xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 93b7b752e94188803e8300e46b4a43f5b0a46105)
1 /*
2  * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/cpu_data.h>
24 #include <lib/el3_runtime/pubsub_events.h>
25 #include <lib/extensions/amu.h>
26 #include <lib/extensions/brbe.h>
27 #include <lib/extensions/debug_v8p9.h>
28 #include <lib/extensions/fgt2.h>
29 #include <lib/extensions/mpam.h>
30 #include <lib/extensions/pmuv3.h>
31 #include <lib/extensions/sme.h>
32 #include <lib/extensions/spe.h>
33 #include <lib/extensions/sve.h>
34 #include <lib/extensions/sys_reg_trace.h>
35 #include <lib/extensions/trbe.h>
36 #include <lib/extensions/trf.h>
37 #include <lib/utils.h>
38 
39 #if ENABLE_FEAT_TWED
40 /* Make sure delay value fits within the range(0-15) */
41 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
42 #endif /* ENABLE_FEAT_TWED */
43 
44 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
45 static bool has_secure_perworld_init;
46 
47 static void manage_extensions_common(cpu_context_t *ctx);
48 static void manage_extensions_nonsecure(cpu_context_t *ctx);
49 static void manage_extensions_secure(cpu_context_t *ctx);
50 static void manage_extensions_secure_per_world(void);
51 
52 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
53 {
54 	u_register_t sctlr_elx, actlr_elx;
55 
56 	/*
57 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
58 	 * execution state setting all fields rather than relying on the hw.
59 	 * Some fields have architecturally UNKNOWN reset values and these are
60 	 * set to zero.
61 	 *
62 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
63 	 *
64 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
65 	 * required by PSCI specification)
66 	 */
67 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
68 	if (GET_RW(ep->spsr) == MODE_RW_64) {
69 		sctlr_elx |= SCTLR_EL1_RES1;
70 	} else {
71 		/*
72 		 * If the target execution state is AArch32 then the following
73 		 * fields need to be set.
74 		 *
75 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
76 		 *  instructions are not trapped to EL1.
77 		 *
78 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
79 		 *  instructions are not trapped to EL1.
80 		 *
81 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
82 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
83 		 */
84 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
85 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
86 	}
87 
88 #if ERRATA_A75_764081
89 	/*
90 	 * If workaround of errata 764081 for Cortex-A75 is used then set
91 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
92 	 */
93 	sctlr_elx |= SCTLR_IESB_BIT;
94 #endif
95 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
96 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
97 
98 	/*
99 	 * Base the context ACTLR_EL1 on the current value, as it is
100 	 * implementation defined. The context restore process will write
101 	 * the value from the context to the actual register and can cause
102 	 * problems for processor cores that don't expect certain bits to
103 	 * be zero.
104 	 */
105 	actlr_elx = read_actlr_el1();
106 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
107 }
108 
109 /******************************************************************************
110  * This function performs initializations that are specific to SECURE state
111  * and updates the cpu context specified by 'ctx'.
112  *****************************************************************************/
113 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
114 {
115 	u_register_t scr_el3;
116 	el3_state_t *state;
117 
118 	state = get_el3state_ctx(ctx);
119 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
120 
121 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
122 	/*
123 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
124 	 * indicated by the interrupt routing model for BL31.
125 	 */
126 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
127 #endif
128 
129 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
130 	if (is_feat_mte2_supported()) {
131 		scr_el3 |= SCR_ATA_BIT;
132 	}
133 
134 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
135 
136 	/*
137 	 * Initialize EL1 context registers unless SPMC is running
138 	 * at S-EL2.
139 	 */
140 #if !SPMD_SPM_AT_SEL2
141 	setup_el1_context(ctx, ep);
142 #endif
143 
144 	manage_extensions_secure(ctx);
145 
146 	/**
147 	 * manage_extensions_secure_per_world api has to be executed once,
148 	 * as the registers getting initialised, maintain constant value across
149 	 * all the cpus for the secure world.
150 	 * Henceforth, this check ensures that the registers are initialised once
151 	 * and avoids re-initialization from multiple cores.
152 	 */
153 	if (!has_secure_perworld_init) {
154 		manage_extensions_secure_per_world();
155 	}
156 
157 }
158 
159 #if ENABLE_RME
160 /******************************************************************************
161  * This function performs initializations that are specific to REALM state
162  * and updates the cpu context specified by 'ctx'.
163  *****************************************************************************/
164 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
165 {
166 	u_register_t scr_el3;
167 	el3_state_t *state;
168 
169 	state = get_el3state_ctx(ctx);
170 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
171 
172 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
173 
174 	/* CSV2 version 2 and above */
175 	if (is_feat_csv2_2_supported()) {
176 		/* Enable access to the SCXTNUM_ELx registers. */
177 		scr_el3 |= SCR_EnSCXT_BIT;
178 	}
179 
180 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
181 }
182 #endif /* ENABLE_RME */
183 
184 /******************************************************************************
185  * This function performs initializations that are specific to NON-SECURE state
186  * and updates the cpu context specified by 'ctx'.
187  *****************************************************************************/
188 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
189 {
190 	u_register_t scr_el3;
191 	el3_state_t *state;
192 
193 	state = get_el3state_ctx(ctx);
194 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
195 
196 	/* SCR_NS: Set the NS bit */
197 	scr_el3 |= SCR_NS_BIT;
198 
199 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
200 	if (is_feat_mte2_supported()) {
201 		scr_el3 |= SCR_ATA_BIT;
202 	}
203 
204 #if !CTX_INCLUDE_PAUTH_REGS
205 	/*
206 	 * Pointer Authentication feature, if present, is always enabled by default
207 	 * for Non secure lower exception levels. We do not have an explicit
208 	 * flag to set it.
209 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
210 	 * exception levels of secure and realm worlds.
211 	 *
212 	 * To prevent the leakage between the worlds during world switch,
213 	 * we enable it only for the non-secure world.
214 	 *
215 	 * If the Secure/realm world wants to use pointer authentication,
216 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
217 	 * it will be enabled globally for all the contexts.
218 	 *
219 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
220 	 *  other than EL3
221 	 *
222 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
223 	 *  than EL3
224 	 */
225 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
226 
227 #endif /* CTX_INCLUDE_PAUTH_REGS */
228 
229 #if HANDLE_EA_EL3_FIRST_NS
230 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
231 	scr_el3 |= SCR_EA_BIT;
232 #endif
233 
234 #if RAS_TRAP_NS_ERR_REC_ACCESS
235 	/*
236 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
237 	 * and RAS ERX registers from EL1 and EL2(from any security state)
238 	 * are trapped to EL3.
239 	 * Set here to trap only for NS EL1/EL2
240 	 *
241 	 */
242 	scr_el3 |= SCR_TERR_BIT;
243 #endif
244 
245 	/* CSV2 version 2 and above */
246 	if (is_feat_csv2_2_supported()) {
247 		/* Enable access to the SCXTNUM_ELx registers. */
248 		scr_el3 |= SCR_EnSCXT_BIT;
249 	}
250 
251 #ifdef IMAGE_BL31
252 	/*
253 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
254 	 *  indicated by the interrupt routing model for BL31.
255 	 */
256 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
257 #endif
258 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
259 
260 	/* Initialize EL1 context registers */
261 	setup_el1_context(ctx, ep);
262 
263 	/* Initialize EL2 context registers */
264 #if CTX_INCLUDE_EL2_REGS
265 
266 	/*
267 	 * Initialize SCTLR_EL2 context register with reset value.
268 	 */
269 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
270 
271 	if (is_feat_hcx_supported()) {
272 		/*
273 		 * Initialize register HCRX_EL2 with its init value.
274 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
275 		 * chance that this can lead to unexpected behavior in lower
276 		 * ELs that have not been updated since the introduction of
277 		 * this feature if not properly initialized, especially when
278 		 * it comes to those bits that enable/disable traps.
279 		 */
280 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
281 			HCRX_EL2_INIT_VAL);
282 	}
283 
284 	if (is_feat_fgt_supported()) {
285 		/*
286 		 * Initialize HFG*_EL2 registers with a default value so legacy
287 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
288 		 * of initialization for this feature.
289 		 */
290 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
291 			HFGITR_EL2_INIT_VAL);
292 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
293 			HFGRTR_EL2_INIT_VAL);
294 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
295 			HFGWTR_EL2_INIT_VAL);
296 	}
297 
298 #endif /* CTX_INCLUDE_EL2_REGS */
299 
300 	manage_extensions_nonsecure(ctx);
301 }
302 
303 /*******************************************************************************
304  * The following function performs initialization of the cpu_context 'ctx'
305  * for first use that is common to all security states, and sets the
306  * initial entrypoint state as specified by the entry_point_info structure.
307  *
308  * The EE and ST attributes are used to configure the endianness and secure
309  * timer availability for the new execution context.
310  ******************************************************************************/
311 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
312 {
313 	u_register_t scr_el3;
314 	u_register_t mdcr_el3;
315 	el3_state_t *state;
316 	gp_regs_t *gp_regs;
317 
318 	state = get_el3state_ctx(ctx);
319 
320 	/* Clear any residual register values from the context */
321 	zeromem(ctx, sizeof(*ctx));
322 
323 	/*
324 	 * The lower-EL context is zeroed so that no stale values leak to a world.
325 	 * It is assumed that an all-zero lower-EL context is good enough for it
326 	 * to boot correctly. However, there are very few registers where this
327 	 * is not true and some values need to be recreated.
328 	 */
329 #if CTX_INCLUDE_EL2_REGS
330 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
331 
332 	/*
333 	 * These bits are set in the gicv3 driver. Losing them (especially the
334 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
335 	 */
336 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
337 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
338 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
339 
340 	/*
341 	 * The actlr_el2 register can be initialized in platform's reset handler
342 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
343 	 */
344 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
345 #endif /* CTX_INCLUDE_EL2_REGS */
346 
347 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
348 	scr_el3 = SCR_RESET_VAL;
349 
350 	/*
351 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
352 	 *  EL2, EL1 and EL0 are not trapped to EL3.
353 	 *
354 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
355 	 *  EL2, EL1 and EL0 are not trapped to EL3.
356 	 *
357 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
358 	 *  both Security states and both Execution states.
359 	 *
360 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
361 	 *  Non-secure memory.
362 	 */
363 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
364 
365 	scr_el3 |= SCR_SIF_BIT;
366 
367 	/*
368 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
369 	 *  Exception level as specified by SPSR.
370 	 */
371 	if (GET_RW(ep->spsr) == MODE_RW_64) {
372 		scr_el3 |= SCR_RW_BIT;
373 	}
374 
375 	/*
376 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
377 	 * Secure timer registers to EL3, from AArch64 state only, if specified
378 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
379 	 * bit always behaves as 1 (i.e. secure physical timer register access
380 	 * is not trapped)
381 	 */
382 	if (EP_GET_ST(ep->h.attr) != 0U) {
383 		scr_el3 |= SCR_ST_BIT;
384 	}
385 
386 	/*
387 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
388 	 * SCR_EL3.HXEn.
389 	 */
390 	if (is_feat_hcx_supported()) {
391 		scr_el3 |= SCR_HXEn_BIT;
392 	}
393 
394 	/*
395 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
396 	 * registers are trapped to EL3.
397 	 */
398 #if ENABLE_FEAT_RNG_TRAP
399 	scr_el3 |= SCR_TRNDR_BIT;
400 #endif
401 
402 #if FAULT_INJECTION_SUPPORT
403 	/* Enable fault injection from lower ELs */
404 	scr_el3 |= SCR_FIEN_BIT;
405 #endif
406 
407 #if CTX_INCLUDE_PAUTH_REGS
408 	/*
409 	 * Enable Pointer Authentication globally for all the worlds.
410 	 *
411 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
412 	 *  other than EL3
413 	 *
414 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
415 	 *  than EL3
416 	 */
417 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
418 #endif /* CTX_INCLUDE_PAUTH_REGS */
419 
420 	/*
421 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
422 	 */
423 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
424 		scr_el3 |= SCR_TCR2EN_BIT;
425 	}
426 
427 	/*
428 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
429 	 * registers for AArch64 if present.
430 	 */
431 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
432 		scr_el3 |= SCR_PIEN_BIT;
433 	}
434 
435 	/*
436 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
437 	 */
438 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
439 		scr_el3 |= SCR_GCSEn_BIT;
440 	}
441 
442 	/*
443 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
444 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
445 	 * next mode is Hyp.
446 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
447 	 * same conditions as HVC instructions and when the processor supports
448 	 * ARMv8.6-FGT.
449 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
450 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
451 	 * and when the processor supports ECV.
452 	 */
453 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
454 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
455 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
456 		scr_el3 |= SCR_HCE_BIT;
457 
458 		if (is_feat_fgt_supported()) {
459 			scr_el3 |= SCR_FGTEN_BIT;
460 		}
461 
462 		if (is_feat_ecv_supported()) {
463 			scr_el3 |= SCR_ECVEN_BIT;
464 		}
465 	}
466 
467 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
468 	if (is_feat_twed_supported()) {
469 		/* Set delay in SCR_EL3 */
470 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
471 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
472 				<< SCR_TWEDEL_SHIFT);
473 
474 		/* Enable WFE delay */
475 		scr_el3 |= SCR_TWEDEn_BIT;
476 	}
477 
478 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
479 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
480 	if (is_feat_sel2_supported()) {
481 		scr_el3 |= SCR_EEL2_BIT;
482 	}
483 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
484 
485 	/*
486 	 * Populate EL3 state so that we've the right context
487 	 * before doing ERET
488 	 */
489 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
490 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
491 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
492 
493 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
494 	mdcr_el3 = MDCR_EL3_RESET_VAL;
495 
496 	/* ---------------------------------------------------------------------
497 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
498 	 * Some fields are architecturally UNKNOWN on reset.
499 	 *
500 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
501 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
502 	 *  disabled from all ELs in Secure state.
503 	 *
504 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
505 	 *  privileged debug from S-EL1.
506 	 *
507 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
508 	 *  access to the powerdown debug registers do not trap to EL3.
509 	 *
510 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
511 	 *  debug registers, other than those registers that are controlled by
512 	 *  MDCR_EL3.TDOSA.
513 	 */
514 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
515 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
516 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
517 
518 	/*
519 	 * Configure MDCR_EL3 register as applicable for each world
520 	 * (NS/Secure/Realm) context.
521 	 */
522 	manage_extensions_common(ctx);
523 
524 	/*
525 	 * Store the X0-X7 value from the entrypoint into the context
526 	 * Use memcpy as we are in control of the layout of the structures
527 	 */
528 	gp_regs = get_gpregs_ctx(ctx);
529 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
530 }
531 
532 /*******************************************************************************
533  * Context management library initialization routine. This library is used by
534  * runtime services to share pointers to 'cpu_context' structures for secure
535  * non-secure and realm states. Management of the structures and their associated
536  * memory is not done by the context management library e.g. the PSCI service
537  * manages the cpu context used for entry from and exit to the non-secure state.
538  * The Secure payload dispatcher service manages the context(s) corresponding to
539  * the secure state. It also uses this library to get access to the non-secure
540  * state cpu context pointers.
541  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
542  * which will be used for programming an entry into a lower EL. The same context
543  * will be used to save state upon exception entry from that EL.
544  ******************************************************************************/
545 void __init cm_init(void)
546 {
547 	/*
548 	 * The context management library has only global data to initialize, but
549 	 * that will be done when the BSS is zeroed out.
550 	 */
551 }
552 
553 /*******************************************************************************
554  * This is the high-level function used to initialize the cpu_context 'ctx' for
555  * first use. It performs initializations that are common to all security states
556  * and initializations specific to the security state specified in 'ep'
557  ******************************************************************************/
558 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
559 {
560 	unsigned int security_state;
561 
562 	assert(ctx != NULL);
563 
564 	/*
565 	 * Perform initializations that are common
566 	 * to all security states
567 	 */
568 	setup_context_common(ctx, ep);
569 
570 	security_state = GET_SECURITY_STATE(ep->h.attr);
571 
572 	/* Perform security state specific initializations */
573 	switch (security_state) {
574 	case SECURE:
575 		setup_secure_context(ctx, ep);
576 		break;
577 #if ENABLE_RME
578 	case REALM:
579 		setup_realm_context(ctx, ep);
580 		break;
581 #endif
582 	case NON_SECURE:
583 		setup_ns_context(ctx, ep);
584 		break;
585 	default:
586 		ERROR("Invalid security state\n");
587 		panic();
588 		break;
589 	}
590 }
591 
592 /*******************************************************************************
593  * Enable architecture extensions for EL3 execution. This function only updates
594  * registers in-place which are expected to either never change or be
595  * overwritten by el3_exit.
596  ******************************************************************************/
597 #if IMAGE_BL31
598 void cm_manage_extensions_el3(void)
599 {
600 	if (is_feat_amu_supported()) {
601 		amu_init_el3();
602 	}
603 
604 	if (is_feat_sme_supported()) {
605 		sme_init_el3();
606 	}
607 
608 	pmuv3_init_el3();
609 }
610 #endif /* IMAGE_BL31 */
611 
612 /******************************************************************************
613  * Function to initialise the registers with the RESET values in the context
614  * memory, which are maintained per world.
615  ******************************************************************************/
616 #if IMAGE_BL31
617 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
618 {
619 	/*
620 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
621 	 *
622 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
623 	 *  by Advanced SIMD, floating-point or SVE instructions (if
624 	 *  implemented) do not trap to EL3.
625 	 *
626 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
627 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
628 	 */
629 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
630 
631 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
632 
633 	/*
634 	 * Initialize MPAM3_EL3 to its default reset value
635 	 *
636 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
637 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
638 	 */
639 
640 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
641 }
642 #endif /* IMAGE_BL31 */
643 
644 /*******************************************************************************
645  * Initialise per_world_context for Non-Secure world.
646  * This function enables the architecture extensions, which have same value
647  * across the cores for the non-secure world.
648  ******************************************************************************/
649 #if IMAGE_BL31
650 void manage_extensions_nonsecure_per_world(void)
651 {
652 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
653 
654 	if (is_feat_sme_supported()) {
655 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
656 	}
657 
658 	if (is_feat_sve_supported()) {
659 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
660 	}
661 
662 	if (is_feat_amu_supported()) {
663 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
664 	}
665 
666 	if (is_feat_sys_reg_trace_supported()) {
667 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
668 	}
669 
670 	if (is_feat_mpam_supported()) {
671 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
672 	}
673 }
674 #endif /* IMAGE_BL31 */
675 
676 /*******************************************************************************
677  * Initialise per_world_context for Secure world.
678  * This function enables the architecture extensions, which have same value
679  * across the cores for the secure world.
680  ******************************************************************************/
681 static void manage_extensions_secure_per_world(void)
682 {
683 #if IMAGE_BL31
684 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
685 
686 	if (is_feat_sme_supported()) {
687 
688 		if (ENABLE_SME_FOR_SWD) {
689 		/*
690 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
691 		 * SME, SVE, and FPU/SIMD context properly managed.
692 		 */
693 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
694 		} else {
695 		/*
696 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
697 		 * world can safely use the associated registers.
698 		 */
699 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
700 		}
701 	}
702 	if (is_feat_sve_supported()) {
703 		if (ENABLE_SVE_FOR_SWD) {
704 		/*
705 		 * Enable SVE and FPU in secure context, SPM must ensure
706 		 * that the SVE and FPU register contexts are properly managed.
707 		 */
708 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
709 		} else {
710 		/*
711 		 * Disable SVE and FPU in secure context so non-secure world
712 		 * can safely use them.
713 		 */
714 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
715 		}
716 	}
717 
718 	/* NS can access this but Secure shouldn't */
719 	if (is_feat_sys_reg_trace_supported()) {
720 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
721 	}
722 
723 	has_secure_perworld_init = true;
724 #endif /* IMAGE_BL31 */
725 }
726 
727 /*******************************************************************************
728  * Enable architecture extensions on first entry to Non-secure world only
729  * and disable for secure world.
730  *
731  * NOTE: Arch features which have been provided with the capability of getting
732  * enabled only for non-secure world and being disabled for secure world are
733  * grouped here, as the MDCR_EL3 context value remains same across the worlds.
734  ******************************************************************************/
735 static void manage_extensions_common(cpu_context_t *ctx)
736 {
737 #if IMAGE_BL31
738 	if (is_feat_spe_supported()) {
739 		/*
740 		 * Enable FEAT_SPE for Non-Secure and prohibit for Secure state.
741 		 */
742 		spe_enable(ctx);
743 	}
744 
745 	if (is_feat_trbe_supported()) {
746 		/*
747 		 * Enable FEAT_TRBE for Non-Secure and prohibit for Secure and
748 		 * Realm state.
749 		 */
750 		trbe_enable(ctx);
751 	}
752 
753 	if (is_feat_trf_supported()) {
754 		/*
755 		 * Enable FEAT_TRF for Non-Secure and prohibit for Secure state.
756 		 */
757 		trf_enable(ctx);
758 	}
759 
760 	if (is_feat_brbe_supported()) {
761 		/*
762 		 * Enable FEAT_BRBE for Non-Secure and prohibit for Secure state.
763 		 */
764 		brbe_enable(ctx);
765 	}
766 #endif /* IMAGE_BL31 */
767 }
768 
769 /*******************************************************************************
770  * Enable architecture extensions on first entry to Non-secure world.
771  ******************************************************************************/
772 static void manage_extensions_nonsecure(cpu_context_t *ctx)
773 {
774 #if IMAGE_BL31
775 	if (is_feat_amu_supported()) {
776 		amu_enable(ctx);
777 	}
778 
779 	if (is_feat_sme_supported()) {
780 		sme_enable(ctx);
781 	}
782 
783 	if (is_feat_fgt2_supported()) {
784 		fgt2_enable(ctx);
785 	}
786 
787 	if (is_feat_debugv8p9_supported()) {
788 		debugv8p9_extended_bp_wp_enable(ctx);
789 	}
790 
791 	pmuv3_enable(ctx);
792 #endif /* IMAGE_BL31 */
793 }
794 
795 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
796 static __unused void enable_pauth_el2(void)
797 {
798 	u_register_t hcr_el2 = read_hcr_el2();
799 	/*
800 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
801 	 *  accessing key registers or using pointer authentication instructions
802 	 *  from lower ELs.
803 	 */
804 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
805 
806 	write_hcr_el2(hcr_el2);
807 }
808 
809 #if INIT_UNUSED_NS_EL2
810 /*******************************************************************************
811  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
812  * world when EL2 is empty and unused.
813  ******************************************************************************/
814 static void manage_extensions_nonsecure_el2_unused(void)
815 {
816 #if IMAGE_BL31
817 	if (is_feat_spe_supported()) {
818 		spe_init_el2_unused();
819 	}
820 
821 	if (is_feat_amu_supported()) {
822 		amu_init_el2_unused();
823 	}
824 
825 	if (is_feat_mpam_supported()) {
826 		mpam_init_el2_unused();
827 	}
828 
829 	if (is_feat_trbe_supported()) {
830 		trbe_init_el2_unused();
831 	}
832 
833 	if (is_feat_sys_reg_trace_supported()) {
834 		sys_reg_trace_init_el2_unused();
835 	}
836 
837 	if (is_feat_trf_supported()) {
838 		trf_init_el2_unused();
839 	}
840 
841 	pmuv3_init_el2_unused();
842 
843 	if (is_feat_sve_supported()) {
844 		sve_init_el2_unused();
845 	}
846 
847 	if (is_feat_sme_supported()) {
848 		sme_init_el2_unused();
849 	}
850 
851 #if ENABLE_PAUTH
852 	enable_pauth_el2();
853 #endif /* ENABLE_PAUTH */
854 #endif /* IMAGE_BL31 */
855 }
856 #endif /* INIT_UNUSED_NS_EL2 */
857 
858 /*******************************************************************************
859  * Enable architecture extensions on first entry to Secure world.
860  ******************************************************************************/
861 static void manage_extensions_secure(cpu_context_t *ctx)
862 {
863 #if IMAGE_BL31
864 	if (is_feat_sme_supported()) {
865 		if (ENABLE_SME_FOR_SWD) {
866 		/*
867 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
868 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
869 		 */
870 			sme_init_el3();
871 			sme_enable(ctx);
872 		} else {
873 		/*
874 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
875 		 * world can safely use the associated registers.
876 		 */
877 			sme_disable(ctx);
878 		}
879 	}
880 #endif /* IMAGE_BL31 */
881 }
882 
883 #if !IMAGE_BL1
884 /*******************************************************************************
885  * The following function initializes the cpu_context for a CPU specified by
886  * its `cpu_idx` for first use, and sets the initial entrypoint state as
887  * specified by the entry_point_info structure.
888  ******************************************************************************/
889 void cm_init_context_by_index(unsigned int cpu_idx,
890 			      const entry_point_info_t *ep)
891 {
892 	cpu_context_t *ctx;
893 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
894 	cm_setup_context(ctx, ep);
895 }
896 #endif /* !IMAGE_BL1 */
897 
898 /*******************************************************************************
899  * The following function initializes the cpu_context for the current CPU
900  * for first use, and sets the initial entrypoint state as specified by the
901  * entry_point_info structure.
902  ******************************************************************************/
903 void cm_init_my_context(const entry_point_info_t *ep)
904 {
905 	cpu_context_t *ctx;
906 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
907 	cm_setup_context(ctx, ep);
908 }
909 
910 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
911 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
912 {
913 #if INIT_UNUSED_NS_EL2
914 	u_register_t hcr_el2 = HCR_RESET_VAL;
915 	u_register_t mdcr_el2;
916 	u_register_t scr_el3;
917 
918 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
919 
920 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
921 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
922 		hcr_el2 |= HCR_RW_BIT;
923 	}
924 
925 	write_hcr_el2(hcr_el2);
926 
927 	/*
928 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
929 	 * All fields have architecturally UNKNOWN reset values.
930 	 */
931 	write_cptr_el2(CPTR_EL2_RESET_VAL);
932 
933 	/*
934 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
935 	 * reset and are set to zero except for field(s) listed below.
936 	 *
937 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
938 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
939 	 *
940 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
941 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
942 	 */
943 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
944 
945 	/*
946 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
947 	 * UNKNOWN value.
948 	 */
949 	write_cntvoff_el2(0);
950 
951 	/*
952 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
953 	 * respectively.
954 	 */
955 	write_vpidr_el2(read_midr_el1());
956 	write_vmpidr_el2(read_mpidr_el1());
957 
958 	/*
959 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
960 	 *
961 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
962 	 * translation is disabled, cache maintenance operations depend on the
963 	 * VMID.
964 	 *
965 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
966 	 * disabled.
967 	 */
968 	write_vttbr_el2(VTTBR_RESET_VAL &
969 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
970 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
971 
972 	/*
973 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
974 	 * Some fields are architecturally UNKNOWN on reset.
975 	 *
976 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
977 	 * register accesses to the Debug ROM registers are not trapped to EL2.
978 	 *
979 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
980 	 * accesses to the powerdown debug registers are not trapped to EL2.
981 	 *
982 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
983 	 * debug registers do not trap to EL2.
984 	 *
985 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
986 	 * EL2.
987 	 */
988 	mdcr_el2 = MDCR_EL2_RESET_VAL &
989 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
990 		   MDCR_EL2_TDE_BIT);
991 
992 	write_mdcr_el2(mdcr_el2);
993 
994 	/*
995 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
996 	 *
997 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
998 	 * EL1 accesses to System registers do not trap to EL2.
999 	 */
1000 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
1001 
1002 	/*
1003 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
1004 	 * reset.
1005 	 *
1006 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1007 	 * and prevent timer interrupts.
1008 	 */
1009 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1010 
1011 	manage_extensions_nonsecure_el2_unused();
1012 #endif /* INIT_UNUSED_NS_EL2 */
1013 }
1014 
1015 /*******************************************************************************
1016  * Prepare the CPU system registers for first entry into realm, secure, or
1017  * normal world.
1018  *
1019  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1020  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1021  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1022  * For all entries, the EL1 registers are initialized from the cpu_context
1023  ******************************************************************************/
1024 void cm_prepare_el3_exit(uint32_t security_state)
1025 {
1026 	u_register_t sctlr_el2, scr_el3;
1027 	cpu_context_t *ctx = cm_get_context(security_state);
1028 
1029 	assert(ctx != NULL);
1030 
1031 	if (security_state == NON_SECURE) {
1032 		uint64_t el2_implemented = el_implemented(2);
1033 
1034 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1035 						 CTX_SCR_EL3);
1036 
1037 		if (el2_implemented != EL_IMPL_NONE) {
1038 
1039 			/*
1040 			 * If context is not being used for EL2, initialize
1041 			 * HCRX_EL2 with its init value here.
1042 			 */
1043 			if (is_feat_hcx_supported()) {
1044 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1045 			}
1046 
1047 			/*
1048 			 * Initialize Fine-grained trap registers introduced
1049 			 * by FEAT_FGT so all traps are initially disabled when
1050 			 * switching to EL2 or a lower EL, preventing undesired
1051 			 * behavior.
1052 			 */
1053 			if (is_feat_fgt_supported()) {
1054 				/*
1055 				 * Initialize HFG*_EL2 registers with a default
1056 				 * value so legacy systems unaware of FEAT_FGT
1057 				 * do not get trapped due to their lack of
1058 				 * initialization for this feature.
1059 				 */
1060 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1061 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1062 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1063 			}
1064 
1065 			/* Condition to ensure EL2 is being used. */
1066 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1067 				/* Initialize SCTLR_EL2 register with reset value. */
1068 				sctlr_el2 = SCTLR_EL2_RES1;
1069 #if ERRATA_A75_764081
1070 				/*
1071 				 * If workaround of errata 764081 for Cortex-A75
1072 				 * is used then set SCTLR_EL2.IESB to enable
1073 				 * Implicit Error Synchronization Barrier.
1074 				 */
1075 				sctlr_el2 |= SCTLR_IESB_BIT;
1076 #endif
1077 				write_sctlr_el2(sctlr_el2);
1078 			} else {
1079 				/*
1080 				 * (scr_el3 & SCR_HCE_BIT==0)
1081 				 * EL2 implemented but unused.
1082 				 */
1083 				init_nonsecure_el2_unused(ctx);
1084 			}
1085 		}
1086 	}
1087 	cm_el1_sysregs_context_restore(security_state);
1088 	cm_set_next_eret_context(security_state);
1089 }
1090 
1091 #if CTX_INCLUDE_EL2_REGS
1092 
1093 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1094 {
1095 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1096 	if (is_feat_amu_supported()) {
1097 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1098 	}
1099 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1100 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1101 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1102 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1103 }
1104 
1105 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1106 {
1107 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1108 	if (is_feat_amu_supported()) {
1109 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1110 	}
1111 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1112 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1113 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1114 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1115 }
1116 
1117 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1118 {
1119 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1120 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1121 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1122 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1123 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1124 }
1125 
1126 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1127 {
1128 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1129 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1130 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1131 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1132 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1133 }
1134 
1135 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1136 {
1137 	u_register_t mpam_idr = read_mpamidr_el1();
1138 
1139 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1140 
1141 	/*
1142 	 * The context registers that we intend to save would be part of the
1143 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1144 	 */
1145 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1146 		return;
1147 	}
1148 
1149 	/*
1150 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1151 	 * MPAMIDR_HAS_HCR_BIT == 1.
1152 	 */
1153 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1154 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1155 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1156 
1157 	/*
1158 	 * The number of MPAMVPM registers is implementation defined, their
1159 	 * number is stored in the MPAMIDR_EL1 register.
1160 	 */
1161 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1162 	case 7:
1163 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1164 		__fallthrough;
1165 	case 6:
1166 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1167 		__fallthrough;
1168 	case 5:
1169 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1170 		__fallthrough;
1171 	case 4:
1172 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1173 		__fallthrough;
1174 	case 3:
1175 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1176 		__fallthrough;
1177 	case 2:
1178 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1179 		__fallthrough;
1180 	case 1:
1181 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1182 		break;
1183 	}
1184 }
1185 
1186 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1187 {
1188 	u_register_t mpam_idr = read_mpamidr_el1();
1189 
1190 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1191 
1192 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1193 		return;
1194 	}
1195 
1196 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1197 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1198 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1199 
1200 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1201 	case 7:
1202 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1203 		__fallthrough;
1204 	case 6:
1205 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1206 		__fallthrough;
1207 	case 5:
1208 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1209 		__fallthrough;
1210 	case 4:
1211 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1212 		__fallthrough;
1213 	case 3:
1214 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1215 		__fallthrough;
1216 	case 2:
1217 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1218 		__fallthrough;
1219 	case 1:
1220 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1221 		break;
1222 	}
1223 }
1224 
1225 /* ---------------------------------------------------------------------------
1226  * The following registers are not added:
1227  * ICH_AP0R<n>_EL2
1228  * ICH_AP1R<n>_EL2
1229  * ICH_LR<n>_EL2
1230  *
1231  * NOTE: For a system with S-EL2 present but not enabled, accessing
1232  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1233  * SCR_EL3.NS = 1 before accessing this register.
1234  * ---------------------------------------------------------------------------
1235  */
1236 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx)
1237 {
1238 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1239 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1240 #else
1241 	u_register_t scr_el3 = read_scr_el3();
1242 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1243 	isb();
1244 
1245 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1246 
1247 	write_scr_el3(scr_el3);
1248 	isb();
1249 #endif
1250 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1251 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1252 }
1253 
1254 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx)
1255 {
1256 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1257 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1258 #else
1259 	u_register_t scr_el3 = read_scr_el3();
1260 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1261 	isb();
1262 
1263 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1264 
1265 	write_scr_el3(scr_el3);
1266 	isb();
1267 #endif
1268 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1269 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1270 }
1271 
1272 /* -----------------------------------------------------
1273  * The following registers are not added:
1274  * AMEVCNTVOFF0<n>_EL2
1275  * AMEVCNTVOFF1<n>_EL2
1276  * -----------------------------------------------------
1277  */
1278 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1279 {
1280 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1281 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1282 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1283 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1284 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1285 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1286 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1287 	if (CTX_INCLUDE_AARCH32_REGS) {
1288 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1289 	}
1290 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1291 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1292 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1293 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1294 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1295 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1296 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1297 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1298 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1299 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1300 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1301 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1302 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1303 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1304 	write_el2_ctx_common(ctx, ttbr0_el2, read_ttbr0_el2());
1305 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1306 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1307 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1308 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1309 	write_el2_ctx_common(ctx, vttbr_el2, read_vttbr_el2());
1310 }
1311 
1312 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1313 {
1314 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1315 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1316 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1317 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1318 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1319 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1320 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1321 	if (CTX_INCLUDE_AARCH32_REGS) {
1322 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1323 	}
1324 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1325 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1326 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1327 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1328 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1329 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1330 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1331 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1332 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1333 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1334 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1335 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1336 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1337 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1338 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1339 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1340 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1341 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1342 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1343 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1344 }
1345 
1346 /*******************************************************************************
1347  * Save EL2 sysreg context
1348  ******************************************************************************/
1349 void cm_el2_sysregs_context_save(uint32_t security_state)
1350 {
1351 	cpu_context_t *ctx;
1352 	el2_sysregs_t *el2_sysregs_ctx;
1353 
1354 	ctx = cm_get_context(security_state);
1355 	assert(ctx != NULL);
1356 
1357 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1358 
1359 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1360 	el2_sysregs_context_save_gic(el2_sysregs_ctx);
1361 
1362 	if (is_feat_mte2_supported()) {
1363 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1364 	}
1365 
1366 	if (is_feat_mpam_supported()) {
1367 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1368 	}
1369 
1370 	if (is_feat_fgt_supported()) {
1371 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1372 	}
1373 
1374 	if (is_feat_fgt2_supported()) {
1375 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1376 	}
1377 
1378 	if (is_feat_ecv_v2_supported()) {
1379 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1380 	}
1381 
1382 	if (is_feat_vhe_supported()) {
1383 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1384 					read_contextidr_el2());
1385 		write_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1386 	}
1387 
1388 	if (is_feat_ras_supported()) {
1389 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1390 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1391 	}
1392 
1393 	if (is_feat_nv2_supported()) {
1394 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1395 	}
1396 
1397 	if (is_feat_trf_supported()) {
1398 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1399 	}
1400 
1401 	if (is_feat_csv2_2_supported()) {
1402 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1403 					read_scxtnum_el2());
1404 	}
1405 
1406 	if (is_feat_hcx_supported()) {
1407 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1408 	}
1409 
1410 	if (is_feat_tcr2_supported()) {
1411 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1412 	}
1413 
1414 	if (is_feat_sxpie_supported()) {
1415 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1416 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1417 	}
1418 
1419 	if (is_feat_sxpoe_supported()) {
1420 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1421 	}
1422 
1423 	if (is_feat_s2pie_supported()) {
1424 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1425 	}
1426 
1427 	if (is_feat_gcs_supported()) {
1428 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1429 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1430 	}
1431 }
1432 
1433 /*******************************************************************************
1434  * Restore EL2 sysreg context
1435  ******************************************************************************/
1436 void cm_el2_sysregs_context_restore(uint32_t security_state)
1437 {
1438 	cpu_context_t *ctx;
1439 	el2_sysregs_t *el2_sysregs_ctx;
1440 
1441 	ctx = cm_get_context(security_state);
1442 	assert(ctx != NULL);
1443 
1444 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1445 
1446 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1447 	el2_sysregs_context_restore_gic(el2_sysregs_ctx);
1448 
1449 	if (is_feat_mte2_supported()) {
1450 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1451 	}
1452 
1453 	if (is_feat_mpam_supported()) {
1454 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1455 	}
1456 
1457 	if (is_feat_fgt_supported()) {
1458 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1459 	}
1460 
1461 	if (is_feat_fgt2_supported()) {
1462 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1463 	}
1464 
1465 	if (is_feat_ecv_v2_supported()) {
1466 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1467 	}
1468 
1469 	if (is_feat_vhe_supported()) {
1470 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1471 					contextidr_el2));
1472 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1473 	}
1474 
1475 	if (is_feat_ras_supported()) {
1476 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1477 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1478 	}
1479 
1480 	if (is_feat_nv2_supported()) {
1481 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1482 	}
1483 
1484 	if (is_feat_trf_supported()) {
1485 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1486 	}
1487 
1488 	if (is_feat_csv2_2_supported()) {
1489 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1490 					scxtnum_el2));
1491 	}
1492 
1493 	if (is_feat_hcx_supported()) {
1494 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1495 	}
1496 
1497 	if (is_feat_tcr2_supported()) {
1498 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1499 	}
1500 
1501 	if (is_feat_sxpie_supported()) {
1502 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1503 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1504 	}
1505 
1506 	if (is_feat_sxpoe_supported()) {
1507 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1508 	}
1509 
1510 	if (is_feat_s2pie_supported()) {
1511 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1512 	}
1513 
1514 	if (is_feat_gcs_supported()) {
1515 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1516 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1517 	}
1518 }
1519 #endif /* CTX_INCLUDE_EL2_REGS */
1520 
1521 /*******************************************************************************
1522  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1523  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1524  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1525  * cm_prepare_el3_exit function.
1526  ******************************************************************************/
1527 void cm_prepare_el3_exit_ns(void)
1528 {
1529 #if CTX_INCLUDE_EL2_REGS
1530 #if ENABLE_ASSERTIONS
1531 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1532 	assert(ctx != NULL);
1533 
1534 	/* Assert that EL2 is used. */
1535 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1536 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1537 			(el_implemented(2U) != EL_IMPL_NONE));
1538 #endif /* ENABLE_ASSERTIONS */
1539 
1540 	/* Restore EL2 and EL1 sysreg contexts */
1541 	cm_el2_sysregs_context_restore(NON_SECURE);
1542 	cm_el1_sysregs_context_restore(NON_SECURE);
1543 	cm_set_next_eret_context(NON_SECURE);
1544 #else
1545 	cm_prepare_el3_exit(NON_SECURE);
1546 #endif /* CTX_INCLUDE_EL2_REGS */
1547 }
1548 
1549 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1550 {
1551 	write_ctx_reg(ctx, CTX_SPSR_EL1, read_spsr_el1());
1552 	write_ctx_reg(ctx, CTX_ELR_EL1, read_elr_el1());
1553 
1554 #if !ERRATA_SPECULATIVE_AT
1555 	write_ctx_reg(ctx, CTX_SCTLR_EL1, read_sctlr_el1());
1556 	write_ctx_reg(ctx, CTX_TCR_EL1, read_tcr_el1());
1557 #endif /* (!ERRATA_SPECULATIVE_AT) */
1558 
1559 	write_ctx_reg(ctx, CTX_CPACR_EL1, read_cpacr_el1());
1560 	write_ctx_reg(ctx, CTX_CSSELR_EL1, read_csselr_el1());
1561 	write_ctx_reg(ctx, CTX_SP_EL1, read_sp_el1());
1562 	write_ctx_reg(ctx, CTX_ESR_EL1, read_esr_el1());
1563 	write_ctx_reg(ctx, CTX_TTBR0_EL1, read_ttbr0_el1());
1564 	write_ctx_reg(ctx, CTX_TTBR1_EL1, read_ttbr1_el1());
1565 	write_ctx_reg(ctx, CTX_MAIR_EL1, read_mair_el1());
1566 	write_ctx_reg(ctx, CTX_AMAIR_EL1, read_amair_el1());
1567 	write_ctx_reg(ctx, CTX_ACTLR_EL1, read_actlr_el1());
1568 	write_ctx_reg(ctx, CTX_TPIDR_EL1, read_tpidr_el1());
1569 	write_ctx_reg(ctx, CTX_TPIDR_EL0, read_tpidr_el0());
1570 	write_ctx_reg(ctx, CTX_TPIDRRO_EL0, read_tpidrro_el0());
1571 	write_ctx_reg(ctx, CTX_PAR_EL1, read_par_el1());
1572 	write_ctx_reg(ctx, CTX_FAR_EL1, read_far_el1());
1573 	write_ctx_reg(ctx, CTX_AFSR0_EL1, read_afsr0_el1());
1574 	write_ctx_reg(ctx, CTX_AFSR1_EL1, read_afsr1_el1());
1575 	write_ctx_reg(ctx, CTX_CONTEXTIDR_EL1, read_contextidr_el1());
1576 	write_ctx_reg(ctx, CTX_VBAR_EL1, read_vbar_el1());
1577 	write_ctx_reg(ctx, CTX_MDCCINT_EL1, read_mdccint_el1());
1578 	write_ctx_reg(ctx, CTX_MDSCR_EL1, read_mdscr_el1());
1579 
1580 #if CTX_INCLUDE_AARCH32_REGS
1581 	write_ctx_reg(ctx, CTX_SPSR_ABT, read_spsr_abt());
1582 	write_ctx_reg(ctx, CTX_SPSR_UND, read_spsr_und());
1583 	write_ctx_reg(ctx, CTX_SPSR_IRQ, read_spsr_irq());
1584 	write_ctx_reg(ctx, CTX_SPSR_FIQ, read_spsr_fiq());
1585 	write_ctx_reg(ctx, CTX_DACR32_EL2, read_dacr32_el2());
1586 	write_ctx_reg(ctx, CTX_IFSR32_EL2, read_ifsr32_el2());
1587 #endif /* CTX_INCLUDE_AARCH32_REGS */
1588 
1589 #if NS_TIMER_SWITCH
1590 	write_ctx_reg(ctx, CTX_CNTP_CTL_EL0, read_cntp_ctl_el0());
1591 	write_ctx_reg(ctx, CTX_CNTP_CVAL_EL0, read_cntp_cval_el0());
1592 	write_ctx_reg(ctx, CTX_CNTV_CTL_EL0, read_cntv_ctl_el0());
1593 	write_ctx_reg(ctx, CTX_CNTV_CVAL_EL0, read_cntv_cval_el0());
1594 	write_ctx_reg(ctx, CTX_CNTKCTL_EL1, read_cntkctl_el1());
1595 #endif /* NS_TIMER_SWITCH */
1596 
1597 #if ENABLE_FEAT_MTE2
1598 	write_ctx_reg(ctx, CTX_TFSRE0_EL1, read_tfsre0_el1());
1599 	write_ctx_reg(ctx, CTX_TFSR_EL1, read_tfsr_el1());
1600 	write_ctx_reg(ctx, CTX_RGSR_EL1, read_rgsr_el1());
1601 	write_ctx_reg(ctx, CTX_GCR_EL1, read_gcr_el1());
1602 #endif /* ENABLE_FEAT_MTE2 */
1603 
1604 #if ENABLE_FEAT_RAS
1605 	if (is_feat_ras_supported()) {
1606 		write_ctx_reg(ctx, CTX_DISR_EL1, read_disr_el1());
1607 	}
1608 #endif
1609 
1610 #if ENABLE_FEAT_S1PIE
1611 	if (is_feat_s1pie_supported()) {
1612 		write_ctx_reg(ctx, CTX_PIRE0_EL1, read_pire0_el1());
1613 		write_ctx_reg(ctx, CTX_PIR_EL1, read_pir_el1());
1614 	}
1615 #endif
1616 
1617 #if ENABLE_FEAT_S1POE
1618 	if (is_feat_s1poe_supported()) {
1619 		write_ctx_reg(ctx, CTX_POR_EL1, read_por_el1());
1620 	}
1621 #endif
1622 
1623 #if ENABLE_FEAT_S2POE
1624 	if (is_feat_s2poe_supported()) {
1625 		write_ctx_reg(ctx, CTX_S2POR_EL1, read_s2por_el1());
1626 	}
1627 #endif
1628 
1629 #if ENABLE_FEAT_TCR2
1630 	if (is_feat_tcr2_supported()) {
1631 		write_ctx_reg(ctx, CTX_TCR2_EL1, read_tcr2_el1());
1632 	}
1633 #endif
1634 
1635 #if ENABLE_TRF_FOR_NS
1636 	if (is_feat_trf_supported()) {
1637 		write_ctx_reg(ctx, CTX_TRFCR_EL1, read_trfcr_el1());
1638 	}
1639 #endif
1640 
1641 #if ENABLE_FEAT_CSV2_2
1642 	if (is_feat_csv2_2_supported()) {
1643 		write_ctx_reg(ctx, CTX_SCXTNUM_EL0, read_scxtnum_el0());
1644 		write_ctx_reg(ctx, CTX_SCXTNUM_EL1, read_scxtnum_el1());
1645 	}
1646 #endif
1647 
1648 #if ENABLE_FEAT_GCS
1649 	if (is_feat_gcs_supported()) {
1650 		write_ctx_reg(ctx, CTX_GCSCR_EL1, read_gcscr_el1());
1651 		write_ctx_reg(ctx, CTX_GCSCRE0_EL1, read_gcscre0_el1());
1652 		write_ctx_reg(ctx, CTX_GCSPR_EL1, read_gcspr_el1());
1653 		write_ctx_reg(ctx, CTX_GCSPR_EL0, read_gcspr_el0());
1654 	}
1655 #endif
1656 }
1657 
1658 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1659 {
1660 	write_spsr_el1(read_ctx_reg(ctx, CTX_SPSR_EL1));
1661 	write_elr_el1(read_ctx_reg(ctx, CTX_ELR_EL1));
1662 
1663 #if !ERRATA_SPECULATIVE_AT
1664 	write_sctlr_el1(read_ctx_reg(ctx, CTX_SCTLR_EL1));
1665 	write_tcr_el1(read_ctx_reg(ctx, CTX_TCR_EL1));
1666 #endif /* (!ERRATA_SPECULATIVE_AT) */
1667 
1668 	write_cpacr_el1(read_ctx_reg(ctx, CTX_CPACR_EL1));
1669 	write_csselr_el1(read_ctx_reg(ctx, CTX_CSSELR_EL1));
1670 	write_sp_el1(read_ctx_reg(ctx, CTX_SP_EL1));
1671 	write_esr_el1(read_ctx_reg(ctx, CTX_ESR_EL1));
1672 	write_ttbr0_el1(read_ctx_reg(ctx, CTX_TTBR0_EL1));
1673 	write_ttbr1_el1(read_ctx_reg(ctx, CTX_TTBR1_EL1));
1674 	write_mair_el1(read_ctx_reg(ctx, CTX_MAIR_EL1));
1675 	write_amair_el1(read_ctx_reg(ctx, CTX_AMAIR_EL1));
1676 	write_actlr_el1(read_ctx_reg(ctx, CTX_ACTLR_EL1));
1677 	write_tpidr_el1(read_ctx_reg(ctx, CTX_TPIDR_EL1));
1678 	write_tpidr_el0(read_ctx_reg(ctx, CTX_TPIDR_EL0));
1679 	write_tpidrro_el0(read_ctx_reg(ctx, CTX_TPIDRRO_EL0));
1680 	write_par_el1(read_ctx_reg(ctx, CTX_PAR_EL1));
1681 	write_far_el1(read_ctx_reg(ctx, CTX_FAR_EL1));
1682 	write_afsr0_el1(read_ctx_reg(ctx, CTX_AFSR0_EL1));
1683 	write_afsr1_el1(read_ctx_reg(ctx, CTX_AFSR1_EL1));
1684 	write_contextidr_el1(read_ctx_reg(ctx, CTX_CONTEXTIDR_EL1));
1685 	write_vbar_el1(read_ctx_reg(ctx, CTX_VBAR_EL1));
1686 	write_mdccint_el1(read_ctx_reg(ctx, CTX_MDCCINT_EL1));
1687 	write_mdscr_el1(read_ctx_reg(ctx, CTX_MDSCR_EL1));
1688 
1689 #if CTX_INCLUDE_AARCH32_REGS
1690 	write_spsr_abt(read_ctx_reg(ctx, CTX_SPSR_ABT));
1691 	write_spsr_und(read_ctx_reg(ctx, CTX_SPSR_UND));
1692 	write_spsr_irq(read_ctx_reg(ctx, CTX_SPSR_IRQ));
1693 	write_spsr_fiq(read_ctx_reg(ctx, CTX_SPSR_FIQ));
1694 	write_dacr32_el2(read_ctx_reg(ctx, CTX_DACR32_EL2));
1695 	write_ifsr32_el2(read_ctx_reg(ctx, CTX_IFSR32_EL2));
1696 #endif /* CTX_INCLUDE_AARCH32_REGS */
1697 
1698 #if NS_TIMER_SWITCH
1699 	write_cntp_ctl_el0(read_ctx_reg(ctx, CTX_CNTP_CTL_EL0));
1700 	write_cntp_cval_el0(read_ctx_reg(ctx, CTX_CNTP_CVAL_EL0));
1701 	write_cntv_ctl_el0(read_ctx_reg(ctx, CTX_CNTV_CTL_EL0));
1702 	write_cntv_cval_el0(read_ctx_reg(ctx, CTX_CNTV_CVAL_EL0));
1703 	write_cntkctl_el1(read_ctx_reg(ctx, CTX_CNTKCTL_EL1));
1704 #endif /* NS_TIMER_SWITCH */
1705 
1706 #if ENABLE_FEAT_MTE2
1707 	write_tfsre0_el1(read_ctx_reg(ctx, CTX_TFSRE0_EL1));
1708 	write_tfsr_el1(read_ctx_reg(ctx, CTX_TFSR_EL1));
1709 	write_rgsr_el1(read_ctx_reg(ctx, CTX_RGSR_EL1));
1710 	write_gcr_el1(read_ctx_reg(ctx, CTX_GCR_EL1));
1711 #endif /* ENABLE_FEAT_MTE2 */
1712 
1713 #if ENABLE_FEAT_RAS
1714 	if (is_feat_ras_supported()) {
1715 		write_disr_el1(read_ctx_reg(ctx, CTX_DISR_EL1));
1716 	}
1717 #endif
1718 
1719 #if ENABLE_FEAT_S1PIE
1720 	if (is_feat_s1pie_supported()) {
1721 		write_pire0_el1(read_ctx_reg(ctx, CTX_PIRE0_EL1));
1722 		write_pir_el1(read_ctx_reg(ctx, CTX_PIR_EL1));
1723 	}
1724 #endif
1725 
1726 #if ENABLE_FEAT_S1POE
1727 	if (is_feat_s1poe_supported()) {
1728 		write_por_el1(read_ctx_reg(ctx, CTX_POR_EL1));
1729 	}
1730 #endif
1731 
1732 #if ENABLE_FEAT_S2POE
1733 	if (is_feat_s2poe_supported()) {
1734 		write_s2por_el1(read_ctx_reg(ctx, CTX_S2POR_EL1));
1735 	}
1736 #endif
1737 
1738 #if ENABLE_FEAT_TCR2
1739 	if (is_feat_tcr2_supported()) {
1740 		write_tcr2_el1(read_ctx_reg(ctx, CTX_TCR2_EL1));
1741 	}
1742 #endif
1743 
1744 #if ENABLE_TRF_FOR_NS
1745 	if (is_feat_trf_supported()) {
1746 		write_trfcr_el1(read_ctx_reg(ctx, CTX_TRFCR_EL1));
1747 	}
1748 #endif
1749 
1750 #if ENABLE_FEAT_CSV2_2
1751 	if (is_feat_csv2_2_supported()) {
1752 		write_scxtnum_el0(read_ctx_reg(ctx, CTX_SCXTNUM_EL0));
1753 		write_scxtnum_el1(read_ctx_reg(ctx, CTX_SCXTNUM_EL1));
1754 	}
1755 #endif
1756 
1757 #if ENABLE_FEAT_GCS
1758 	if (is_feat_gcs_supported()) {
1759 		write_gcscr_el1(read_ctx_reg(ctx, CTX_GCSCR_EL1));
1760 		write_gcscre0_el1(read_ctx_reg(ctx, CTX_GCSCRE0_EL1));
1761 		write_gcspr_el1(read_ctx_reg(ctx, CTX_GCSPR_EL1));
1762 		write_gcspr_el0(read_ctx_reg(ctx, CTX_GCSPR_EL0));
1763 	}
1764 #endif
1765 }
1766 
1767 /*******************************************************************************
1768  * The next four functions are used by runtime services to save and restore
1769  * EL1 context on the 'cpu_context' structure for the specified security
1770  * state.
1771  ******************************************************************************/
1772 void cm_el1_sysregs_context_save(uint32_t security_state)
1773 {
1774 	cpu_context_t *ctx;
1775 
1776 	ctx = cm_get_context(security_state);
1777 	assert(ctx != NULL);
1778 
1779 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1780 
1781 #if IMAGE_BL31
1782 	if (security_state == SECURE)
1783 		PUBLISH_EVENT(cm_exited_secure_world);
1784 	else
1785 		PUBLISH_EVENT(cm_exited_normal_world);
1786 #endif
1787 }
1788 
1789 void cm_el1_sysregs_context_restore(uint32_t security_state)
1790 {
1791 	cpu_context_t *ctx;
1792 
1793 	ctx = cm_get_context(security_state);
1794 	assert(ctx != NULL);
1795 
1796 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1797 
1798 #if IMAGE_BL31
1799 	if (security_state == SECURE)
1800 		PUBLISH_EVENT(cm_entering_secure_world);
1801 	else
1802 		PUBLISH_EVENT(cm_entering_normal_world);
1803 #endif
1804 }
1805 
1806 /*******************************************************************************
1807  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1808  * given security state with the given entrypoint
1809  ******************************************************************************/
1810 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1811 {
1812 	cpu_context_t *ctx;
1813 	el3_state_t *state;
1814 
1815 	ctx = cm_get_context(security_state);
1816 	assert(ctx != NULL);
1817 
1818 	/* Populate EL3 state so that ERET jumps to the correct entry */
1819 	state = get_el3state_ctx(ctx);
1820 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1821 }
1822 
1823 /*******************************************************************************
1824  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1825  * pertaining to the given security state
1826  ******************************************************************************/
1827 void cm_set_elr_spsr_el3(uint32_t security_state,
1828 			uintptr_t entrypoint, uint32_t spsr)
1829 {
1830 	cpu_context_t *ctx;
1831 	el3_state_t *state;
1832 
1833 	ctx = cm_get_context(security_state);
1834 	assert(ctx != NULL);
1835 
1836 	/* Populate EL3 state so that ERET jumps to the correct entry */
1837 	state = get_el3state_ctx(ctx);
1838 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1839 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1840 }
1841 
1842 /*******************************************************************************
1843  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1844  * pertaining to the given security state using the value and bit position
1845  * specified in the parameters. It preserves all other bits.
1846  ******************************************************************************/
1847 void cm_write_scr_el3_bit(uint32_t security_state,
1848 			  uint32_t bit_pos,
1849 			  uint32_t value)
1850 {
1851 	cpu_context_t *ctx;
1852 	el3_state_t *state;
1853 	u_register_t scr_el3;
1854 
1855 	ctx = cm_get_context(security_state);
1856 	assert(ctx != NULL);
1857 
1858 	/* Ensure that the bit position is a valid one */
1859 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1860 
1861 	/* Ensure that the 'value' is only a bit wide */
1862 	assert(value <= 1U);
1863 
1864 	/*
1865 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1866 	 * and set it to its new value.
1867 	 */
1868 	state = get_el3state_ctx(ctx);
1869 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1870 	scr_el3 &= ~(1UL << bit_pos);
1871 	scr_el3 |= (u_register_t)value << bit_pos;
1872 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1873 }
1874 
1875 /*******************************************************************************
1876  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1877  * given security state.
1878  ******************************************************************************/
1879 u_register_t cm_get_scr_el3(uint32_t security_state)
1880 {
1881 	cpu_context_t *ctx;
1882 	el3_state_t *state;
1883 
1884 	ctx = cm_get_context(security_state);
1885 	assert(ctx != NULL);
1886 
1887 	/* Populate EL3 state so that ERET jumps to the correct entry */
1888 	state = get_el3state_ctx(ctx);
1889 	return read_ctx_reg(state, CTX_SCR_EL3);
1890 }
1891 
1892 /*******************************************************************************
1893  * This function is used to program the context that's used for exception
1894  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1895  * the required security state
1896  ******************************************************************************/
1897 void cm_set_next_eret_context(uint32_t security_state)
1898 {
1899 	cpu_context_t *ctx;
1900 
1901 	ctx = cm_get_context(security_state);
1902 	assert(ctx != NULL);
1903 
1904 	cm_set_next_context(ctx);
1905 }
1906