1 /* 2 * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved. 3 * Copyright (c) 2022, NVIDIA Corporation. All rights reserved. 4 * 5 * SPDX-License-Identifier: BSD-3-Clause 6 */ 7 8 #include <assert.h> 9 #include <stdbool.h> 10 #include <string.h> 11 12 #include <platform_def.h> 13 14 #include <arch.h> 15 #include <arch_helpers.h> 16 #include <arch_features.h> 17 #include <bl31/interrupt_mgmt.h> 18 #include <common/bl_common.h> 19 #include <common/debug.h> 20 #include <context.h> 21 #include <drivers/arm/gicv3.h> 22 #include <lib/cpus/cpu_ops.h> 23 #include <lib/cpus/errata.h> 24 #include <lib/el3_runtime/context_mgmt.h> 25 #include <lib/el3_runtime/cpu_data.h> 26 #include <lib/el3_runtime/pubsub_events.h> 27 #include <lib/extensions/amu.h> 28 #include <lib/extensions/brbe.h> 29 #include <lib/extensions/debug_v8p9.h> 30 #include <lib/extensions/fgt2.h> 31 #include <lib/extensions/fpmr.h> 32 #include <lib/extensions/mpam.h> 33 #include <lib/extensions/pmuv3.h> 34 #include <lib/extensions/sme.h> 35 #include <lib/extensions/spe.h> 36 #include <lib/extensions/sve.h> 37 #include <lib/extensions/sysreg128.h> 38 #include <lib/extensions/sys_reg_trace.h> 39 #include <lib/extensions/tcr2.h> 40 #include <lib/extensions/trbe.h> 41 #include <lib/extensions/trf.h> 42 #include <lib/utils.h> 43 44 #if ENABLE_FEAT_TWED 45 /* Make sure delay value fits within the range(0-15) */ 46 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check); 47 #endif /* ENABLE_FEAT_TWED */ 48 49 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM]; 50 static bool has_secure_perworld_init; 51 52 static void manage_extensions_nonsecure(cpu_context_t *ctx); 53 static void manage_extensions_secure(cpu_context_t *ctx); 54 static void manage_extensions_secure_per_world(void); 55 56 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) 57 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep) 58 { 59 u_register_t sctlr_elx, actlr_elx; 60 61 /* 62 * Initialise SCTLR_EL1 to the reset value corresponding to the target 63 * execution state setting all fields rather than relying on the hw. 64 * Some fields have architecturally UNKNOWN reset values and these are 65 * set to zero. 66 * 67 * SCTLR.EE: Endianness is taken from the entrypoint attributes. 68 * 69 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as 70 * required by PSCI specification) 71 */ 72 sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL; 73 if (GET_RW(ep->spsr) == MODE_RW_64) { 74 sctlr_elx |= SCTLR_EL1_RES1; 75 } else { 76 /* 77 * If the target execution state is AArch32 then the following 78 * fields need to be set. 79 * 80 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE 81 * instructions are not trapped to EL1. 82 * 83 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI 84 * instructions are not trapped to EL1. 85 * 86 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the 87 * CP15DMB, CP15DSB, and CP15ISB instructions. 88 */ 89 sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT 90 | SCTLR_NTWI_BIT | SCTLR_NTWE_BIT; 91 } 92 93 /* 94 * If workaround of errata 764081 for Cortex-A75 is used then set 95 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier. 96 */ 97 if (errata_a75_764081_applies()) { 98 sctlr_elx |= SCTLR_IESB_BIT; 99 } 100 101 /* Store the initialised SCTLR_EL1 value in the cpu_context */ 102 write_ctx_sctlr_el1_reg_errata(ctx, sctlr_elx); 103 104 /* 105 * Base the context ACTLR_EL1 on the current value, as it is 106 * implementation defined. The context restore process will write 107 * the value from the context to the actual register and can cause 108 * problems for processor cores that don't expect certain bits to 109 * be zero. 110 */ 111 actlr_elx = read_actlr_el1(); 112 write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx); 113 } 114 #endif /* (IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)) */ 115 116 /****************************************************************************** 117 * This function performs initializations that are specific to SECURE state 118 * and updates the cpu context specified by 'ctx'. 119 *****************************************************************************/ 120 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep) 121 { 122 u_register_t scr_el3; 123 el3_state_t *state; 124 125 state = get_el3state_ctx(ctx); 126 scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 127 128 #if defined(IMAGE_BL31) && !defined(SPD_spmd) 129 /* 130 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as 131 * indicated by the interrupt routing model for BL31. 132 */ 133 scr_el3 |= get_scr_el3_from_routing_model(SECURE); 134 #endif 135 136 /* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */ 137 if (is_feat_mte2_supported()) { 138 scr_el3 |= SCR_ATA_BIT; 139 } 140 141 write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 142 143 /* 144 * Initialize EL1 context registers unless SPMC is running 145 * at S-EL2. 146 */ 147 #if (!SPMD_SPM_AT_SEL2) 148 setup_el1_context(ctx, ep); 149 #endif 150 151 manage_extensions_secure(ctx); 152 153 /** 154 * manage_extensions_secure_per_world api has to be executed once, 155 * as the registers getting initialised, maintain constant value across 156 * all the cpus for the secure world. 157 * Henceforth, this check ensures that the registers are initialised once 158 * and avoids re-initialization from multiple cores. 159 */ 160 if (!has_secure_perworld_init) { 161 manage_extensions_secure_per_world(); 162 } 163 } 164 165 #if ENABLE_RME 166 /****************************************************************************** 167 * This function performs initializations that are specific to REALM state 168 * and updates the cpu context specified by 'ctx'. 169 *****************************************************************************/ 170 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep) 171 { 172 u_register_t scr_el3; 173 el3_state_t *state; 174 175 state = get_el3state_ctx(ctx); 176 scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 177 178 scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT; 179 180 /* CSV2 version 2 and above */ 181 if (is_feat_csv2_2_supported()) { 182 /* Enable access to the SCXTNUM_ELx registers. */ 183 scr_el3 |= SCR_EnSCXT_BIT; 184 } 185 186 if (is_feat_sctlr2_supported()) { 187 /* Set the SCTLR2En bit in SCR_EL3 to enable access to 188 * SCTLR2_ELx registers. 189 */ 190 scr_el3 |= SCR_SCTLR2En_BIT; 191 } 192 193 write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 194 } 195 #endif /* ENABLE_RME */ 196 197 /****************************************************************************** 198 * This function performs initializations that are specific to NON-SECURE state 199 * and updates the cpu context specified by 'ctx'. 200 *****************************************************************************/ 201 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep) 202 { 203 u_register_t scr_el3; 204 el3_state_t *state; 205 206 state = get_el3state_ctx(ctx); 207 scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 208 209 /* SCR_NS: Set the NS bit */ 210 scr_el3 |= SCR_NS_BIT; 211 212 /* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */ 213 if (is_feat_mte2_supported()) { 214 scr_el3 |= SCR_ATA_BIT; 215 } 216 217 #if !CTX_INCLUDE_PAUTH_REGS 218 /* 219 * Pointer Authentication feature, if present, is always enabled by default 220 * for Non secure lower exception levels. We do not have an explicit 221 * flag to set it. 222 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower 223 * exception levels of secure and realm worlds. 224 * 225 * To prevent the leakage between the worlds during world switch, 226 * we enable it only for the non-secure world. 227 * 228 * If the Secure/realm world wants to use pointer authentication, 229 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case 230 * it will be enabled globally for all the contexts. 231 * 232 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs 233 * other than EL3 234 * 235 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other 236 * than EL3 237 */ 238 if (is_armv8_3_pauth_present()) { 239 scr_el3 |= SCR_API_BIT | SCR_APK_BIT; 240 } 241 #endif /* CTX_INCLUDE_PAUTH_REGS */ 242 243 #if HANDLE_EA_EL3_FIRST_NS 244 /* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */ 245 scr_el3 |= SCR_EA_BIT; 246 #endif 247 248 #if RAS_TRAP_NS_ERR_REC_ACCESS 249 /* 250 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR 251 * and RAS ERX registers from EL1 and EL2(from any security state) 252 * are trapped to EL3. 253 * Set here to trap only for NS EL1/EL2 254 */ 255 scr_el3 |= SCR_TERR_BIT; 256 #endif 257 258 /* CSV2 version 2 and above */ 259 if (is_feat_csv2_2_supported()) { 260 /* Enable access to the SCXTNUM_ELx registers. */ 261 scr_el3 |= SCR_EnSCXT_BIT; 262 } 263 264 #ifdef IMAGE_BL31 265 /* 266 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as 267 * indicated by the interrupt routing model for BL31. 268 */ 269 scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE); 270 #endif 271 272 if (is_feat_the_supported()) { 273 /* Set the RCWMASKEn bit in SCR_EL3 to enable access to 274 * RCWMASK_EL1 and RCWSMASK_EL1 registers. 275 */ 276 scr_el3 |= SCR_RCWMASKEn_BIT; 277 } 278 279 if (is_feat_sctlr2_supported()) { 280 /* Set the SCTLR2En bit in SCR_EL3 to enable access to 281 * SCTLR2_ELx registers. 282 */ 283 scr_el3 |= SCR_SCTLR2En_BIT; 284 } 285 286 if (is_feat_d128_supported()) { 287 /* Set the D128En bit in SCR_EL3 to enable access to 128-bit 288 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1, 289 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers. 290 */ 291 scr_el3 |= SCR_D128En_BIT; 292 } 293 294 if (is_feat_fpmr_supported()) { 295 /* Set the EnFPM bit in SCR_EL3 to enable access to FPMR 296 * register. 297 */ 298 scr_el3 |= SCR_EnFPM_BIT; 299 } 300 301 write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 302 303 /* Initialize EL2 context registers */ 304 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) 305 306 /* 307 * Initialize SCTLR_EL2 context register with reset value. 308 */ 309 write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1); 310 311 if (is_feat_hcx_supported()) { 312 /* 313 * Initialize register HCRX_EL2 with its init value. 314 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a 315 * chance that this can lead to unexpected behavior in lower 316 * ELs that have not been updated since the introduction of 317 * this feature if not properly initialized, especially when 318 * it comes to those bits that enable/disable traps. 319 */ 320 write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2, 321 HCRX_EL2_INIT_VAL); 322 } 323 324 if (is_feat_fgt_supported()) { 325 /* 326 * Initialize HFG*_EL2 registers with a default value so legacy 327 * systems unaware of FEAT_FGT do not get trapped due to their lack 328 * of initialization for this feature. 329 */ 330 write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2, 331 HFGITR_EL2_INIT_VAL); 332 write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2, 333 HFGRTR_EL2_INIT_VAL); 334 write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2, 335 HFGWTR_EL2_INIT_VAL); 336 } 337 #else 338 /* Initialize EL1 context registers */ 339 setup_el1_context(ctx, ep); 340 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */ 341 342 manage_extensions_nonsecure(ctx); 343 } 344 345 /******************************************************************************* 346 * The following function performs initialization of the cpu_context 'ctx' 347 * for first use that is common to all security states, and sets the 348 * initial entrypoint state as specified by the entry_point_info structure. 349 * 350 * The EE and ST attributes are used to configure the endianness and secure 351 * timer availability for the new execution context. 352 ******************************************************************************/ 353 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep) 354 { 355 u_register_t scr_el3; 356 u_register_t mdcr_el3; 357 el3_state_t *state; 358 gp_regs_t *gp_regs; 359 360 state = get_el3state_ctx(ctx); 361 362 /* Clear any residual register values from the context */ 363 zeromem(ctx, sizeof(*ctx)); 364 365 /* 366 * The lower-EL context is zeroed so that no stale values leak to a world. 367 * It is assumed that an all-zero lower-EL context is good enough for it 368 * to boot correctly. However, there are very few registers where this 369 * is not true and some values need to be recreated. 370 */ 371 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) 372 el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx); 373 374 /* 375 * These bits are set in the gicv3 driver. Losing them (especially the 376 * SRE bit) is problematic for all worlds. Henceforth recreate them. 377 */ 378 u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT | 379 ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT; 380 write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val); 381 382 /* 383 * The actlr_el2 register can be initialized in platform's reset handler 384 * and it may contain access control bits (e.g. CLUSTERPMUEN bit). 385 */ 386 write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2()); 387 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */ 388 389 /* Start with a clean SCR_EL3 copy as all relevant values are set */ 390 scr_el3 = SCR_RESET_VAL; 391 392 /* 393 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at 394 * EL2, EL1 and EL0 are not trapped to EL3. 395 * 396 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at 397 * EL2, EL1 and EL0 are not trapped to EL3. 398 * 399 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from 400 * both Security states and both Execution states. 401 * 402 * SCR_EL3.SIF: Set to one to disable secure instruction execution from 403 * Non-secure memory. 404 */ 405 scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT); 406 407 scr_el3 |= SCR_SIF_BIT; 408 409 /* 410 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next 411 * Exception level as specified by SPSR. 412 */ 413 if (GET_RW(ep->spsr) == MODE_RW_64) { 414 scr_el3 |= SCR_RW_BIT; 415 } 416 417 /* 418 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical 419 * Secure timer registers to EL3, from AArch64 state only, if specified 420 * by the entrypoint attributes. If SEL2 is present and enabled, the ST 421 * bit always behaves as 1 (i.e. secure physical timer register access 422 * is not trapped) 423 */ 424 if (EP_GET_ST(ep->h.attr) != 0U) { 425 scr_el3 |= SCR_ST_BIT; 426 } 427 428 /* 429 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting 430 * SCR_EL3.HXEn. 431 */ 432 if (is_feat_hcx_supported()) { 433 scr_el3 |= SCR_HXEn_BIT; 434 } 435 436 /* 437 * If FEAT_LS64_ACCDATA is enabled, enable access to ACCDATA_EL1 by 438 * setting SCR_EL3.ADEn and allow the ST64BV0 instruction by setting 439 * SCR_EL3.EnAS0. 440 */ 441 if (is_feat_ls64_accdata_supported()) { 442 scr_el3 |= SCR_ADEn_BIT | SCR_EnAS0_BIT; 443 } 444 445 /* 446 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS 447 * registers are trapped to EL3. 448 */ 449 if (is_feat_rng_trap_supported()) { 450 scr_el3 |= SCR_TRNDR_BIT; 451 } 452 453 #if FAULT_INJECTION_SUPPORT 454 /* Enable fault injection from lower ELs */ 455 scr_el3 |= SCR_FIEN_BIT; 456 #endif 457 458 #if CTX_INCLUDE_PAUTH_REGS 459 /* 460 * Enable Pointer Authentication globally for all the worlds. 461 * 462 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs 463 * other than EL3 464 * 465 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other 466 * than EL3 467 */ 468 if (is_armv8_3_pauth_present()) { 469 scr_el3 |= SCR_API_BIT | SCR_APK_BIT; 470 } 471 #endif /* CTX_INCLUDE_PAUTH_REGS */ 472 473 /* 474 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present. 475 */ 476 if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) { 477 scr_el3 |= SCR_TCR2EN_BIT; 478 } 479 480 /* 481 * SCR_EL3.PIEN: Enable permission indirection and overlay 482 * registers for AArch64 if present. 483 */ 484 if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) { 485 scr_el3 |= SCR_PIEN_BIT; 486 } 487 488 /* 489 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present. 490 */ 491 if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) { 492 scr_el3 |= SCR_GCSEn_BIT; 493 } 494 495 /* 496 * SCR_EL3.HCE: Enable HVC instructions if next execution state is 497 * AArch64 and next EL is EL2, or if next execution state is AArch32 and 498 * next mode is Hyp. 499 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the 500 * same conditions as HVC instructions and when the processor supports 501 * ARMv8.6-FGT. 502 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV) 503 * CNTPOFF_EL2 register under the same conditions as HVC instructions 504 * and when the processor supports ECV. 505 */ 506 if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2)) 507 || ((GET_RW(ep->spsr) != MODE_RW_64) 508 && (GET_M32(ep->spsr) == MODE32_hyp))) { 509 scr_el3 |= SCR_HCE_BIT; 510 511 if (is_feat_fgt_supported()) { 512 scr_el3 |= SCR_FGTEN_BIT; 513 } 514 515 if (is_feat_ecv_supported()) { 516 scr_el3 |= SCR_ECVEN_BIT; 517 } 518 } 519 520 /* Enable WFE trap delay in SCR_EL3 if supported and configured */ 521 if (is_feat_twed_supported()) { 522 /* Set delay in SCR_EL3 */ 523 scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT); 524 scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK) 525 << SCR_TWEDEL_SHIFT); 526 527 /* Enable WFE delay */ 528 scr_el3 |= SCR_TWEDEn_BIT; 529 } 530 531 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2 532 /* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */ 533 if (is_feat_sel2_supported()) { 534 scr_el3 |= SCR_EEL2_BIT; 535 } 536 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */ 537 538 /* 539 * Populate EL3 state so that we've the right context 540 * before doing ERET 541 */ 542 write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 543 write_ctx_reg(state, CTX_ELR_EL3, ep->pc); 544 write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr); 545 546 /* Start with a clean MDCR_EL3 copy as all relevant values are set */ 547 mdcr_el3 = MDCR_EL3_RESET_VAL; 548 549 /* --------------------------------------------------------------------- 550 * Initialise MDCR_EL3, setting all fields rather than relying on hw. 551 * Some fields are architecturally UNKNOWN on reset. 552 * 553 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug. 554 * Debug exceptions, other than Breakpoint Instruction exceptions, are 555 * disabled from all ELs in Secure state. 556 * 557 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted 558 * privileged debug from S-EL1. 559 * 560 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register 561 * access to the powerdown debug registers do not trap to EL3. 562 * 563 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the 564 * debug registers, other than those registers that are controlled by 565 * MDCR_EL3.TDOSA. 566 */ 567 mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE)) 568 & ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ; 569 write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3); 570 571 #if IMAGE_BL31 572 /* Enable FEAT_TRF for Non-Secure and prohibit for Secure state. */ 573 if (is_feat_trf_supported()) { 574 trf_enable(ctx); 575 } 576 #endif /* IMAGE_BL31 */ 577 578 /* 579 * Store the X0-X7 value from the entrypoint into the context 580 * Use memcpy as we are in control of the layout of the structures 581 */ 582 gp_regs = get_gpregs_ctx(ctx); 583 memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t)); 584 } 585 586 /******************************************************************************* 587 * Context management library initialization routine. This library is used by 588 * runtime services to share pointers to 'cpu_context' structures for secure 589 * non-secure and realm states. Management of the structures and their associated 590 * memory is not done by the context management library e.g. the PSCI service 591 * manages the cpu context used for entry from and exit to the non-secure state. 592 * The Secure payload dispatcher service manages the context(s) corresponding to 593 * the secure state. It also uses this library to get access to the non-secure 594 * state cpu context pointers. 595 * Lastly, this library provides the API to make SP_EL3 point to the cpu context 596 * which will be used for programming an entry into a lower EL. The same context 597 * will be used to save state upon exception entry from that EL. 598 ******************************************************************************/ 599 void __init cm_init(void) 600 { 601 /* 602 * The context management library has only global data to initialize, but 603 * that will be done when the BSS is zeroed out. 604 */ 605 } 606 607 /******************************************************************************* 608 * This is the high-level function used to initialize the cpu_context 'ctx' for 609 * first use. It performs initializations that are common to all security states 610 * and initializations specific to the security state specified in 'ep' 611 ******************************************************************************/ 612 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep) 613 { 614 unsigned int security_state; 615 616 assert(ctx != NULL); 617 618 /* 619 * Perform initializations that are common 620 * to all security states 621 */ 622 setup_context_common(ctx, ep); 623 624 security_state = GET_SECURITY_STATE(ep->h.attr); 625 626 /* Perform security state specific initializations */ 627 switch (security_state) { 628 case SECURE: 629 setup_secure_context(ctx, ep); 630 break; 631 #if ENABLE_RME 632 case REALM: 633 setup_realm_context(ctx, ep); 634 break; 635 #endif 636 case NON_SECURE: 637 setup_ns_context(ctx, ep); 638 break; 639 default: 640 ERROR("Invalid security state\n"); 641 panic(); 642 break; 643 } 644 } 645 646 /******************************************************************************* 647 * Enable architecture extensions for EL3 execution. This function only updates 648 * registers in-place which are expected to either never change or be 649 * overwritten by el3_exit. 650 ******************************************************************************/ 651 #if IMAGE_BL31 652 void cm_manage_extensions_el3(void) 653 { 654 if (is_feat_amu_supported()) { 655 amu_init_el3(); 656 } 657 658 if (is_feat_sme_supported()) { 659 sme_init_el3(); 660 } 661 662 pmuv3_init_el3(); 663 } 664 #endif /* IMAGE_BL31 */ 665 666 /****************************************************************************** 667 * Function to initialise the registers with the RESET values in the context 668 * memory, which are maintained per world. 669 ******************************************************************************/ 670 #if IMAGE_BL31 671 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx) 672 { 673 /* 674 * Initialise CPTR_EL3, setting all fields rather than relying on hw. 675 * 676 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers 677 * by Advanced SIMD, floating-point or SVE instructions (if 678 * implemented) do not trap to EL3. 679 * 680 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1, 681 * CPTR_EL2,CPACR, or HCPTR do not trap to EL3. 682 */ 683 uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT); 684 685 per_world_ctx->ctx_cptr_el3 = cptr_el3; 686 687 /* 688 * Initialize MPAM3_EL3 to its default reset value 689 * 690 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces 691 * all lower ELn MPAM3_EL3 register access to, trap to EL3 692 */ 693 694 per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL; 695 } 696 #endif /* IMAGE_BL31 */ 697 698 /******************************************************************************* 699 * Initialise per_world_context for Non-Secure world. 700 * This function enables the architecture extensions, which have same value 701 * across the cores for the non-secure world. 702 ******************************************************************************/ 703 #if IMAGE_BL31 704 void manage_extensions_nonsecure_per_world(void) 705 { 706 cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]); 707 708 if (is_feat_sme_supported()) { 709 sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]); 710 } 711 712 if (is_feat_sve_supported()) { 713 sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]); 714 } 715 716 if (is_feat_amu_supported()) { 717 amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]); 718 } 719 720 if (is_feat_sys_reg_trace_supported()) { 721 sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]); 722 } 723 724 if (is_feat_mpam_supported()) { 725 mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]); 726 } 727 728 if (is_feat_fpmr_supported()) { 729 fpmr_enable_per_world(&per_world_context[CPU_CONTEXT_NS]); 730 } 731 } 732 #endif /* IMAGE_BL31 */ 733 734 /******************************************************************************* 735 * Initialise per_world_context for Secure world. 736 * This function enables the architecture extensions, which have same value 737 * across the cores for the secure world. 738 ******************************************************************************/ 739 static void manage_extensions_secure_per_world(void) 740 { 741 #if IMAGE_BL31 742 cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]); 743 744 if (is_feat_sme_supported()) { 745 746 if (ENABLE_SME_FOR_SWD) { 747 /* 748 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure 749 * SME, SVE, and FPU/SIMD context properly managed. 750 */ 751 sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]); 752 } else { 753 /* 754 * Disable SME, SVE, FPU/SIMD in secure context so non-secure 755 * world can safely use the associated registers. 756 */ 757 sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]); 758 } 759 } 760 if (is_feat_sve_supported()) { 761 if (ENABLE_SVE_FOR_SWD) { 762 /* 763 * Enable SVE and FPU in secure context, SPM must ensure 764 * that the SVE and FPU register contexts are properly managed. 765 */ 766 sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]); 767 } else { 768 /* 769 * Disable SVE and FPU in secure context so non-secure world 770 * can safely use them. 771 */ 772 sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]); 773 } 774 } 775 776 /* NS can access this but Secure shouldn't */ 777 if (is_feat_sys_reg_trace_supported()) { 778 sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]); 779 } 780 781 has_secure_perworld_init = true; 782 #endif /* IMAGE_BL31 */ 783 } 784 785 /******************************************************************************* 786 * Enable architecture extensions on first entry to Non-secure world. 787 ******************************************************************************/ 788 static void manage_extensions_nonsecure(cpu_context_t *ctx) 789 { 790 #if IMAGE_BL31 791 if (is_feat_amu_supported()) { 792 amu_enable(ctx); 793 } 794 795 if (is_feat_sme_supported()) { 796 sme_enable(ctx); 797 } 798 799 if (is_feat_fgt2_supported()) { 800 fgt2_enable(ctx); 801 } 802 803 if (is_feat_debugv8p9_supported()) { 804 debugv8p9_extended_bp_wp_enable(ctx); 805 } 806 807 /* 808 * SPE, TRBE, and BRBE have multi-field enables that affect which world 809 * they apply to. Despite this, it is useful to ignore these for 810 * simplicity in determining the feature's per world enablement status. 811 * This is only possible when context is written per-world. Relied on 812 * by SMCCC_ARCH_FEATURE_AVAILABILITY 813 */ 814 if (is_feat_spe_supported()) { 815 spe_enable(ctx); 816 } 817 818 if (is_feat_trbe_supported()) { 819 trbe_enable(ctx); 820 } 821 822 if (is_feat_brbe_supported()) { 823 brbe_enable(ctx); 824 } 825 826 pmuv3_enable(ctx); 827 #endif /* IMAGE_BL31 */ 828 } 829 830 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */ 831 static __unused void enable_pauth_el2(void) 832 { 833 u_register_t hcr_el2 = read_hcr_el2(); 834 /* 835 * For Armv8.3 pointer authentication feature, disable traps to EL2 when 836 * accessing key registers or using pointer authentication instructions 837 * from lower ELs. 838 */ 839 hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT); 840 841 write_hcr_el2(hcr_el2); 842 } 843 844 #if INIT_UNUSED_NS_EL2 845 /******************************************************************************* 846 * Enable architecture extensions in-place at EL2 on first entry to Non-secure 847 * world when EL2 is empty and unused. 848 ******************************************************************************/ 849 static void manage_extensions_nonsecure_el2_unused(void) 850 { 851 #if IMAGE_BL31 852 if (is_feat_spe_supported()) { 853 spe_init_el2_unused(); 854 } 855 856 if (is_feat_amu_supported()) { 857 amu_init_el2_unused(); 858 } 859 860 if (is_feat_mpam_supported()) { 861 mpam_init_el2_unused(); 862 } 863 864 if (is_feat_trbe_supported()) { 865 trbe_init_el2_unused(); 866 } 867 868 if (is_feat_sys_reg_trace_supported()) { 869 sys_reg_trace_init_el2_unused(); 870 } 871 872 if (is_feat_trf_supported()) { 873 trf_init_el2_unused(); 874 } 875 876 pmuv3_init_el2_unused(); 877 878 if (is_feat_sve_supported()) { 879 sve_init_el2_unused(); 880 } 881 882 if (is_feat_sme_supported()) { 883 sme_init_el2_unused(); 884 } 885 886 #if ENABLE_PAUTH 887 enable_pauth_el2(); 888 #endif /* ENABLE_PAUTH */ 889 #endif /* IMAGE_BL31 */ 890 } 891 #endif /* INIT_UNUSED_NS_EL2 */ 892 893 /******************************************************************************* 894 * Enable architecture extensions on first entry to Secure world. 895 ******************************************************************************/ 896 static void manage_extensions_secure(cpu_context_t *ctx) 897 { 898 #if IMAGE_BL31 899 if (is_feat_sme_supported()) { 900 if (ENABLE_SME_FOR_SWD) { 901 /* 902 * Enable SME, SVE, FPU/SIMD in secure context, secure manager 903 * must ensure SME, SVE, and FPU/SIMD context properly managed. 904 */ 905 sme_init_el3(); 906 sme_enable(ctx); 907 } else { 908 /* 909 * Disable SME, SVE, FPU/SIMD in secure context so non-secure 910 * world can safely use the associated registers. 911 */ 912 sme_disable(ctx); 913 } 914 } 915 916 /* 917 * SPE and TRBE cannot be fully disabled from EL3 registers alone, only 918 * sysreg access can. In case the EL1 controls leave them active on 919 * context switch, we want the owning security state to be NS so Secure 920 * can't be DOSed. 921 */ 922 if (is_feat_spe_supported()) { 923 spe_disable(ctx); 924 } 925 926 if (is_feat_trbe_supported()) { 927 trbe_disable(ctx); 928 } 929 #endif /* IMAGE_BL31 */ 930 } 931 932 #if !IMAGE_BL1 933 /******************************************************************************* 934 * The following function initializes the cpu_context for a CPU specified by 935 * its `cpu_idx` for first use, and sets the initial entrypoint state as 936 * specified by the entry_point_info structure. 937 ******************************************************************************/ 938 void cm_init_context_by_index(unsigned int cpu_idx, 939 const entry_point_info_t *ep) 940 { 941 cpu_context_t *ctx; 942 ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr)); 943 cm_setup_context(ctx, ep); 944 } 945 #endif /* !IMAGE_BL1 */ 946 947 /******************************************************************************* 948 * The following function initializes the cpu_context for the current CPU 949 * for first use, and sets the initial entrypoint state as specified by the 950 * entry_point_info structure. 951 ******************************************************************************/ 952 void cm_init_my_context(const entry_point_info_t *ep) 953 { 954 cpu_context_t *ctx; 955 ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr)); 956 cm_setup_context(ctx, ep); 957 } 958 959 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */ 960 static void init_nonsecure_el2_unused(cpu_context_t *ctx) 961 { 962 #if INIT_UNUSED_NS_EL2 963 u_register_t hcr_el2 = HCR_RESET_VAL; 964 u_register_t mdcr_el2; 965 u_register_t scr_el3; 966 967 scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3); 968 969 /* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */ 970 if ((scr_el3 & SCR_RW_BIT) != 0U) { 971 hcr_el2 |= HCR_RW_BIT; 972 } 973 974 write_hcr_el2(hcr_el2); 975 976 /* 977 * Initialise CPTR_EL2 setting all fields rather than relying on the hw. 978 * All fields have architecturally UNKNOWN reset values. 979 */ 980 write_cptr_el2(CPTR_EL2_RESET_VAL); 981 982 /* 983 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on 984 * reset and are set to zero except for field(s) listed below. 985 * 986 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of 987 * Non-secure EL0 and EL1 accesses to the physical timer registers. 988 * 989 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of 990 * Non-secure EL0 and EL1 accesses to the physical counter registers. 991 */ 992 write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT); 993 994 /* 995 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally 996 * UNKNOWN value. 997 */ 998 write_cntvoff_el2(0); 999 1000 /* 1001 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1 1002 * respectively. 1003 */ 1004 write_vpidr_el2(read_midr_el1()); 1005 write_vmpidr_el2(read_mpidr_el1()); 1006 1007 /* 1008 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset. 1009 * 1010 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address 1011 * translation is disabled, cache maintenance operations depend on the 1012 * VMID. 1013 * 1014 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is 1015 * disabled. 1016 */ 1017 write_vttbr_el2(VTTBR_RESET_VAL & 1018 ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) | 1019 (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT))); 1020 1021 /* 1022 * Initialise MDCR_EL2, setting all fields rather than relying on hw. 1023 * Some fields are architecturally UNKNOWN on reset. 1024 * 1025 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System 1026 * register accesses to the Debug ROM registers are not trapped to EL2. 1027 * 1028 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register 1029 * accesses to the powerdown debug registers are not trapped to EL2. 1030 * 1031 * MDCR_EL2.TDA: Set to zero so that System register accesses to the 1032 * debug registers do not trap to EL2. 1033 * 1034 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to 1035 * EL2. 1036 */ 1037 mdcr_el2 = MDCR_EL2_RESET_VAL & 1038 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT | 1039 MDCR_EL2_TDE_BIT); 1040 1041 write_mdcr_el2(mdcr_el2); 1042 1043 /* 1044 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset. 1045 * 1046 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or 1047 * EL1 accesses to System registers do not trap to EL2. 1048 */ 1049 write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK)); 1050 1051 /* 1052 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on 1053 * reset. 1054 * 1055 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer 1056 * and prevent timer interrupts. 1057 */ 1058 write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT)); 1059 1060 manage_extensions_nonsecure_el2_unused(); 1061 #endif /* INIT_UNUSED_NS_EL2 */ 1062 } 1063 1064 /******************************************************************************* 1065 * Prepare the CPU system registers for first entry into realm, secure, or 1066 * normal world. 1067 * 1068 * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized 1069 * If execution is requested to non-secure EL1 or svc mode, and the CPU supports 1070 * EL2 then EL2 is disabled by configuring all necessary EL2 registers. 1071 * For all entries, the EL1 registers are initialized from the cpu_context 1072 ******************************************************************************/ 1073 void cm_prepare_el3_exit(uint32_t security_state) 1074 { 1075 u_register_t sctlr_el2, scr_el3; 1076 cpu_context_t *ctx = cm_get_context(security_state); 1077 1078 assert(ctx != NULL); 1079 1080 if (security_state == NON_SECURE) { 1081 uint64_t el2_implemented = el_implemented(2); 1082 1083 scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), 1084 CTX_SCR_EL3); 1085 1086 if (el2_implemented != EL_IMPL_NONE) { 1087 1088 /* 1089 * If context is not being used for EL2, initialize 1090 * HCRX_EL2 with its init value here. 1091 */ 1092 if (is_feat_hcx_supported()) { 1093 write_hcrx_el2(HCRX_EL2_INIT_VAL); 1094 } 1095 1096 /* 1097 * Initialize Fine-grained trap registers introduced 1098 * by FEAT_FGT so all traps are initially disabled when 1099 * switching to EL2 or a lower EL, preventing undesired 1100 * behavior. 1101 */ 1102 if (is_feat_fgt_supported()) { 1103 /* 1104 * Initialize HFG*_EL2 registers with a default 1105 * value so legacy systems unaware of FEAT_FGT 1106 * do not get trapped due to their lack of 1107 * initialization for this feature. 1108 */ 1109 write_hfgitr_el2(HFGITR_EL2_INIT_VAL); 1110 write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL); 1111 write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL); 1112 } 1113 1114 /* Condition to ensure EL2 is being used. */ 1115 if ((scr_el3 & SCR_HCE_BIT) != 0U) { 1116 /* Initialize SCTLR_EL2 register with reset value. */ 1117 sctlr_el2 = SCTLR_EL2_RES1; 1118 1119 /* 1120 * If workaround of errata 764081 for Cortex-A75 1121 * is used then set SCTLR_EL2.IESB to enable 1122 * Implicit Error Synchronization Barrier. 1123 */ 1124 if (errata_a75_764081_applies()) { 1125 sctlr_el2 |= SCTLR_IESB_BIT; 1126 } 1127 1128 write_sctlr_el2(sctlr_el2); 1129 } else { 1130 /* 1131 * (scr_el3 & SCR_HCE_BIT==0) 1132 * EL2 implemented but unused. 1133 */ 1134 init_nonsecure_el2_unused(ctx); 1135 } 1136 } 1137 } 1138 #if (!CTX_INCLUDE_EL2_REGS) 1139 /* Restore EL1 system registers, only when CTX_INCLUDE_EL2_REGS=0 */ 1140 cm_el1_sysregs_context_restore(security_state); 1141 #endif 1142 cm_set_next_eret_context(security_state); 1143 } 1144 1145 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) 1146 1147 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx) 1148 { 1149 write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2()); 1150 if (is_feat_amu_supported()) { 1151 write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2()); 1152 } 1153 write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2()); 1154 write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2()); 1155 write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2()); 1156 write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2()); 1157 } 1158 1159 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx) 1160 { 1161 write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2)); 1162 if (is_feat_amu_supported()) { 1163 write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2)); 1164 } 1165 write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2)); 1166 write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2)); 1167 write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2)); 1168 write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2)); 1169 } 1170 1171 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx) 1172 { 1173 write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2()); 1174 write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2()); 1175 write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2()); 1176 write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2()); 1177 write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2()); 1178 } 1179 1180 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx) 1181 { 1182 write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2)); 1183 write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2)); 1184 write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2)); 1185 write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2)); 1186 write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2)); 1187 } 1188 1189 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx) 1190 { 1191 u_register_t mpam_idr = read_mpamidr_el1(); 1192 1193 write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2()); 1194 1195 /* 1196 * The context registers that we intend to save would be part of the 1197 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1. 1198 */ 1199 if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) { 1200 return; 1201 } 1202 1203 /* 1204 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if 1205 * MPAMIDR_HAS_HCR_BIT == 1. 1206 */ 1207 write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2()); 1208 write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2()); 1209 write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2()); 1210 1211 /* 1212 * The number of MPAMVPM registers is implementation defined, their 1213 * number is stored in the MPAMIDR_EL1 register. 1214 */ 1215 switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) { 1216 case 7: 1217 write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2()); 1218 __fallthrough; 1219 case 6: 1220 write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2()); 1221 __fallthrough; 1222 case 5: 1223 write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2()); 1224 __fallthrough; 1225 case 4: 1226 write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2()); 1227 __fallthrough; 1228 case 3: 1229 write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2()); 1230 __fallthrough; 1231 case 2: 1232 write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2()); 1233 __fallthrough; 1234 case 1: 1235 write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2()); 1236 break; 1237 } 1238 } 1239 1240 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx) 1241 { 1242 u_register_t mpam_idr = read_mpamidr_el1(); 1243 1244 write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2)); 1245 1246 if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) { 1247 return; 1248 } 1249 1250 write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2)); 1251 write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2)); 1252 write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2)); 1253 1254 switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) { 1255 case 7: 1256 write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2)); 1257 __fallthrough; 1258 case 6: 1259 write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2)); 1260 __fallthrough; 1261 case 5: 1262 write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2)); 1263 __fallthrough; 1264 case 4: 1265 write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2)); 1266 __fallthrough; 1267 case 3: 1268 write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2)); 1269 __fallthrough; 1270 case 2: 1271 write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2)); 1272 __fallthrough; 1273 case 1: 1274 write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2)); 1275 break; 1276 } 1277 } 1278 1279 /* --------------------------------------------------------------------------- 1280 * The following registers are not added: 1281 * ICH_AP0R<n>_EL2 1282 * ICH_AP1R<n>_EL2 1283 * ICH_LR<n>_EL2 1284 * 1285 * NOTE: For a system with S-EL2 present but not enabled, accessing 1286 * ICC_SRE_EL2 is undefined from EL3. To workaround this change the 1287 * SCR_EL3.NS = 1 before accessing this register. 1288 * --------------------------------------------------------------------------- 1289 */ 1290 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx) 1291 { 1292 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2 1293 write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2()); 1294 #else 1295 u_register_t scr_el3 = read_scr_el3(); 1296 write_scr_el3(scr_el3 | SCR_NS_BIT); 1297 isb(); 1298 1299 write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2()); 1300 1301 write_scr_el3(scr_el3); 1302 isb(); 1303 #endif 1304 write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2()); 1305 write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2()); 1306 } 1307 1308 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx) 1309 { 1310 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2 1311 write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2)); 1312 #else 1313 u_register_t scr_el3 = read_scr_el3(); 1314 write_scr_el3(scr_el3 | SCR_NS_BIT); 1315 isb(); 1316 1317 write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2)); 1318 1319 write_scr_el3(scr_el3); 1320 isb(); 1321 #endif 1322 write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2)); 1323 write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2)); 1324 } 1325 1326 /* ----------------------------------------------------- 1327 * The following registers are not added: 1328 * AMEVCNTVOFF0<n>_EL2 1329 * AMEVCNTVOFF1<n>_EL2 1330 * ----------------------------------------------------- 1331 */ 1332 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx) 1333 { 1334 write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2()); 1335 write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2()); 1336 write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2()); 1337 write_el2_ctx_common(ctx, amair_el2, read_amair_el2()); 1338 write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2()); 1339 write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2()); 1340 write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2()); 1341 if (CTX_INCLUDE_AARCH32_REGS) { 1342 write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2()); 1343 } 1344 write_el2_ctx_common(ctx, elr_el2, read_elr_el2()); 1345 write_el2_ctx_common(ctx, esr_el2, read_esr_el2()); 1346 write_el2_ctx_common(ctx, far_el2, read_far_el2()); 1347 write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2()); 1348 write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2()); 1349 write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2()); 1350 write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2()); 1351 write_el2_ctx_common(ctx, mair_el2, read_mair_el2()); 1352 write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2()); 1353 write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2()); 1354 write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2()); 1355 write_el2_ctx_common(ctx, sp_el2, read_sp_el2()); 1356 write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2()); 1357 write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2()); 1358 write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2()); 1359 write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2()); 1360 write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2()); 1361 write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2()); 1362 1363 write_el2_ctx_common_sysreg128(ctx, ttbr0_el2, read_ttbr0_el2()); 1364 write_el2_ctx_common_sysreg128(ctx, vttbr_el2, read_vttbr_el2()); 1365 } 1366 1367 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx) 1368 { 1369 write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2)); 1370 write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2)); 1371 write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2)); 1372 write_amair_el2(read_el2_ctx_common(ctx, amair_el2)); 1373 write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2)); 1374 write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2)); 1375 write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2)); 1376 if (CTX_INCLUDE_AARCH32_REGS) { 1377 write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2)); 1378 } 1379 write_elr_el2(read_el2_ctx_common(ctx, elr_el2)); 1380 write_esr_el2(read_el2_ctx_common(ctx, esr_el2)); 1381 write_far_el2(read_el2_ctx_common(ctx, far_el2)); 1382 write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2)); 1383 write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2)); 1384 write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2)); 1385 write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2)); 1386 write_mair_el2(read_el2_ctx_common(ctx, mair_el2)); 1387 write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2)); 1388 write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2)); 1389 write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2)); 1390 write_sp_el2(read_el2_ctx_common(ctx, sp_el2)); 1391 write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2)); 1392 write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2)); 1393 write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2)); 1394 write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2)); 1395 write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2)); 1396 write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2)); 1397 write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2)); 1398 write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2)); 1399 } 1400 1401 /******************************************************************************* 1402 * Save EL2 sysreg context 1403 ******************************************************************************/ 1404 void cm_el2_sysregs_context_save(uint32_t security_state) 1405 { 1406 cpu_context_t *ctx; 1407 el2_sysregs_t *el2_sysregs_ctx; 1408 1409 ctx = cm_get_context(security_state); 1410 assert(ctx != NULL); 1411 1412 el2_sysregs_ctx = get_el2_sysregs_ctx(ctx); 1413 1414 el2_sysregs_context_save_common(el2_sysregs_ctx); 1415 el2_sysregs_context_save_gic(el2_sysregs_ctx); 1416 1417 if (is_feat_mte2_supported()) { 1418 write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2()); 1419 } 1420 1421 if (is_feat_mpam_supported()) { 1422 el2_sysregs_context_save_mpam(el2_sysregs_ctx); 1423 } 1424 1425 if (is_feat_fgt_supported()) { 1426 el2_sysregs_context_save_fgt(el2_sysregs_ctx); 1427 } 1428 1429 if (is_feat_fgt2_supported()) { 1430 el2_sysregs_context_save_fgt2(el2_sysregs_ctx); 1431 } 1432 1433 if (is_feat_ecv_v2_supported()) { 1434 write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2()); 1435 } 1436 1437 if (is_feat_vhe_supported()) { 1438 write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2, 1439 read_contextidr_el2()); 1440 write_el2_ctx_vhe_sysreg128(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2()); 1441 } 1442 1443 if (is_feat_ras_supported()) { 1444 write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2()); 1445 write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2()); 1446 } 1447 1448 if (is_feat_nv2_supported()) { 1449 write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2()); 1450 } 1451 1452 if (is_feat_trf_supported()) { 1453 write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2()); 1454 } 1455 1456 if (is_feat_csv2_2_supported()) { 1457 write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2, 1458 read_scxtnum_el2()); 1459 } 1460 1461 if (is_feat_hcx_supported()) { 1462 write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2()); 1463 } 1464 1465 if (is_feat_tcr2_supported()) { 1466 write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2()); 1467 } 1468 1469 if (is_feat_sxpie_supported()) { 1470 write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2()); 1471 write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2()); 1472 } 1473 1474 if (is_feat_sxpoe_supported()) { 1475 write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2()); 1476 } 1477 1478 if (is_feat_s2pie_supported()) { 1479 write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2()); 1480 } 1481 1482 if (is_feat_gcs_supported()) { 1483 write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2()); 1484 write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2()); 1485 } 1486 1487 if (is_feat_sctlr2_supported()) { 1488 write_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2, read_sctlr2_el2()); 1489 } 1490 } 1491 1492 /******************************************************************************* 1493 * Restore EL2 sysreg context 1494 ******************************************************************************/ 1495 void cm_el2_sysregs_context_restore(uint32_t security_state) 1496 { 1497 cpu_context_t *ctx; 1498 el2_sysregs_t *el2_sysregs_ctx; 1499 1500 ctx = cm_get_context(security_state); 1501 assert(ctx != NULL); 1502 1503 el2_sysregs_ctx = get_el2_sysregs_ctx(ctx); 1504 1505 el2_sysregs_context_restore_common(el2_sysregs_ctx); 1506 el2_sysregs_context_restore_gic(el2_sysregs_ctx); 1507 1508 if (is_feat_mte2_supported()) { 1509 write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2)); 1510 } 1511 1512 if (is_feat_mpam_supported()) { 1513 el2_sysregs_context_restore_mpam(el2_sysregs_ctx); 1514 } 1515 1516 if (is_feat_fgt_supported()) { 1517 el2_sysregs_context_restore_fgt(el2_sysregs_ctx); 1518 } 1519 1520 if (is_feat_fgt2_supported()) { 1521 el2_sysregs_context_restore_fgt2(el2_sysregs_ctx); 1522 } 1523 1524 if (is_feat_ecv_v2_supported()) { 1525 write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2)); 1526 } 1527 1528 if (is_feat_vhe_supported()) { 1529 write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx, 1530 contextidr_el2)); 1531 write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2)); 1532 } 1533 1534 if (is_feat_ras_supported()) { 1535 write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2)); 1536 write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2)); 1537 } 1538 1539 if (is_feat_nv2_supported()) { 1540 write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2)); 1541 } 1542 1543 if (is_feat_trf_supported()) { 1544 write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2)); 1545 } 1546 1547 if (is_feat_csv2_2_supported()) { 1548 write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx, 1549 scxtnum_el2)); 1550 } 1551 1552 if (is_feat_hcx_supported()) { 1553 write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2)); 1554 } 1555 1556 if (is_feat_tcr2_supported()) { 1557 write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2)); 1558 } 1559 1560 if (is_feat_sxpie_supported()) { 1561 write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2)); 1562 write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2)); 1563 } 1564 1565 if (is_feat_sxpoe_supported()) { 1566 write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2)); 1567 } 1568 1569 if (is_feat_s2pie_supported()) { 1570 write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2)); 1571 } 1572 1573 if (is_feat_gcs_supported()) { 1574 write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2)); 1575 write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2)); 1576 } 1577 1578 if (is_feat_sctlr2_supported()) { 1579 write_sctlr2_el2(read_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2)); 1580 } 1581 } 1582 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */ 1583 1584 #if IMAGE_BL31 1585 /********************************************************************************* 1586 * This function allows Architecture features asymmetry among cores. 1587 * TF-A assumes that all the cores in the platform has architecture feature parity 1588 * and hence the context is setup on different core (e.g. primary sets up the 1589 * context for secondary cores).This assumption may not be true for systems where 1590 * cores are not conforming to same Arch version or there is CPU Erratum which 1591 * requires certain feature to be be disabled only on a given core. 1592 * 1593 * This function is called on secondary cores to override any disparity in context 1594 * setup by primary, this would be called during warmboot path. 1595 *********************************************************************************/ 1596 void cm_handle_asymmetric_features(void) 1597 { 1598 cpu_context_t *ctx __maybe_unused = cm_get_context(NON_SECURE); 1599 1600 assert(ctx != NULL); 1601 1602 #if ENABLE_SPE_FOR_NS == FEAT_STATE_CHECK_ASYMMETRIC 1603 if (is_feat_spe_supported()) { 1604 spe_enable(ctx); 1605 } else { 1606 spe_disable(ctx); 1607 } 1608 #endif 1609 1610 #if ERRATA_A520_2938996 || ERRATA_X4_2726228 1611 if (check_if_affected_core() == ERRATA_APPLIES) { 1612 if (is_feat_trbe_supported()) { 1613 trbe_disable(ctx); 1614 } 1615 } 1616 #endif 1617 1618 #if ENABLE_FEAT_TCR2 == FEAT_STATE_CHECK_ASYMMETRIC 1619 el3_state_t *el3_state = get_el3state_ctx(ctx); 1620 u_register_t spsr = read_ctx_reg(el3_state, CTX_SPSR_EL3); 1621 1622 if (is_feat_tcr2_supported() && (GET_RW(spsr) == MODE_RW_64)) { 1623 tcr2_enable(ctx); 1624 } else { 1625 tcr2_disable(ctx); 1626 } 1627 #endif 1628 1629 } 1630 #endif 1631 1632 /******************************************************************************* 1633 * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS 1634 * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly 1635 * updating EL1 and EL2 registers. Otherwise, it calls the generic 1636 * cm_prepare_el3_exit function. 1637 ******************************************************************************/ 1638 void cm_prepare_el3_exit_ns(void) 1639 { 1640 #if IMAGE_BL31 1641 /* 1642 * Check and handle Architecture feature asymmetry among cores. 1643 * 1644 * In warmboot path secondary cores context is initialized on core which 1645 * did CPU_ON SMC call, if there is feature asymmetry in these cores handle 1646 * it in this function call. 1647 * For Symmetric cores this is an empty function. 1648 */ 1649 cm_handle_asymmetric_features(); 1650 #endif 1651 1652 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) 1653 #if ENABLE_ASSERTIONS 1654 cpu_context_t *ctx = cm_get_context(NON_SECURE); 1655 assert(ctx != NULL); 1656 1657 /* Assert that EL2 is used. */ 1658 u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3); 1659 assert(((scr_el3 & SCR_HCE_BIT) != 0UL) && 1660 (el_implemented(2U) != EL_IMPL_NONE)); 1661 #endif /* ENABLE_ASSERTIONS */ 1662 1663 /* Restore EL2 sysreg contexts */ 1664 cm_el2_sysregs_context_restore(NON_SECURE); 1665 cm_set_next_eret_context(NON_SECURE); 1666 #else 1667 cm_prepare_el3_exit(NON_SECURE); 1668 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */ 1669 } 1670 1671 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) 1672 /******************************************************************************* 1673 * The next set of six functions are used by runtime services to save and restore 1674 * EL1 context on the 'cpu_context' structure for the specified security state. 1675 ******************************************************************************/ 1676 static void el1_sysregs_context_save(el1_sysregs_t *ctx) 1677 { 1678 write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1()); 1679 write_el1_ctx_common(ctx, elr_el1, read_elr_el1()); 1680 1681 #if (!ERRATA_SPECULATIVE_AT) 1682 write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1()); 1683 write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1()); 1684 #endif /* (!ERRATA_SPECULATIVE_AT) */ 1685 1686 write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1()); 1687 write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1()); 1688 write_el1_ctx_common(ctx, sp_el1, read_sp_el1()); 1689 write_el1_ctx_common(ctx, esr_el1, read_esr_el1()); 1690 write_el1_ctx_common(ctx, mair_el1, read_mair_el1()); 1691 write_el1_ctx_common(ctx, amair_el1, read_amair_el1()); 1692 write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1()); 1693 write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1()); 1694 write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0()); 1695 write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0()); 1696 write_el1_ctx_common(ctx, far_el1, read_far_el1()); 1697 write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1()); 1698 write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1()); 1699 write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1()); 1700 write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1()); 1701 write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1()); 1702 write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1()); 1703 1704 write_el1_ctx_common_sysreg128(ctx, par_el1, read_par_el1()); 1705 write_el1_ctx_common_sysreg128(ctx, ttbr0_el1, read_ttbr0_el1()); 1706 write_el1_ctx_common_sysreg128(ctx, ttbr1_el1, read_ttbr1_el1()); 1707 1708 if (CTX_INCLUDE_AARCH32_REGS) { 1709 /* Save Aarch32 registers */ 1710 write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt()); 1711 write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und()); 1712 write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq()); 1713 write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq()); 1714 write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2()); 1715 write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2()); 1716 } 1717 1718 if (NS_TIMER_SWITCH) { 1719 /* Save NS Timer registers */ 1720 write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0()); 1721 write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0()); 1722 write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0()); 1723 write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0()); 1724 write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1()); 1725 } 1726 1727 if (is_feat_mte2_supported()) { 1728 write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1()); 1729 write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1()); 1730 write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1()); 1731 write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1()); 1732 } 1733 1734 if (is_feat_ras_supported()) { 1735 write_el1_ctx_ras(ctx, disr_el1, read_disr_el1()); 1736 } 1737 1738 if (is_feat_s1pie_supported()) { 1739 write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1()); 1740 write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1()); 1741 } 1742 1743 if (is_feat_s1poe_supported()) { 1744 write_el1_ctx_s1poe(ctx, por_el1, read_por_el1()); 1745 } 1746 1747 if (is_feat_s2poe_supported()) { 1748 write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1()); 1749 } 1750 1751 if (is_feat_tcr2_supported()) { 1752 write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1()); 1753 } 1754 1755 if (is_feat_trf_supported()) { 1756 write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1()); 1757 } 1758 1759 if (is_feat_csv2_2_supported()) { 1760 write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0()); 1761 write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1()); 1762 } 1763 1764 if (is_feat_gcs_supported()) { 1765 write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1()); 1766 write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1()); 1767 write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1()); 1768 write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0()); 1769 } 1770 1771 if (is_feat_the_supported()) { 1772 write_el1_ctx_the_sysreg128(ctx, rcwmask_el1, read_rcwmask_el1()); 1773 write_el1_ctx_the_sysreg128(ctx, rcwsmask_el1, read_rcwsmask_el1()); 1774 } 1775 1776 if (is_feat_sctlr2_supported()) { 1777 write_el1_ctx_sctlr2(ctx, sctlr2_el1, read_sctlr2_el1()); 1778 } 1779 1780 if (is_feat_ls64_accdata_supported()) { 1781 write_el1_ctx_ls64(ctx, accdata_el1, read_accdata_el1()); 1782 } 1783 } 1784 1785 static void el1_sysregs_context_restore(el1_sysregs_t *ctx) 1786 { 1787 write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1)); 1788 write_elr_el1(read_el1_ctx_common(ctx, elr_el1)); 1789 1790 #if (!ERRATA_SPECULATIVE_AT) 1791 write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1)); 1792 write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1)); 1793 #endif /* (!ERRATA_SPECULATIVE_AT) */ 1794 1795 write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1)); 1796 write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1)); 1797 write_sp_el1(read_el1_ctx_common(ctx, sp_el1)); 1798 write_esr_el1(read_el1_ctx_common(ctx, esr_el1)); 1799 write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1)); 1800 write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1)); 1801 write_mair_el1(read_el1_ctx_common(ctx, mair_el1)); 1802 write_amair_el1(read_el1_ctx_common(ctx, amair_el1)); 1803 write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1)); 1804 write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1)); 1805 write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0)); 1806 write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0)); 1807 write_par_el1(read_el1_ctx_common(ctx, par_el1)); 1808 write_far_el1(read_el1_ctx_common(ctx, far_el1)); 1809 write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1)); 1810 write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1)); 1811 write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1)); 1812 write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1)); 1813 write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1)); 1814 write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1)); 1815 1816 if (CTX_INCLUDE_AARCH32_REGS) { 1817 /* Restore Aarch32 registers */ 1818 write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt)); 1819 write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und)); 1820 write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq)); 1821 write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq)); 1822 write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2)); 1823 write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2)); 1824 } 1825 1826 if (NS_TIMER_SWITCH) { 1827 /* Restore NS Timer registers */ 1828 write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0)); 1829 write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0)); 1830 write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0)); 1831 write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0)); 1832 write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1)); 1833 } 1834 1835 if (is_feat_mte2_supported()) { 1836 write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1)); 1837 write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1)); 1838 write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1)); 1839 write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1)); 1840 } 1841 1842 if (is_feat_ras_supported()) { 1843 write_disr_el1(read_el1_ctx_ras(ctx, disr_el1)); 1844 } 1845 1846 if (is_feat_s1pie_supported()) { 1847 write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1)); 1848 write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1)); 1849 } 1850 1851 if (is_feat_s1poe_supported()) { 1852 write_por_el1(read_el1_ctx_s1poe(ctx, por_el1)); 1853 } 1854 1855 if (is_feat_s2poe_supported()) { 1856 write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1)); 1857 } 1858 1859 if (is_feat_tcr2_supported()) { 1860 write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1)); 1861 } 1862 1863 if (is_feat_trf_supported()) { 1864 write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1)); 1865 } 1866 1867 if (is_feat_csv2_2_supported()) { 1868 write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0)); 1869 write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1)); 1870 } 1871 1872 if (is_feat_gcs_supported()) { 1873 write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1)); 1874 write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1)); 1875 write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1)); 1876 write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0)); 1877 } 1878 1879 if (is_feat_the_supported()) { 1880 write_rcwmask_el1(read_el1_ctx_the(ctx, rcwmask_el1)); 1881 write_rcwsmask_el1(read_el1_ctx_the(ctx, rcwsmask_el1)); 1882 } 1883 1884 if (is_feat_sctlr2_supported()) { 1885 write_sctlr2_el1(read_el1_ctx_sctlr2(ctx, sctlr2_el1)); 1886 } 1887 1888 if (is_feat_ls64_accdata_supported()) { 1889 write_accdata_el1(read_el1_ctx_ls64(ctx, accdata_el1)); 1890 } 1891 } 1892 1893 /******************************************************************************* 1894 * The next couple of functions are used by runtime services to save and restore 1895 * EL1 context on the 'cpu_context' structure for the specified security state. 1896 ******************************************************************************/ 1897 void cm_el1_sysregs_context_save(uint32_t security_state) 1898 { 1899 cpu_context_t *ctx; 1900 1901 ctx = cm_get_context(security_state); 1902 assert(ctx != NULL); 1903 1904 el1_sysregs_context_save(get_el1_sysregs_ctx(ctx)); 1905 1906 #if IMAGE_BL31 1907 if (security_state == SECURE) 1908 PUBLISH_EVENT(cm_exited_secure_world); 1909 else 1910 PUBLISH_EVENT(cm_exited_normal_world); 1911 #endif 1912 } 1913 1914 void cm_el1_sysregs_context_restore(uint32_t security_state) 1915 { 1916 cpu_context_t *ctx; 1917 1918 ctx = cm_get_context(security_state); 1919 assert(ctx != NULL); 1920 1921 el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx)); 1922 1923 #if IMAGE_BL31 1924 if (security_state == SECURE) 1925 PUBLISH_EVENT(cm_entering_secure_world); 1926 else 1927 PUBLISH_EVENT(cm_entering_normal_world); 1928 #endif 1929 } 1930 1931 #endif /* ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) */ 1932 1933 /******************************************************************************* 1934 * This function populates ELR_EL3 member of 'cpu_context' pertaining to the 1935 * given security state with the given entrypoint 1936 ******************************************************************************/ 1937 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint) 1938 { 1939 cpu_context_t *ctx; 1940 el3_state_t *state; 1941 1942 ctx = cm_get_context(security_state); 1943 assert(ctx != NULL); 1944 1945 /* Populate EL3 state so that ERET jumps to the correct entry */ 1946 state = get_el3state_ctx(ctx); 1947 write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 1948 } 1949 1950 /******************************************************************************* 1951 * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context' 1952 * pertaining to the given security state 1953 ******************************************************************************/ 1954 void cm_set_elr_spsr_el3(uint32_t security_state, 1955 uintptr_t entrypoint, uint32_t spsr) 1956 { 1957 cpu_context_t *ctx; 1958 el3_state_t *state; 1959 1960 ctx = cm_get_context(security_state); 1961 assert(ctx != NULL); 1962 1963 /* Populate EL3 state so that ERET jumps to the correct entry */ 1964 state = get_el3state_ctx(ctx); 1965 write_ctx_reg(state, CTX_ELR_EL3, entrypoint); 1966 write_ctx_reg(state, CTX_SPSR_EL3, spsr); 1967 } 1968 1969 /******************************************************************************* 1970 * This function updates a single bit in the SCR_EL3 member of the 'cpu_context' 1971 * pertaining to the given security state using the value and bit position 1972 * specified in the parameters. It preserves all other bits. 1973 ******************************************************************************/ 1974 void cm_write_scr_el3_bit(uint32_t security_state, 1975 uint32_t bit_pos, 1976 uint32_t value) 1977 { 1978 cpu_context_t *ctx; 1979 el3_state_t *state; 1980 u_register_t scr_el3; 1981 1982 ctx = cm_get_context(security_state); 1983 assert(ctx != NULL); 1984 1985 /* Ensure that the bit position is a valid one */ 1986 assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U); 1987 1988 /* Ensure that the 'value' is only a bit wide */ 1989 assert(value <= 1U); 1990 1991 /* 1992 * Get the SCR_EL3 value from the cpu context, clear the desired bit 1993 * and set it to its new value. 1994 */ 1995 state = get_el3state_ctx(ctx); 1996 scr_el3 = read_ctx_reg(state, CTX_SCR_EL3); 1997 scr_el3 &= ~(1UL << bit_pos); 1998 scr_el3 |= (u_register_t)value << bit_pos; 1999 write_ctx_reg(state, CTX_SCR_EL3, scr_el3); 2000 } 2001 2002 /******************************************************************************* 2003 * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the 2004 * given security state. 2005 ******************************************************************************/ 2006 u_register_t cm_get_scr_el3(uint32_t security_state) 2007 { 2008 cpu_context_t *ctx; 2009 el3_state_t *state; 2010 2011 ctx = cm_get_context(security_state); 2012 assert(ctx != NULL); 2013 2014 /* Populate EL3 state so that ERET jumps to the correct entry */ 2015 state = get_el3state_ctx(ctx); 2016 return read_ctx_reg(state, CTX_SCR_EL3); 2017 } 2018 2019 /******************************************************************************* 2020 * This function is used to program the context that's used for exception 2021 * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for 2022 * the required security state 2023 ******************************************************************************/ 2024 void cm_set_next_eret_context(uint32_t security_state) 2025 { 2026 cpu_context_t *ctx; 2027 2028 ctx = cm_get_context(security_state); 2029 assert(ctx != NULL); 2030 2031 cm_set_next_context(ctx); 2032 } 2033