers where this
334 	 * is not true and some values need to be recreated.
335 	 */
336 #if CTX_INCLUDE_EL2_REGS
337 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
338 
339 	/*
340 	 * These bits are set in the gicv3 driver. Losing them (especially the
341 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
342 	 */
343 	u_register_t icc_sre_el2 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
344 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
345 	write_ctx_reg(el2_ctx, CTX_ICC_SRE_EL2, icc_sre_el2);
346 #endif /* CTX_INCLUDE_EL2_REGS */
347 
348 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
349 	scr_el3 = SCR_RESET_VAL;
350 
351 	/*
352 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
353 	 *  EL2, EL1 and EL0 are not trapped to EL3.
354 	 *
355 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
356 	 *  EL2, EL1 and EL0 are not trapped to EL3.
357 	 *
358 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
359 	 *  both Security states and both Execution states.
360 	 *
361 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
362 	 *  Non-secure memory.
363 	 */
364 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
365 
366 	scr_el3 |= SCR_SIF_BIT;
367 
368 	/*
369 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
370 	 *  Exception level as specified by SPSR.
371 	 */
372 	if (GET_RW(ep->spsr) == MODE_RW_64) {
373 		scr_el3 |= SCR_RW_BIT;
374 	}
375 
376 	/*
377 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
378 	 * Secure timer registers to EL3, from AArch64 state only, if specified
379 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
380 	 * bit always behaves as 1 (i.e. secure physical timer register access
381 	 * is not trapped)
382 	 */
383 	if (EP_GET_ST(ep->h.attr) != 0U) {
384 		scr_el3 |= SCR_ST_BIT;
385 	}
386 
387 	/*
388 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
389 	 * SCR_EL3.HXEn.
390 	 */
391 	if (is_feat_hcx_supported()) {
392 		scr_el3 |= SCR_HXEn_BIT;
393 	}
394 
395 	/*
396 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
397 	 * registers are trapped to EL3.
398 	 */
399 #if ENABLE_FEAT_RNG_TRAP
400 	scr_el3 |= SCR_TRNDR_BIT;
401 #endif
402 
403 #if FAULT_INJECTION_SUPPORT
404 	/* Enable fault injection from lower ELs */
405 	scr_el3 |= SCR_FIEN_BIT;
406 #endif
407 
408 #if CTX_INCLUDE_PAUTH_REGS
409 	/*
410 	 * Enable Pointer Authentication globally for all the worlds.
411 	 *
412 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
413 	 *  other than EL3
414 	 *
415 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
416 	 *  than EL3
417 	 */
418 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
419 #endif /* CTX_INCLUDE_PAUTH_REGS */
420 
421 	/*
422 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
423 	 */
424 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
425 		scr_el3 |= SCR_TCR2EN_BIT;
426 	}
427 
428 	/*
429 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
430 	 * registers for AArch64 if present.
431 	 */
432 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
433 		scr_el3 |= SCR_PIEN_BIT;
434 	}
435 
436 	/*
437 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
438 	 */
439 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
440 		scr_el3 |= SCR_GCSEn_BIT;
441 	}
442 
443 	/*
444 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
445 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
446 	 * next mode is Hyp.
447 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
448 	 * same conditions as HVC instructions and when the processor supports
449 	 * ARMv8.6-FGT.
450 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
451 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
452 	 * and when the processor supports ECV.
453 	 */
454 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
455 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
456 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
457 		scr_el3 |= SCR_HCE_BIT;
458 
459 		if (is_feat_fgt_supported()) {
460 			scr_el3 |= SCR_FGTEN_BIT;
461 		}
462 
463 		if (is_feat_ecv_supported()) {
464 			scr_el3 |= SCR_ECVEN_BIT;
465 		}
466 	}
467 
468 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
469 	if (is_feat_twed_supported()) {
470 		/* Set delay in SCR_EL3 */
471 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
472 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
473 				<< SCR_TWEDEL_SHIFT);
474 
475 		/* Enable WFE delay */
476 		scr_el3 |= SCR_TWEDEn_BIT;
477 	}
478 
479 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
480 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
481 	if (is_feat_sel2_supported()) {
482 		scr_el3 |= SCR_EEL2_BIT;
483 	}
484 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
485 
486 	/*
487 	 * Populate EL3 state so that we've the right context
488 	 * before doing ERET
489 	 */
490 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
491 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
492 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
493 
494 	/*
495 	 * Store the X0-X7 value from the entrypoint into the context
496 	 * Use memcpy as we are in control of the layout of the structures
497 	 */
498 	gp_regs = get_gpregs_ctx(ctx);
499 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
500 }
501 
502 /*******************************************************************************
503  * Context management library initialization routine. This library is used by
504  * runtime services to share pointers to 'cpu_context' structures for secure
505  * non-secure and realm states. Management of the structures and their associated
506  * memory is not done by the context management library e.g. the PSCI service
507  * manages the cpu context used for entry from and exit to the non-secure state.
508  * The Secure payload dispatcher service manages the context(s) corresponding to
509  * the secure state. It also uses this library to get access to the non-secure
510  * state cpu context pointers.
511  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
512  * which will be used for programming an entry into a lower EL. The same context
513  * will be used to save state upon exception entry from that EL.
514  ******************************************************************************/
515 void __init cm_init(void)
516 {
517 	/*
518 	 * The context management library has only global data to initialize, but
519 	 * that will be done when the BSS is zeroed out.
520 	 */
521 }
522 
523 /*******************************************************************************
524  * This is the high-level function used to initialize the cpu_context 'ctx' for
525  * first use. It performs initializations that are common to all security states
526  * and initializations specific to the security state specified in 'ep'
527  ******************************************************************************/
528 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
529 {
530 	unsigned int security_state;
531 
532 	assert(ctx != NULL);
533 
534 	/*
535 	 * Perform initializations that are common
536 	 * to all security states
537 	 */
538 	setup_context_common(ctx, ep);
539 
540 	security_state = GET_SECURITY_STATE(ep->h.attr);
541 
542 	/* Perform security state specific initializations */
543 	switch (security_state) {
544 	case SECURE:
545 		setup_secure_context(ctx, ep);
546 		break;
547 #if ENABLE_RME
548 	case REALM:
549 		setup_realm_context(ctx, ep);
550 		break;
551 #endif
552 	case NON_SECURE:
553 		setup_ns_context(ctx, ep);
554 		break;
555 	default:
556 		ERROR("Invalid security state\n");
557 		panic();
558 		break;
559 	}
560 }
561 
562 /*******************************************************************************
563  * Enable architecture extensions for EL3 execution. This function only updates
564  * registers in-place which are expected to either never change or be
565  * overwritten by el3_exit.
566  ******************************************************************************/
567 #if IMAGE_BL31
568 void cm_manage_extensions_el3(void)
569 {
570 	if (is_feat_spe_supported()) {
571 		spe_init_el3();
572 	}
573 
574 	if (is_feat_amu_supported()) {
575 		amu_init_el3();
576 	}
577 
578 	if (is_feat_sme_supported()) {
579 		sme_init_el3();
580 	}
581 
582 	if (is_feat_trbe_supported()) {
583 		trbe_init_el3();
584 	}
585 
586 	if (is_feat_brbe_supported()) {
587 		brbe_init_el3();
588 	}
589 
590 	if (is_feat_trf_supported()) {
591 		trf_init_el3();
592 	}
593 
594 	pmuv3_init_el3();
595 }
596 #endif /* IMAGE_BL31 */
597 
598 /******************************************************************************
599  * Function to initialise the registers with the RESET values in the context
600  * memory, which are maintained per world.
601  ******************************************************************************/
602 #if IMAGE_BL31
603 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
604 {
605 	/*
606 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
607 	 *
608 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
609 	 *  by Advanced SIMD, floating-point or SVE instructions (if
610 	 *  implemented) do not trap to EL3.
611 	 *
612 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
613 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
614 	 */
615 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
616 
617 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
618 
619 	/*
620 	 * Initialize MPAM3_EL3 to its default reset value
621 	 *
622 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
623 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
624 	 */
625 
626 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
627 }
628 #endif /* IMAGE_BL31 */
629 
630 /*******************************************************************************
631  * Initialise per_world_context for Non-Secure world.
632  * This function enables the architecture extensions, which have same value
633  * across the cores for the non-secure world.
634  ******************************************************************************/
635 #if IMAGE_BL31
636 void manage_extensions_nonsecure_per_world(void)
637 {
638 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
639 
640 	if (is_feat_sme_supported()) {
641 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
642 	}
643 
644 	if (is_feat_sve_supported()) {
645 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
646 	}
647 
648 	if (is_feat_amu_supported()) {
649 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
650 	}
651 
652 	if (is_feat_sys_reg_trace_supported()) {
653 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
654 	}
655 
656 	if (is_feat_mpam_supported()) {
657 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
658 	}
659 }
660 #endif /* IMAGE_BL31 */
661 
662 /*******************************************************************************
663  * Initialise per_world_context for Secure world.
664  * This function enables the architecture extensions, which have same value
665  * across the cores for the secure world.
666  ******************************************************************************/
667 static void manage_extensions_secure_per_world(void)
668 {
669 #if IMAGE_BL31
670 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
671 
672 	if (is_feat_sme_supported()) {
673 
674 		if (ENABLE_SME_FOR_SWD) {
675 		/*
676 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
677 		 * SME, SVE, and FPU/SIMD context properly managed.
678 		 */
679 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
680 		} else {
681 		/*
682 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
683 		 * world can safely use the associated registers.
684 		 */
685 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
686 		}
687 	}
688 	if (is_feat_sve_supported()) {
689 		if (ENABLE_SVE_FOR_SWD) {
690 		/*
691 		 * Enable SVE and FPU in secure context, SPM must ensure
692 		 * that the SVE and FPU register contexts are properly managed.
693 		 */
694 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
695 		} else {
696 		/*
697 		 * Disable SVE and FPU in secure context so non-secure world
698 		 * can safely use them.
699 		 */
700 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
701 		}
702 	}
703 
704 	/* NS can access this but Secure shouldn't */
705 	if (is_feat_sys_reg_trace_supported()) {
706 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
707 	}
708 
709 	has_secure_perworld_init = true;
710 #endif /* IMAGE_BL31 */
711 }
712 
713 /*******************************************************************************
714  * Enable architecture extensions on first entry to Non-secure world.
715  ******************************************************************************/
716 static void manage_extensions_nonsecure(cpu_context_t *ctx)
717 {
718 #if IMAGE_BL31
719 	if (is_feat_amu_supported()) {
720 		amu_enable(ctx);
721 	}
722 
723 	if (is_feat_sme_supported()) {
724 		sme_enable(ctx);
725 	}
726 
727 	pmuv3_enable(ctx);
728 #endif /* IMAGE_BL31 */
729 }
730 
731 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
732 static __unused void enable_pauth_el2(void)
733 {
734 	u_register_t hcr_el2 = read_hcr_el2();
735 	/*
736 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
737 	 *  accessing key registers or using pointer authentication instructions
738 	 *  from lower ELs.
739 	 */
740 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
741 
742 	write_hcr_el2(hcr_el2);
743 }
744 
745 #if INIT_UNUSED_NS_EL2
746 /*******************************************************************************
747  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
748  * world when EL2 is empty and unused.
749  ******************************************************************************/
750 static void manage_extensions_nonsecure_el2_unused(void)
751 {
752 #if IMAGE_BL31
753 	if (is_feat_spe_supported()) {
754 		spe_init_el2_unused();
755 	}
756 
757 	if (is_feat_amu_supported()) {
758 		amu_init_el2_unused();
759 	}
760 
761 	if (is_feat_mpam_supported()) {
762 		mpam_init_el2_unused();
763 	}
764 
765 	if (is_feat_trbe_supported()) {
766 		trbe_init_el2_unused();
767 	}
768 
769 	if (is_feat_sys_reg_trace_supported()) {
770 		sys_reg_trace_init_el2_unused();
771 	}
772 
773 	if (is_feat_trf_supported()) {
774 		trf_init_el2_unused();
775 	}
776 
777 	pmuv3_init_el2_unused();
778 
779 	if (is_feat_sve_supported()) {
780 		sve_init_el2_unused();
781 	}
782 
783 	if (is_feat_sme_supported()) {
784 		sme_init_el2_unused();
785 	}
786 
787 #if ENABLE_PAUTH
788 	enable_pauth_el2();
789 #endif /* ENABLE_PAUTH */
790 #endif /* IMAGE_BL31 */
791 }
792 #endif /* INIT_UNUSED_NS_EL2 */
793 
794 /*******************************************************************************
795  * Enable architecture extensions on first entry to Secure world.
796  ******************************************************************************/
797 static void manage_extensions_secure(cpu_context_t *ctx)
798 {
799 #if IMAGE_BL31
800 	if (is_feat_sme_supported()) {
801 		if (ENABLE_SME_FOR_SWD) {
802 		/*
803 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
804 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
805 		 */
806 			sme_init_el3();
807 			sme_enable(ctx);
808 		} else {
809 		/*
810 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
811 		 * world can safely use the associated registers.
812 		 */
813 			sme_disable(ctx);
814 		}
815 	}
816 #endif /* IMAGE_BL31 */
817 }
818 
819 /*******************************************************************************
820  * The following function initializes the cpu_context for a CPU specified by
821  * its `cpu_idx` for first use, and sets the initial entrypoint state as
822  * specified by the entry_point_info structure.
823  ******************************************************************************/
824 void cm_init_context_by_index(unsigned int cpu_idx,
825 			      const entry_point_info_t *ep)
826 {
827 	cpu_context_t *ctx;
828 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
829 	cm_setup_context(ctx, ep);
830 }
831 
832 /*******************************************************************************
833  * The following function initializes the cpu_context for the current CPU
834  * for first use, and sets the initial entrypoint state as specified by the
835  * entry_point_info structure.
836  ******************************************************************************/
837 void cm_init_my_context(const entry_point_info_t *ep)
838 {
839 	cpu_context_t *ctx;
840 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
841 	cm_setup_context(ctx, ep);
842 }
843 
844 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
845 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
846 {
847 #if INIT_UNUSED_NS_EL2
848 	u_register_t hcr_el2 = HCR_RESET_VAL;
849 	u_register_t mdcr_el2;
850 	u_register_t scr_el3;
851 
852 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
853 
854 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
855 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
856 		hcr_el2 |= HCR_RW_BIT;
857 	}
858 
859 	write_hcr_el2(hcr_el2);
860 
861 	/*
862 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
863 	 * All fields have architecturally UNKNOWN reset values.
864 	 */
865 	write_cptr_el2(CPTR_EL2_RESET_VAL);
866 
867 	/*
868 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
869 	 * reset and are set to zero except for field(s) listed below.
870 	 *
871 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
872 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
873 	 *
874 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
875 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
876 	 */
877 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
878 
879 	/*
880 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
881 	 * UNKNOWN value.
882 	 */
883 	write_cntvoff_el2(0);
884 
885 	/*
886 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
887 	 * respectively.
888 	 */
889 	write_vpidr_el2(read_midr_el1());
890 	write_vmpidr_el2(read_mpidr_el1());
891 
892 	/*
893 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
894 	 *
895 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
896 	 * translation is disabled, cache maintenance operations depend on the
897 	 * VMID.
898 	 *
899 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
900 	 * disabled.
901 	 */
902 	write_vttbr_el2(VTTBR_RESET_VAL &
903 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
904 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
905 
906 	/*
907 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
908 	 * Some fields are architecturally UNKNOWN on reset.
909 	 *
910 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
911 	 * register accesses to the Debug ROM registers are not trapped to EL2.
912 	 *
913 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
914 	 * accesses to the powerdown debug registers are not trapped to EL2.
915 	 *
916 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
917 	 * debug registers do not trap to EL2.
918 	 *
919 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
920 	 * EL2.
921 	 */
922 	mdcr_el2 = MDCR_EL2_RESET_VAL &
923 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
924 		   MDCR_EL2_TDE_BIT);
925 
926 	write_mdcr_el2(mdcr_el2);
927 
928 	/*
929 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
930 	 *
931 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
932 	 * EL1 accesses to System registers do not trap to EL2.
933 	 */
934 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
935 
936 	/*
937 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
938 	 * reset.
939 	 *
940 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
941 	 * and prevent timer interrupts.
942 	 */
943 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
944 
945 	manage_extensions_nonsecure_el2_unused();
946 #endif /* INIT_UNUSED_NS_EL2 */
947 }
948 
949 /*******************************************************************************
950  * Prepare the CPU system registers for first entry into realm, secure, or
951  * normal world.
952  *
953  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
954  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
955  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
956  * For all entries, the EL1 registers are initialized from the cpu_context
957  ******************************************************************************/
958 void cm_prepare_el3_exit(uint32_t security_state)
959 {
960 	u_register_t sctlr_elx, scr_el3;
961 	cpu_context_t *ctx = cm_get_context(security_state);
962 
963 	assert(ctx != NULL);
964 
965 	if (security_state == NON_SECURE) {
966 		uint64_t el2_implemented = el_implemented(2);
967 
968 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
969 						 CTX_SCR_EL3);
970 
971 		if (((scr_el3 & SCR_HCE_BIT) != 0U)
972 			|| (el2_implemented != EL_IMPL_NONE)) {
973 			/*
974 			 * If context is not being used for EL2, initialize
975 			 * HCRX_EL2 with its init value here.
976 			 */
977 			if (is_feat_hcx_supported()) {
978 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
979 			}
980 
981 			/*
982 			 * Initialize Fine-grained trap registers introduced
983 			 * by FEAT_FGT so all traps are initially disabled when
984 			 * switching to EL2 or a lower EL, preventing undesired
985 			 * behavior.
986 			 */
987 			if (is_feat_fgt_supported()) {
988 				/*
989 				 * Initialize HFG*_EL2 registers with a default
990 				 * value so legacy systems unaware of FEAT_FGT
991 				 * do not get trapped due to their lack of
992 				 * initialization for this feature.
993 				 */
994 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
995 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
996 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
997 			}
998 		}
999 
1000 
1001 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1002 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
1003 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
1004 							   CTX_SCTLR_EL1);
1005 			sctlr_elx &= SCTLR_EE_BIT;
1006 			sctlr_elx |= SCTLR_EL2_RES1;
1007 #if ERRATA_A75_764081
1008 			/*
1009 			 * If workaround of errata 764081 for Cortex-A75 is used
1010 			 * then set SCTLR_EL2.IESB to enable Implicit Error
1011 			 * Synchronization Barrier.
1012 			 */
1013 			sctlr_elx |= SCTLR_IESB_BIT;
1014 #endif
1015 			write_sctlr_el2(sctlr_elx);
1016 		} else if (el2_implemented != EL_IMPL_NONE) {
1017 			init_nonsecure_el2_unused(ctx);
1018 		}
1019 	}
1020 
1021 	cm_el1_sysregs_context_restore(security_state);
1022 	cm_set_next_eret_context(security_state);
1023 }
1024 
1025 #if CTX_INCLUDE_EL2_REGS
1026 
1027 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1028 {
1029 	write_ctx_reg(ctx, CTX_HDFGRTR_EL2, read_hdfgrtr_el2());
1030 	if (is_feat_amu_supported()) {
1031 		write_ctx_reg(ctx, CTX_HAFGRTR_EL2, read_hafgrtr_el2());
1032 	}
1033 	write_ctx_reg(ctx, CTX_HDFGWTR_EL2, read_hdfgwtr_el2());
1034 	write_ctx_reg(ctx, CTX_HFGITR_EL2, read_hfgitr_el2());
1035 	write_ctx_reg(ctx, CTX_HFGRTR_EL2, read_hfgrtr_el2());
1036 	write_ctx_reg(ctx, CTX_HFGWTR_EL2, read_hfgwtr_el2());
1037 }
1038 
1039 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1040 {
1041 	write_hdfgrtr_el2(read_ctx_reg(ctx, CTX_HDFGRTR_EL2));
1042 	if (is_feat_amu_supported()) {
1043 		write_hafgrtr_el2(read_ctx_reg(ctx, CTX_HAFGRTR_EL2));
1044 	}
1045 	write_hdfgwtr_el2(read_ctx_reg(ctx, CTX_HDFGWTR_EL2));
1046 	write_hfgitr_el2(read_ctx_reg(ctx, CTX_HFGITR_EL2));
1047 	write_hfgrtr_el2(read_ctx_reg(ctx, CTX_HFGRTR_EL2));
1048 	write_hfgwtr_el2(read_ctx_reg(ctx, CTX_HFGWTR_EL2));
1049 }
1050 
1051 #if CTX_INCLUDE_MPAM_REGS
1052 
1053 static void el2_sysregs_context_save_mpam(mpam_t *ctx)
1054 {
1055 	u_register_t mpam_idr = read_mpamidr_el1();
1056 
1057 	write_ctx_reg(ctx, CTX_MPAM2_EL2, read_mpam2_el2());
1058 
1059 	/*
1060 	 * The context registers that we intend to save would be part of the
1061 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1062 	 */
1063 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1064 		return;
1065 	}
1066 
1067 	/*
1068 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1069 	 * MPAMIDR_HAS_HCR_BIT == 1.
1070 	 */
1071 	write_ctx_reg(ctx, CTX_MPAMHCR_EL2, read_mpamhcr_el2());
1072 	write_ctx_reg(ctx, CTX_MPAMVPM0_EL2, read_mpamvpm0_el2());
1073 	write_ctx_reg(ctx, CTX_MPAMVPMV_EL2, read_mpamvpmv_el2());
1074 
1075 	/*
1076 	 * The number of MPAMVPM registers is implementation defined, their
1077 	 * number is stored in the MPAMIDR_EL1 register.
1078 	 */
1079 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1080 	case 7:
1081 		write_ctx_reg(ctx, CTX_MPAMVPM7_EL2, read_mpamvpm7_el2());
1082 		__fallthrough;
1083 	case 6:
1084 		write_ctx_reg(ctx, CTX_MPAMVPM6_EL2, read_mpamvpm6_el2());
1085 		__fallthrough;
1086 	case 5:
1087 		write_ctx_reg(ctx, CTX_MPAMVPM5_EL2, read_mpamvpm5_el2());
1088 		__fallthrough;
1089 	case 4:
1090 		write_ctx_reg(ctx, CTX_MPAMVPM4_EL2, read_mpamvpm4_el2());
1091 		__fallthrough;
1092 	case 3:
1093 		write_ctx_reg(ctx, CTX_MPAMVPM3_EL2, read_mpamvpm3_el2());
1094 		__fallthrough;
1095 	case 2:
1096 		write_ctx_reg(ctx, CTX_MPAMVPM2_EL2, read_mpamvpm2_el2());
1097 		__fallthrough;
1098 	case 1:
1099 		write_ctx_reg(ctx, CTX_MPAMVPM1_EL2, read_mpamvpm1_el2());
1100 		break;
1101 	}
1102 }
1103 
1104 #endif /* CTX_INCLUDE_MPAM_REGS */
1105 
1106 #if CTX_INCLUDE_MPAM_REGS
1107 static void el2_sysregs_context_restore_mpam(mpam_t *ctx)
1108 {
1109 	u_register_t mpam_idr = read_mpamidr_el1();
1110 
1111 	write_mpam2_el2(read_ctx_reg(ctx, CTX_MPAM2_EL2));
1112 
1113 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1114 		return;
1115 	}
1116 
1117 	write_mpamhcr_el2(read_ctx_reg(ctx, CTX_MPAMHCR_EL2));
1118 	write_mpamvpm0_el2(read_ctx_reg(ctx, CTX_MPAMVPM0_EL2));
1119 	write_mpamvpmv_el2(read_ctx_reg(ctx, CTX_MPAMVPMV_EL2));
1120 
1121 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1122 	case 7:
1123 		write_mpamvpm7_el2(read_ctx_reg(ctx, CTX_MPAMVPM7_EL2));
1124 		__fallthrough;
1125 	case 6:
1126 		write_mpamvpm6_el2(read_ctx_reg(ctx, CTX_MPAMVPM6_EL2));
1127 		__fallthrough;
1128 	case 5:
1129 		write_mpamvpm5_el2(read_ctx_reg(ctx, CTX_MPAMVPM5_EL2));
1130 		__fallthrough;
1131 	case 4:
1132 		write_mpamvpm4_el2(read_ctx_reg(ctx, CTX_MPAMVPM4_EL2));
1133 		__fallthrough;
1134 	case 3:
1135 		write_mpamvpm3_el2(read_ctx_reg(ctx, CTX_MPAMVPM3_EL2));
1136 		__fallthrough;
1137 	case 2:
1138 		write_mpamvpm2_el2(read_ctx_reg(ctx, CTX_MPAMVPM2_EL2));
1139 		__fallthrough;
1140 	case 1:
1141 		write_mpamvpm1_el2(read_ctx_reg(ctx, CTX_MPAMVPM1_EL2));
1142 		break;
1143 	}
1144 }
1145 #endif /* CTX_INCLUDE_MPAM_REGS */
1146 
1147 /* -----------------------------------------------------
1148  * The following registers are not added:
1149  * AMEVCNTVOFF0<n>_EL2
1150  * AMEVCNTVOFF1<n>_EL2
1151  * ICH_AP0R<n>_EL2
1152  * ICH_AP1R<n>_EL2
1153  * ICH_LR<n>_EL2
1154  * -----------------------------------------------------
1155  */
1156 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1157 {
1158 	write_ctx_reg(ctx, CTX_ACTLR_EL2, read_actlr_el2());
1159 	write_ctx_reg(ctx, CTX_AFSR0_EL2, read_afsr0_el2());
1160 	write_ctx_reg(ctx, CTX_AFSR1_EL2, read_afsr1_el2());
1161 	write_ctx_reg(ctx, CTX_AMAIR_EL2, read_amair_el2());
1162 	write_ctx_reg(ctx, CTX_CNTHCTL_EL2, read_cnthctl_el2());
1163 	write_ctx_reg(ctx, CTX_CNTVOFF_EL2, read_cntvoff_el2());
1164 	write_ctx_reg(ctx, CTX_CPTR_EL2, read_cptr_el2());
1165 	if (CTX_INCLUDE_AARCH32_REGS) {
1166 		write_ctx_reg(ctx, CTX_DBGVCR32_EL2, read_dbgvcr32_el2());
1167 	}
1168 	write_ctx_reg(ctx, CTX_ELR_EL2, read_elr_el2());
1169 	write_ctx_reg(ctx, CTX_ESR_EL2, read_esr_el2());
1170 	write_ctx_reg(ctx, CTX_FAR_EL2, read_far_el2());
1171 	write_ctx_reg(ctx, CTX_HACR_EL2, read_hacr_el2());
1172 	write_ctx_reg(ctx, CTX_HCR_EL2, read_hcr_el2());
1173 	write_ctx_reg(ctx, CTX_HPFAR_EL2, read_hpfar_el2());
1174 	write_ctx_reg(ctx, CTX_HSTR_EL2, read_hstr_el2());
1175 
1176 	/*
1177 	 * Set the NS bit to be able to access the ICC_SRE_EL2 register
1178 	 * TODO: remove with root context
1179 	 */
1180 	u_register_t scr_el3 = read_scr_el3();
1181 
1182 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1183 	isb();
1184 	write_ctx_reg(ctx, CTX_ICC_SRE_EL2, read_icc_sre_el2());
1185 
1186 	write_scr_el3(scr_el3);
1187 	isb();
1188 
1189 	write_ctx_reg(ctx, CTX_ICH_HCR_EL2, read_ich_hcr_el2());
1190 	write_ctx_reg(ctx, CTX_ICH_VMCR_EL2, read_ich_vmcr_el2());
1191 	write_ctx_reg(ctx, CTX_MAIR_EL2, read_mair_el2());
1192 	write_ctx_reg(ctx, CTX_MDCR_EL2, read_mdcr_el2());
1193 	write_ctx_reg(ctx, CTX_SCTLR_EL2, read_sctlr_el2());
1194 	write_ctx_reg(ctx, CTX_SPSR_EL2, read_spsr_el2());
1195 	write_ctx_reg(ctx, CTX_SP_EL2, read_sp_el2());
1196 	write_ctx_reg(ctx, CTX_TCR_EL2, read_tcr_el2());
1197 	write_ctx_reg(ctx, CTX_TPIDR_EL2, read_tpidr_el2());
1198 	write_ctx_reg(ctx, CTX_TTBR0_EL2, read_ttbr0_el2());
1199 	write_ctx_reg(ctx, CTX_VBAR_EL2, read_vbar_el2());
1200 	write_ctx_reg(ctx, CTX_VMPIDR_EL2, read_vmpidr_el2());
1201 	write_ctx_reg(ctx, CTX_VPIDR_EL2, read_vpidr_el2());
1202 	write_ctx_reg(ctx, CTX_VTCR_EL2, read_vtcr_el2());
1203 	write_ctx_reg(ctx, CTX_VTTBR_EL2, read_vttbr_el2());
1204 }
1205 
1206 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1207 {
1208 	write_actlr_el2(read_ctx_reg(ctx, CTX_ACTLR_EL2));
1209 	write_afsr0_el2(read_ctx_reg(ctx, CTX_AFSR0_EL2));
1210 	write_afsr1_el2(read_ctx_reg(ctx, CTX_AFSR1_EL2));
1211 	write_amair_el2(read_ctx_reg(ctx, CTX_AMAIR_EL2));
1212 	write_cnthctl_el2(read_ctx_reg(ctx, CTX_CNTHCTL_EL2));
1213 	write_cntvoff_el2(read_ctx_reg(ctx, CTX_CNTVOFF_EL2));
1214 	write_cptr_el2(read_ctx_reg(ctx, CTX_CPTR_EL2));
1215 	if (CTX_INCLUDE_AARCH32_REGS) {
1216 		write_dbgvcr32_el2(read_ctx_reg(ctx, CTX_DBGVCR32_EL2));
1217 	}
1218 	write_elr_el2(read_ctx_reg(ctx, CTX_ELR_EL2));
1219 	write_esr_el2(read_ctx_reg(ctx, CTX_ESR_EL2));
1220 	write_far_el2(read_ctx_reg(ctx, CTX_FAR_EL2));
1221 	write_hacr_el2(read_ctx_reg(ctx, CTX_HACR_EL2));
1222 	write_hcr_el2(read_ctx_reg(ctx, CTX_HCR_EL2));
1223 	write_hpfar_el2(read_ctx_reg(ctx, CTX_HPFAR_EL2));
1224 	write_hstr_el2(read_ctx_reg(ctx, CTX_HSTR_EL2));
1225 
1226 	/*
1227 	 * Set the NS bit to be able to access the ICC_SRE_EL2 register
1228 	 * TODO: remove with root context
1229 	 */
1230 	u_register_t scr_el3 = read_scr_el3();
1231 
1232 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1233 	isb();
1234 	write_icc_sre_el2(read_ctx_reg(ctx, CTX_ICC_SRE_EL2));
1235 
1236 	write_scr_el3(scr_el3);
1237 	isb();
1238 
1239 	write_ich_hcr_el2(read_ctx_reg(ctx, CTX_ICH_HCR_EL2));
1240 	write_ich_vmcr_el2(read_ctx_reg(ctx, CTX_ICH_VMCR_EL2));
1241 	write_mair_el2(read_ctx_reg(ctx, CTX_MAIR_EL2));
1242 	write_mdcr_el2(read_ctx_reg(ctx, CTX_MDCR_EL2));
1243 	write_sctlr_el2(read_ctx_reg(ctx, CTX_SCTLR_EL2));
1244 	write_spsr_el2(read_ctx_reg(ctx, CTX_SPSR_EL2));
1245 	write_sp_el2(read_ctx_reg(ctx, CTX_SP_EL2));
1246 	write_tcr_el2(read_ctx_reg(ctx, CTX_TCR_EL2));
1247 	write_tpidr_el2(read_ctx_reg(ctx, CTX_TPIDR_EL2));
1248 	write_ttbr0_el2(read_ctx_reg(ctx, CTX_TTBR0_EL2));
1249 	write_vbar_el2(read_ctx_reg(ctx, CTX_VBAR_EL2));
1250 	write_vmpidr_el2(read_ctx_reg(ctx, CTX_VMPIDR_EL2));
1251 	write_vpidr_el2(read_ctx_reg(ctx, CTX_VPIDR_EL2));
1252 	write_vtcr_el2(read_ctx_reg(ctx, CTX_VTCR_EL2));
1253 	write_vttbr_el2(read_ctx_reg(ctx, CTX_VTTBR_EL2));
1254 }
1255 
1256 /*******************************************************************************
1257  * Save EL2 sysreg context
1258  ******************************************************************************/
1259 void cm_el2_sysregs_context_save(uint32_t security_state)
1260 {
1261 	cpu_context_t *ctx;
1262 	el2_sysregs_t *el2_sysregs_ctx;
1263 
1264 	ctx = cm_get_context(security_state);
1265 	assert(ctx != NULL);
1266 
1267 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1268 
1269 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1270 #if CTX_INCLUDE_MTE_REGS
1271 	write_ctx_reg(el2_sysregs_ctx, CTX_TFSR_EL2, read_tfsr_el2());
1272 #endif
1273 
1274 #if CTX_INCLUDE_MPAM_REGS
1275 	if (is_feat_mpam_supported()) {
1276 		mpam_t *mpam_ctx = get_mpam_ctx(ctx);
1277 		el2_sysregs_context_save_mpam(mpam_ctx);
1278 	}
1279 #endif
1280 
1281 	if (is_feat_fgt_supported()) {
1282 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1283 	}
1284 
1285 	if (is_feat_ecv_v2_supported()) {
1286 		write_ctx_reg(el2_sysregs_ctx, CTX_CNTPOFF_EL2, read_cntpoff_el2());
1287 	}
1288 
1289 	if (is_feat_vhe_supported()) {
1290 		write_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2, read_contextidr_el2());
1291 		write_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2, read_ttbr1_el2());
1292 	}
1293 
1294 	if (is_feat_ras_supported()) {
1295 		write_ctx_reg(el2_sysregs_ctx, CTX_VDISR_EL2, read_vdisr_el2());
1296 		write_ctx_reg(el2_sysregs_ctx, CTX_VSESR_EL2, read_vsesr_el2());
1297 	}
1298 
1299 	if (is_feat_nv2_supported()) {
1300 		write_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2, read_vncr_el2());
1301 	}
1302 
1303 	if (is_feat_trf_supported()) {
1304 		write_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2, read_trfcr_el2());
1305 	}
1306 
1307 	if (is_feat_csv2_2_supported()) {
1308 		write_ctx_reg(el2_sysregs_ctx, CTX_SCXTNUM_EL2, read_scxtnum_el2());
1309 	}
1310 
1311 	if (is_feat_hcx_supported()) {
1312 		write_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2, read_hcrx_el2());
1313 	}
1314 	if (is_feat_tcr2_supported()) {
1315 		write_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2, read_tcr2_el2());
1316 	}
1317 	if (is_feat_sxpie_supported()) {
1318 		write_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2, read_pire0_el2());
1319 		write_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2, read_pir_el2());
1320 	}
1321 	if (is_feat_s2pie_supported()) {
1322 		write_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2, read_s2pir_el2());
1323 	}
1324 	if (is_feat_sxpoe_supported()) {
1325 		write_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2, read_por_el2());
1326 	}
1327 	if (is_feat_gcs_supported()) {
1328 		write_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2, read_gcspr_el2());
1329 		write_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2, read_gcscr_el2());
1330 	}
1331 }
1332 
1333 /*******************************************************************************
1334  * Restore EL2 sysreg context
1335  ******************************************************************************/
1336 void cm_el2_sysregs_context_restore(uint32_t security_state)
1337 {
1338 	cpu_context_t *ctx;
1339 	el2_sysregs_t *el2_sysregs_ctx;
1340 
1341 	ctx = cm_get_context(security_state);
1342 	assert(ctx != NULL);
1343 
1344 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1345 
1346 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1347 #if CTX_INCLUDE_MTE_REGS
1348 	write_tfsr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TFSR_EL2));
1349 #endif
1350 
1351 #if CTX_INCLUDE_MPAM_REGS
1352 	if (is_feat_mpam_supported()) {
1353 		mpam_t *mpam_ctx = get_mpam_ctx(ctx);
1354 		el2_sysregs_context_restore_mpam(mpam_ctx);
1355 	}
1356 #endif
1357 
1358 	if (is_feat_fgt_supported()) {
1359 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1360 	}
1361 
1362 	if (is_feat_ecv_v2_supported()) {
1363 		write_cntpoff_el2(read_ctx_reg(el2_sysregs_ctx, CTX_CNTPOFF_EL2));
1364 	}
1365 
1366 	if (is_feat_vhe_supported()) {
1367 		write_contextidr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2));
1368 		write_ttbr1_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2));
1369 	}
1370 
1371 	if (is_feat_ras_supported()) {
1372 		write_vdisr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VDISR_EL2));
1373 		write_vsesr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VSESR_EL2));
1374 	}
1375 
1376 	if (is_feat_nv2_supported()) {
1377 		write_vncr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2));
1378 	}
1379 	if (is_feat_trf_supported()) {
1380 		write_trfcr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2));
1381 	}
1382 
1383 	if (is_feat_csv2_2_supported()) {
1384 		write_scxtnum_el2(read_ctx_reg(el2_sysregs_ctx, CTX_SCXTNUM_EL2));
1385 	}
1386 
1387 	if (is_feat_hcx_supported()) {
1388 		write_hcrx_el2(read_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2));
1389 	}
1390 	if (is_feat_tcr2_supported()) {
1391 		write_tcr2_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2));
1392 	}
1393 	if (is_feat_sxpie_supported()) {
1394 		write_pire0_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2));
1395 		write_pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2));
1396 	}
1397 	if (is_feat_s2pie_supported()) {
1398 		write_s2pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2));
1399 	}
1400 	if (is_feat_sxpoe_supported()) {
1401 		write_por_el2(read_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2));
1402 	}
1403 	if (is_feat_gcs_supported()) {
1404 		write_gcscr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2));
1405 		write_gcspr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2));
1406 	}
1407 }
1408 #endif /* CTX_INCLUDE_EL2_REGS */
1409 
1410 /*******************************************************************************
1411  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1412  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1413  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1414  * cm_prepare_el3_exit function.
1415  ******************************************************************************/
1416 void cm_prepare_el3_exit_ns(void)
1417 {
1418 #if CTX_INCLUDE_EL2_REGS
1419 #if ENABLE_ASSERTIONS
1420 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1421 	assert(ctx != NULL);
1422 
1423 	/* Assert that EL2 is used. */
1424 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1425 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1426 			(el_implemented(2U) != EL_IMPL_NONE));
1427 #endif /* ENABLE_ASSERTIONS */
1428 
1429 	/* Restore EL2 and EL1 sysreg contexts */
1430 	cm_el2_sysregs_context_restore(NON_SECURE);
1431 	cm_el1_sysregs_context_restore(NON_SECURE);
1432 	cm_set_next_eret_context(NON_SECURE);
1433 #else
1434 	cm_prepare_el3_exit(NON_SECURE);
1435 #endif /* CTX_INCLUDE_EL2_REGS */
1436 }
1437 
1438 /*******************************************************************************
1439  * The next four functions are used by runtime services to save and restore
1440  * EL1 context on the 'cpu_context' structure for the specified security
1441  * state.
1442  ******************************************************************************/
1443 void cm_el1_sysregs_context_save(uint32_t security_state)
1444 {
1445 	cpu_context_t *ctx;
1446 
1447 	ctx = cm_get_context(security_state);
1448 	assert(ctx != NULL);
1449 
1450 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1451 
1452 #if IMAGE_BL31
1453 	if (security_state == SECURE)
1454 		PUBLISH_EVENT(cm_exited_secure_world);
1455 	else
1456 		PUBLISH_EVENT(cm_exited_normal_world);
1457 #endif
1458 }
1459 
1460 void cm_el1_sysregs_context_restore(uint32_t security_state)
1461 {
1462 	cpu_context_t *ctx;
1463 
1464 	ctx = cm_get_context(security_state);
1465 	assert(ctx != NULL);
1466 
1467 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1468 
1469 #if IMAGE_BL31
1470 	if (security_state == SECURE)
1471 		PUBLISH_EVENT(cm_entering_secure_world);
1472 	else
1473 		PUBLISH_EVENT(cm_entering_normal_world);
1474 #endif
1475 }
1476 
1477 /*******************************************************************************
1478  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1479  * given security state with the given entrypoint
1480  ******************************************************************************/
1481 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1482 {
1483 	cpu_context_t *ctx;
1484 	el3_state_t *state;
1485 
1486 	ctx = cm_get_context(security_state);
1487 	assert(ctx != NULL);
1488 
1489 	/* Populate EL3 state so that ERET jumps to the correct entry */
1490 	state = get_el3state_ctx(ctx);
1491 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1492 }
1493 
1494 /*******************************************************************************
1495  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1496  * pertaining to the given security state
1497  ******************************************************************************/
1498 void cm_set_elr_spsr_el3(uint32_t security_state,
1499 			uintptr_t entrypoint, uint32_t spsr)
1500 {
1501 	cpu_context_t *ctx;
1502 	el3_state_t *state;
1503 
1504 	ctx = cm_get_context(security_state);
1505 	assert(ctx != NULL);
1506 
1507 	/* Populate EL3 state so that ERET jumps to the correct entry */
1508 	state = get_el3state_ctx(ctx);
1509 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1510 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1511 }
1512 
1513 /*******************************************************************************
1514  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1515  * pertaining to the given security state using the value and bit position
1516  * specified in the parameters. It preserves all other bits.
1517  ******************************************************************************/
1518 void cm_write_scr_el3_bit(uint32_t security_state,
1519 			  uint32_t bit_pos,
1520 			  uint32_t value)
1521 {
1522 	cpu_context_t *ctx;
1523 	el3_state_t *state;
1524 	u_register_t scr_el3;
1525 
1526 	ctx = cm_get_context(security_state);
1527 	assert(ctx != NULL);
1528 
1529 	/* Ensure that the bit position is a valid one */
1530 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1531 
1532 	/* Ensure that the 'value' is only a bit wide */
1533 	assert(value <= 1U);
1534 
1535 	/*
1536 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1537 	 * and set it to its new value.
1538 	 */
1539 	state = get_el3state_ctx(ctx);
1540 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1541 	scr_el3 &= ~(1UL << bit_pos);
1542 	scr_el3 |= (u_register_t)value << bit_pos;
1543 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1544 }
1545 
1546 /*******************************************************************************
1547  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1548  * given security state.
1549  ******************************************************************************/
1550 u_register_t cm_get_scr_el3(uint32_t security_state)
1551 {
1552 	cpu_context_t *ctx;
1553 	el3_state_t *state;
1554 
1555 	ctx = cm_get_context(security_state);
1556 	assert(ctx != NULL);
1557 
1558 	/* Populate EL3 state so that ERET jumps to the correct entry */
1559 	state = get_el3state_ctx(ctx);
1560 	return read_ctx_reg(state, CTX_SCR_EL3);
1561 }
1562 
1563 /*******************************************************************************
1564  * This function is used to program the context that's used for exception
1565  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1566  * the required security state
1567  ******************************************************************************/
1568 void cm_set_next_eret_context(uint32_t security_state)
1569 {
1570 	cpu_context_t *ctx;
1571 
1572 	ctx = cm_get_context(security_state);
1573 	assert(ctx != NULL);
1574 
1575 	cm_set_next_context(ctx);
1576 }
1577