xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 8fcd3d9600bb2cb6809c6fc68f945ce3ad89633d)
1 /*
2  * Copyright (c) 2013-2021, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_helpers.h>
15 #include <arch_features.h>
16 #include <bl31/interrupt_mgmt.h>
17 #include <common/bl_common.h>
18 #include <context.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/el3_runtime/pubsub_events.h>
21 #include <lib/extensions/amu.h>
22 #include <lib/extensions/mpam.h>
23 #include <lib/extensions/spe.h>
24 #include <lib/extensions/sve.h>
25 #include <lib/extensions/sys_reg_trace.h>
26 #include <lib/extensions/trbe.h>
27 #include <lib/extensions/trf.h>
28 #include <lib/extensions/twed.h>
29 #include <lib/utils.h>
30 
31 static void enable_extensions_secure(cpu_context_t *ctx);
32 
33 /*******************************************************************************
34  * Context management library initialisation routine. This library is used by
35  * runtime services to share pointers to 'cpu_context' structures for the secure
36  * and non-secure states. Management of the structures and their associated
37  * memory is not done by the context management library e.g. the PSCI service
38  * manages the cpu context used for entry from and exit to the non-secure state.
39  * The Secure payload dispatcher service manages the context(s) corresponding to
40  * the secure state. It also uses this library to get access to the non-secure
41  * state cpu context pointers.
42  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
43  * which will used for programming an entry into a lower EL. The same context
44  * will used to save state upon exception entry from that EL.
45  ******************************************************************************/
46 void __init cm_init(void)
47 {
48 	/*
49 	 * The context management library has only global data to intialize, but
50 	 * that will be done when the BSS is zeroed out
51 	 */
52 }
53 
54 /*******************************************************************************
55  * The following function initializes the cpu_context 'ctx' for
56  * first use, and sets the initial entrypoint state as specified by the
57  * entry_point_info structure.
58  *
59  * The security state to initialize is determined by the SECURE attribute
60  * of the entry_point_info.
61  *
62  * The EE and ST attributes are used to configure the endianness and secure
63  * timer availability for the new execution context.
64  *
65  * To prepare the register state for entry call cm_prepare_el3_exit() and
66  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
67  * cm_el1_sysregs_context_restore().
68  ******************************************************************************/
69 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
70 {
71 	unsigned int security_state;
72 	u_register_t scr_el3;
73 	el3_state_t *state;
74 	gp_regs_t *gp_regs;
75 	u_register_t sctlr_elx, actlr_elx;
76 
77 	assert(ctx != NULL);
78 
79 	security_state = GET_SECURITY_STATE(ep->h.attr);
80 
81 	/* Clear any residual register values from the context */
82 	zeromem(ctx, sizeof(*ctx));
83 
84 	/*
85 	 * SCR_EL3 was initialised during reset sequence in macro
86 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
87 	 * affect the next EL.
88 	 *
89 	 * The following fields are initially set to zero and then updated to
90 	 * the required value depending on the state of the SPSR_EL3 and the
91 	 * Security state and entrypoint attributes of the next EL.
92 	 */
93 	scr_el3 = read_scr();
94 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
95 			SCR_ST_BIT | SCR_HCE_BIT);
96 	/*
97 	 * SCR_NS: Set the security state of the next EL.
98 	 */
99 	if (security_state != SECURE)
100 		scr_el3 |= SCR_NS_BIT;
101 	/*
102 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
103 	 *  Exception level as specified by SPSR.
104 	 */
105 	if (GET_RW(ep->spsr) == MODE_RW_64)
106 		scr_el3 |= SCR_RW_BIT;
107 	/*
108 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
109 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
110 	 *  by the entrypoint attributes.
111 	 */
112 	if (EP_GET_ST(ep->h.attr) != 0U)
113 		scr_el3 |= SCR_ST_BIT;
114 
115 #if RAS_TRAP_LOWER_EL_ERR_ACCESS
116 	/*
117 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
118 	 * and RAS ERX registers from EL1 and EL2 are trapped to EL3.
119 	 */
120 	scr_el3 |= SCR_TERR_BIT;
121 #endif
122 
123 #if !HANDLE_EA_EL3_FIRST
124 	/*
125 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
126 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
127 	 *  Aborts are taken to EL3.
128 	 */
129 	scr_el3 &= ~SCR_EA_BIT;
130 #endif
131 
132 #if FAULT_INJECTION_SUPPORT
133 	/* Enable fault injection from lower ELs */
134 	scr_el3 |= SCR_FIEN_BIT;
135 #endif
136 
137 #if !CTX_INCLUDE_PAUTH_REGS
138 	/*
139 	 * If the pointer authentication registers aren't saved during world
140 	 * switches the value of the registers can be leaked from the Secure to
141 	 * the Non-secure world. To prevent this, rather than enabling pointer
142 	 * authentication everywhere, we only enable it in the Non-secure world.
143 	 *
144 	 * If the Secure world wants to use pointer authentication,
145 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
146 	 */
147 	if (security_state == NON_SECURE)
148 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
149 #endif /* !CTX_INCLUDE_PAUTH_REGS */
150 
151 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
152 	/* Get Memory Tagging Extension support level */
153 	unsigned int mte = get_armv8_5_mte_support();
154 #endif
155 	/*
156 	 * Enable MTE support. Support is enabled unilaterally for the normal
157 	 * world, and only for the secure world when CTX_INCLUDE_MTE_REGS is
158 	 * set.
159 	 */
160 #if CTX_INCLUDE_MTE_REGS
161 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
162 	scr_el3 |= SCR_ATA_BIT;
163 #else
164 	/*
165 	 * When MTE is only implemented at EL0, it can be enabled
166 	 * across both worlds as no MTE registers are used.
167 	 */
168 	if ((mte == MTE_IMPLEMENTED_EL0) ||
169 	/*
170 	 * When MTE is implemented at all ELs, it can be only enabled
171 	 * in Non-Secure world without register saving.
172 	 */
173 	  (((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY)) &&
174 	    (security_state == NON_SECURE))) {
175 		scr_el3 |= SCR_ATA_BIT;
176 	}
177 #endif	/* CTX_INCLUDE_MTE_REGS */
178 
179 #ifdef IMAGE_BL31
180 	/*
181 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
182 	 *  indicated by the interrupt routing model for BL31.
183 	 */
184 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
185 #endif
186 
187 	/* Save the initialized value of CPTR_EL3 register */
188 	write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3());
189 	if (security_state == SECURE) {
190 		enable_extensions_secure(ctx);
191 	}
192 
193 	/*
194 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
195 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
196 	 * next mode is Hyp.
197 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
198 	 * same conditions as HVC instructions and when the processor supports
199 	 * ARMv8.6-FGT.
200 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
201 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
202 	 * and when the processor supports ECV.
203 	 */
204 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
205 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
206 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
207 		scr_el3 |= SCR_HCE_BIT;
208 
209 		if (is_armv8_6_fgt_present()) {
210 			scr_el3 |= SCR_FGTEN_BIT;
211 		}
212 
213 		if (get_armv8_6_ecv_support()
214 		    == ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) {
215 			scr_el3 |= SCR_ECVEN_BIT;
216 		}
217 	}
218 
219 	/* Enable S-EL2 if the next EL is EL2 and security state is secure */
220 	if ((security_state == SECURE) && (GET_EL(ep->spsr) == MODE_EL2)) {
221 		if (GET_RW(ep->spsr) != MODE_RW_64) {
222 			ERROR("S-EL2 can not be used in AArch32.");
223 			panic();
224 		}
225 
226 		scr_el3 |= SCR_EEL2_BIT;
227 	}
228 
229 	/*
230 	 * FEAT_AMUv1p1 virtual offset registers are only accessible from EL3
231 	 * and EL2, when clear, this bit traps accesses from EL2 so we set it
232 	 * to 1 when EL2 is present.
233 	 */
234 	if (is_armv8_6_feat_amuv1p1_present() &&
235 		(el_implemented(2) != EL_IMPL_NONE)) {
236 		scr_el3 |= SCR_AMVOFFEN_BIT;
237 	}
238 
239 	/*
240 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
241 	 * execution state setting all fields rather than relying of the hw.
242 	 * Some fields have architecturally UNKNOWN reset values and these are
243 	 * set to zero.
244 	 *
245 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
246 	 *
247 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
248 	 *  required by PSCI specification)
249 	 */
250 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
251 	if (GET_RW(ep->spsr) == MODE_RW_64)
252 		sctlr_elx |= SCTLR_EL1_RES1;
253 	else {
254 		/*
255 		 * If the target execution state is AArch32 then the following
256 		 * fields need to be set.
257 		 *
258 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
259 		 *  instructions are not trapped to EL1.
260 		 *
261 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
262 		 *  instructions are not trapped to EL1.
263 		 *
264 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
265 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
266 		 */
267 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
268 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
269 	}
270 
271 #if ERRATA_A75_764081
272 	/*
273 	 * If workaround of errata 764081 for Cortex-A75 is used then set
274 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
275 	 */
276 	sctlr_elx |= SCTLR_IESB_BIT;
277 #endif
278 
279 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
280 	if (is_armv8_6_twed_present()) {
281 		uint32_t delay = plat_arm_set_twedel_scr_el3();
282 
283 		if (delay != TWED_DISABLED) {
284 			/* Make sure delay value fits */
285 			assert((delay & ~SCR_TWEDEL_MASK) == 0U);
286 
287 			/* Set delay in SCR_EL3 */
288 			scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
289 			scr_el3 |= ((delay & SCR_TWEDEL_MASK)
290 					<< SCR_TWEDEL_SHIFT);
291 
292 			/* Enable WFE delay */
293 			scr_el3 |= SCR_TWEDEn_BIT;
294 		}
295 	}
296 
297 	/*
298 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
299 	 * and other EL2 registers are set up by cm_prepare_el3_exit() as they
300 	 * are not part of the stored cpu_context.
301 	 */
302 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
303 
304 	/*
305 	 * Base the context ACTLR_EL1 on the current value, as it is
306 	 * implementation defined. The context restore process will write
307 	 * the value from the context to the actual register and can cause
308 	 * problems for processor cores that don't expect certain bits to
309 	 * be zero.
310 	 */
311 	actlr_elx = read_actlr_el1();
312 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
313 
314 	/*
315 	 * Populate EL3 state so that we've the right context
316 	 * before doing ERET
317 	 */
318 	state = get_el3state_ctx(ctx);
319 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
320 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
321 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
322 
323 	/*
324 	 * Store the X0-X7 value from the entrypoint into the context
325 	 * Use memcpy as we are in control of the layout of the structures
326 	 */
327 	gp_regs = get_gpregs_ctx(ctx);
328 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
329 }
330 
331 /*******************************************************************************
332  * Enable architecture extensions on first entry to Non-secure world.
333  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
334  * it is zero.
335  ******************************************************************************/
336 static void enable_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx)
337 {
338 #if IMAGE_BL31
339 #if ENABLE_SPE_FOR_LOWER_ELS
340 	spe_enable(el2_unused);
341 #endif
342 
343 #if ENABLE_AMU
344 	amu_enable(el2_unused, ctx);
345 #endif
346 
347 #if ENABLE_SVE_FOR_NS
348 	sve_enable(ctx);
349 #endif
350 
351 #if ENABLE_MPAM_FOR_LOWER_ELS
352 	mpam_enable(el2_unused);
353 #endif
354 
355 #if ENABLE_TRBE_FOR_NS
356 	trbe_enable();
357 #endif /* ENABLE_TRBE_FOR_NS */
358 
359 #if ENABLE_SYS_REG_TRACE_FOR_NS
360 	sys_reg_trace_enable(ctx);
361 #endif /* ENABLE_SYS_REG_TRACE_FOR_NS */
362 
363 #if ENABLE_TRF_FOR_NS
364 	trf_enable();
365 #endif /* ENABLE_TRF_FOR_NS */
366 
367 #endif
368 }
369 
370 /*******************************************************************************
371  * Enable architecture extensions on first entry to Secure world.
372  ******************************************************************************/
373 static void enable_extensions_secure(cpu_context_t *ctx)
374 {
375 #if IMAGE_BL31
376 #if ENABLE_SVE_FOR_SWD
377 	sve_enable(ctx);
378 #endif
379 #endif
380 }
381 
382 /*******************************************************************************
383  * The following function initializes the cpu_context for a CPU specified by
384  * its `cpu_idx` for first use, and sets the initial entrypoint state as
385  * specified by the entry_point_info structure.
386  ******************************************************************************/
387 void cm_init_context_by_index(unsigned int cpu_idx,
388 			      const entry_point_info_t *ep)
389 {
390 	cpu_context_t *ctx;
391 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
392 	cm_setup_context(ctx, ep);
393 }
394 
395 /*******************************************************************************
396  * The following function initializes the cpu_context for the current CPU
397  * for first use, and sets the initial entrypoint state as specified by the
398  * entry_point_info structure.
399  ******************************************************************************/
400 void cm_init_my_context(const entry_point_info_t *ep)
401 {
402 	cpu_context_t *ctx;
403 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
404 	cm_setup_context(ctx, ep);
405 }
406 
407 /*******************************************************************************
408  * Prepare the CPU system registers for first entry into secure or normal world
409  *
410  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
411  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
412  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
413  * For all entries, the EL1 registers are initialized from the cpu_context
414  ******************************************************************************/
415 void cm_prepare_el3_exit(uint32_t security_state)
416 {
417 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
418 	cpu_context_t *ctx = cm_get_context(security_state);
419 	bool el2_unused = false;
420 	uint64_t hcr_el2 = 0U;
421 
422 	assert(ctx != NULL);
423 
424 	if (security_state == NON_SECURE) {
425 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
426 						 CTX_SCR_EL3);
427 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
428 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
429 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
430 							   CTX_SCTLR_EL1);
431 			sctlr_elx &= SCTLR_EE_BIT;
432 			sctlr_elx |= SCTLR_EL2_RES1;
433 #if ERRATA_A75_764081
434 			/*
435 			 * If workaround of errata 764081 for Cortex-A75 is used
436 			 * then set SCTLR_EL2.IESB to enable Implicit Error
437 			 * Synchronization Barrier.
438 			 */
439 			sctlr_elx |= SCTLR_IESB_BIT;
440 #endif
441 			write_sctlr_el2(sctlr_elx);
442 		} else if (el_implemented(2) != EL_IMPL_NONE) {
443 			el2_unused = true;
444 
445 			/*
446 			 * EL2 present but unused, need to disable safely.
447 			 * SCTLR_EL2 can be ignored in this case.
448 			 *
449 			 * Set EL2 register width appropriately: Set HCR_EL2
450 			 * field to match SCR_EL3.RW.
451 			 */
452 			if ((scr_el3 & SCR_RW_BIT) != 0U)
453 				hcr_el2 |= HCR_RW_BIT;
454 
455 			/*
456 			 * For Armv8.3 pointer authentication feature, disable
457 			 * traps to EL2 when accessing key registers or using
458 			 * pointer authentication instructions from lower ELs.
459 			 */
460 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
461 
462 			write_hcr_el2(hcr_el2);
463 
464 			/*
465 			 * Initialise CPTR_EL2 setting all fields rather than
466 			 * relying on the hw. All fields have architecturally
467 			 * UNKNOWN reset values.
468 			 *
469 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
470 			 *  accesses to the CPACR_EL1 or CPACR from both
471 			 *  Execution states do not trap to EL2.
472 			 *
473 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
474 			 *  register accesses to the trace registers from both
475 			 *  Execution states do not trap to EL2.
476 			 *  If PE trace unit System registers are not implemented
477 			 *  then this bit is reserved, and must be set to zero.
478 			 *
479 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
480 			 *  to SIMD and floating-point functionality from both
481 			 *  Execution states do not trap to EL2.
482 			 */
483 			write_cptr_el2(CPTR_EL2_RESET_VAL &
484 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
485 					| CPTR_EL2_TFP_BIT));
486 
487 			/*
488 			 * Initialise CNTHCTL_EL2. All fields are
489 			 * architecturally UNKNOWN on reset and are set to zero
490 			 * except for field(s) listed below.
491 			 *
492 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
493 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
494 			 *  physical timer registers.
495 			 *
496 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
497 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
498 			 *  physical counter registers.
499 			 */
500 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
501 						EL1PCEN_BIT | EL1PCTEN_BIT);
502 
503 			/*
504 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
505 			 * architecturally UNKNOWN value.
506 			 */
507 			write_cntvoff_el2(0);
508 
509 			/*
510 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
511 			 * MPIDR_EL1 respectively.
512 			 */
513 			write_vpidr_el2(read_midr_el1());
514 			write_vmpidr_el2(read_mpidr_el1());
515 
516 			/*
517 			 * Initialise VTTBR_EL2. All fields are architecturally
518 			 * UNKNOWN on reset.
519 			 *
520 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
521 			 *  2 address translation is disabled, cache maintenance
522 			 *  operations depend on the VMID.
523 			 *
524 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
525 			 *  translation is disabled.
526 			 */
527 			write_vttbr_el2(VTTBR_RESET_VAL &
528 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
529 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
530 
531 			/*
532 			 * Initialise MDCR_EL2, setting all fields rather than
533 			 * relying on hw. Some fields are architecturally
534 			 * UNKNOWN on reset.
535 			 *
536 			 * MDCR_EL2.HLP: Set to one so that event counter
537 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
538 			 *  occurs on the increment that changes
539 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
540 			 *  implemented. This bit is RES0 in versions of the
541 			 *  architecture earlier than ARMv8.5, setting it to 1
542 			 *  doesn't have any effect on them.
543 			 *
544 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
545 			 *  Filter Control register TRFCR_EL1 at EL1 is not
546 			 *  trapped to EL2. This bit is RES0 in versions of
547 			 *  the architecture earlier than ARMv8.4.
548 			 *
549 			 * MDCR_EL2.HPMD: Set to one so that event counting is
550 			 *  prohibited at EL2. This bit is RES0 in versions of
551 			 *  the architecture earlier than ARMv8.1, setting it
552 			 *  to 1 doesn't have any effect on them.
553 			 *
554 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
555 			 *  Statistical Profiling control registers from EL1
556 			 *  do not trap to EL2. This bit is RES0 when SPE is
557 			 *  not implemented.
558 			 *
559 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
560 			 *  EL1 System register accesses to the Debug ROM
561 			 *  registers are not trapped to EL2.
562 			 *
563 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
564 			 *  System register accesses to the powerdown debug
565 			 *  registers are not trapped to EL2.
566 			 *
567 			 * MDCR_EL2.TDA: Set to zero so that System register
568 			 *  accesses to the debug registers do not trap to EL2.
569 			 *
570 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
571 			 *  are not routed to EL2.
572 			 *
573 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
574 			 *  Monitors.
575 			 *
576 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
577 			 *  EL1 accesses to all Performance Monitors registers
578 			 *  are not trapped to EL2.
579 			 *
580 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
581 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
582 			 *  trapped to EL2.
583 			 *
584 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
585 			 *  architecturally-defined reset value.
586 			 *
587 			 * MDCR_EL2.E2TB: Set to zero so that the trace Buffer
588 			 *  owning exception level is NS-EL1 and, tracing is
589 			 *  prohibited at NS-EL2. These bits are RES0 when
590 			 *  FEAT_TRBE is not implemented.
591 			 */
592 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
593 				     MDCR_EL2_HPMD) |
594 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
595 				   >> PMCR_EL0_N_SHIFT)) &
596 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
597 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
598 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
599 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
600 				     MDCR_EL2_TPMCR_BIT |
601 				     MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1));
602 
603 			write_mdcr_el2(mdcr_el2);
604 
605 			/*
606 			 * Initialise HSTR_EL2. All fields are architecturally
607 			 * UNKNOWN on reset.
608 			 *
609 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
610 			 *  Non-secure EL0 or EL1 accesses to System registers
611 			 *  do not trap to EL2.
612 			 */
613 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
614 			/*
615 			 * Initialise CNTHP_CTL_EL2. All fields are
616 			 * architecturally UNKNOWN on reset.
617 			 *
618 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
619 			 *  physical timer and prevent timer interrupts.
620 			 */
621 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
622 						~(CNTHP_CTL_ENABLE_BIT));
623 		}
624 		enable_extensions_nonsecure(el2_unused, ctx);
625 	}
626 
627 	cm_el1_sysregs_context_restore(security_state);
628 	cm_set_next_eret_context(security_state);
629 }
630 
631 #if CTX_INCLUDE_EL2_REGS
632 /*******************************************************************************
633  * Save EL2 sysreg context
634  ******************************************************************************/
635 void cm_el2_sysregs_context_save(uint32_t security_state)
636 {
637 	u_register_t scr_el3 = read_scr();
638 
639 	/*
640 	 * Always save the non-secure EL2 context, only save the
641 	 * S-EL2 context if S-EL2 is enabled.
642 	 */
643 	if ((security_state == NON_SECURE) ||
644 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
645 		cpu_context_t *ctx;
646 
647 		ctx = cm_get_context(security_state);
648 		assert(ctx != NULL);
649 
650 		el2_sysregs_context_save(get_el2_sysregs_ctx(ctx));
651 	}
652 }
653 
654 /*******************************************************************************
655  * Restore EL2 sysreg context
656  ******************************************************************************/
657 void cm_el2_sysregs_context_restore(uint32_t security_state)
658 {
659 	u_register_t scr_el3 = read_scr();
660 
661 	/*
662 	 * Always restore the non-secure EL2 context, only restore the
663 	 * S-EL2 context if S-EL2 is enabled.
664 	 */
665 	if ((security_state == NON_SECURE) ||
666 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
667 		cpu_context_t *ctx;
668 
669 		ctx = cm_get_context(security_state);
670 		assert(ctx != NULL);
671 
672 		el2_sysregs_context_restore(get_el2_sysregs_ctx(ctx));
673 	}
674 }
675 #endif /* CTX_INCLUDE_EL2_REGS */
676 
677 /*******************************************************************************
678  * The next four functions are used by runtime services to save and restore
679  * EL1 context on the 'cpu_context' structure for the specified security
680  * state.
681  ******************************************************************************/
682 void cm_el1_sysregs_context_save(uint32_t security_state)
683 {
684 	cpu_context_t *ctx;
685 
686 	ctx = cm_get_context(security_state);
687 	assert(ctx != NULL);
688 
689 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
690 
691 #if IMAGE_BL31
692 	if (security_state == SECURE)
693 		PUBLISH_EVENT(cm_exited_secure_world);
694 	else
695 		PUBLISH_EVENT(cm_exited_normal_world);
696 #endif
697 }
698 
699 void cm_el1_sysregs_context_restore(uint32_t security_state)
700 {
701 	cpu_context_t *ctx;
702 
703 	ctx = cm_get_context(security_state);
704 	assert(ctx != NULL);
705 
706 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
707 
708 #if IMAGE_BL31
709 	if (security_state == SECURE)
710 		PUBLISH_EVENT(cm_entering_secure_world);
711 	else
712 		PUBLISH_EVENT(cm_entering_normal_world);
713 #endif
714 }
715 
716 /*******************************************************************************
717  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
718  * given security state with the given entrypoint
719  ******************************************************************************/
720 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
721 {
722 	cpu_context_t *ctx;
723 	el3_state_t *state;
724 
725 	ctx = cm_get_context(security_state);
726 	assert(ctx != NULL);
727 
728 	/* Populate EL3 state so that ERET jumps to the correct entry */
729 	state = get_el3state_ctx(ctx);
730 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
731 }
732 
733 /*******************************************************************************
734  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
735  * pertaining to the given security state
736  ******************************************************************************/
737 void cm_set_elr_spsr_el3(uint32_t security_state,
738 			uintptr_t entrypoint, uint32_t spsr)
739 {
740 	cpu_context_t *ctx;
741 	el3_state_t *state;
742 
743 	ctx = cm_get_context(security_state);
744 	assert(ctx != NULL);
745 
746 	/* Populate EL3 state so that ERET jumps to the correct entry */
747 	state = get_el3state_ctx(ctx);
748 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
749 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
750 }
751 
752 /*******************************************************************************
753  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
754  * pertaining to the given security state using the value and bit position
755  * specified in the parameters. It preserves all other bits.
756  ******************************************************************************/
757 void cm_write_scr_el3_bit(uint32_t security_state,
758 			  uint32_t bit_pos,
759 			  uint32_t value)
760 {
761 	cpu_context_t *ctx;
762 	el3_state_t *state;
763 	u_register_t scr_el3;
764 
765 	ctx = cm_get_context(security_state);
766 	assert(ctx != NULL);
767 
768 	/* Ensure that the bit position is a valid one */
769 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
770 
771 	/* Ensure that the 'value' is only a bit wide */
772 	assert(value <= 1U);
773 
774 	/*
775 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
776 	 * and set it to its new value.
777 	 */
778 	state = get_el3state_ctx(ctx);
779 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
780 	scr_el3 &= ~(1UL << bit_pos);
781 	scr_el3 |= (u_register_t)value << bit_pos;
782 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
783 }
784 
785 /*******************************************************************************
786  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
787  * given security state.
788  ******************************************************************************/
789 u_register_t cm_get_scr_el3(uint32_t security_state)
790 {
791 	cpu_context_t *ctx;
792 	el3_state_t *state;
793 
794 	ctx = cm_get_context(security_state);
795 	assert(ctx != NULL);
796 
797 	/* Populate EL3 state so that ERET jumps to the correct entry */
798 	state = get_el3state_ctx(ctx);
799 	return read_ctx_reg(state, CTX_SCR_EL3);
800 }
801 
802 /*******************************************************************************
803  * This function is used to program the context that's used for exception
804  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
805  * the required security state
806  ******************************************************************************/
807 void cm_set_next_eret_context(uint32_t security_state)
808 {
809 	cpu_context_t *ctx;
810 
811 	ctx = cm_get_context(security_state);
812 	assert(ctx != NULL);
813 
814 	cm_set_next_context(ctx);
815 }
816