xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 8cf07ab36e28de377321808f1069cc38c6900c17)
1 /*
2  * Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/pubsub_events.h>
24 #include <lib/extensions/amu.h>
25 #include <lib/extensions/brbe.h>
26 #include <lib/extensions/mpam.h>
27 #include <lib/extensions/pmuv3.h>
28 #include <lib/extensions/sme.h>
29 #include <lib/extensions/spe.h>
30 #include <lib/extensions/sve.h>
31 #include <lib/extensions/sys_reg_trace.h>
32 #include <lib/extensions/trbe.h>
33 #include <lib/extensions/trf.h>
34 #include <lib/utils.h>
35 
36 #if ENABLE_FEAT_TWED
37 /* Make sure delay value fits within the range(0-15) */
38 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
39 #endif /* ENABLE_FEAT_TWED */
40 
41 static void manage_extensions_nonsecure(cpu_context_t *ctx);
42 static void manage_extensions_secure(cpu_context_t *ctx);
43 
44 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
45 {
46 	u_register_t sctlr_elx, actlr_elx;
47 
48 	/*
49 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
50 	 * execution state setting all fields rather than relying on the hw.
51 	 * Some fields have architecturally UNKNOWN reset values and these are
52 	 * set to zero.
53 	 *
54 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
55 	 *
56 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
57 	 * required by PSCI specification)
58 	 */
59 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
60 	if (GET_RW(ep->spsr) == MODE_RW_64) {
61 		sctlr_elx |= SCTLR_EL1_RES1;
62 	} else {
63 		/*
64 		 * If the target execution state is AArch32 then the following
65 		 * fields need to be set.
66 		 *
67 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
68 		 *  instructions are not trapped to EL1.
69 		 *
70 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
71 		 *  instructions are not trapped to EL1.
72 		 *
73 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
74 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
75 		 */
76 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
77 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
78 	}
79 
80 #if ERRATA_A75_764081
81 	/*
82 	 * If workaround of errata 764081 for Cortex-A75 is used then set
83 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
84 	 */
85 	sctlr_elx |= SCTLR_IESB_BIT;
86 #endif
87 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
88 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
89 
90 	/*
91 	 * Base the context ACTLR_EL1 on the current value, as it is
92 	 * implementation defined. The context restore process will write
93 	 * the value from the context to the actual register and can cause
94 	 * problems for processor cores that don't expect certain bits to
95 	 * be zero.
96 	 */
97 	actlr_elx = read_actlr_el1();
98 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
99 }
100 
101 /******************************************************************************
102  * This function performs initializations that are specific to SECURE state
103  * and updates the cpu context specified by 'ctx'.
104  *****************************************************************************/
105 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
106 {
107 	u_register_t scr_el3;
108 	el3_state_t *state;
109 
110 	state = get_el3state_ctx(ctx);
111 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
112 
113 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
114 	/*
115 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
116 	 * indicated by the interrupt routing model for BL31.
117 	 */
118 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
119 #endif
120 
121 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
122 	/* Get Memory Tagging Extension support level */
123 	unsigned int mte = get_armv8_5_mte_support();
124 #endif
125 	/*
126 	 * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS
127 	 * is set, or when MTE is only implemented at EL0.
128 	 */
129 #if CTX_INCLUDE_MTE_REGS
130 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
131 	scr_el3 |= SCR_ATA_BIT;
132 #else
133 	if (mte == MTE_IMPLEMENTED_EL0) {
134 		scr_el3 |= SCR_ATA_BIT;
135 	}
136 #endif /* CTX_INCLUDE_MTE_REGS */
137 
138 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
139 
140 	/*
141 	 * Initialize EL1 context registers unless SPMC is running
142 	 * at S-EL2.
143 	 */
144 #if !SPMD_SPM_AT_SEL2
145 	setup_el1_context(ctx, ep);
146 #endif
147 
148 	manage_extensions_secure(ctx);
149 }
150 
151 #if ENABLE_RME
152 /******************************************************************************
153  * This function performs initializations that are specific to REALM state
154  * and updates the cpu context specified by 'ctx'.
155  *****************************************************************************/
156 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
157 {
158 	u_register_t scr_el3;
159 	el3_state_t *state;
160 
161 	state = get_el3state_ctx(ctx);
162 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
163 
164 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
165 
166 	if (is_feat_csv2_2_supported()) {
167 		/* Enable access to the SCXTNUM_ELx registers. */
168 		scr_el3 |= SCR_EnSCXT_BIT;
169 	}
170 
171 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
172 }
173 #endif /* ENABLE_RME */
174 
175 /******************************************************************************
176  * This function performs initializations that are specific to NON-SECURE state
177  * and updates the cpu context specified by 'ctx'.
178  *****************************************************************************/
179 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
180 {
181 	u_register_t scr_el3;
182 	el3_state_t *state;
183 
184 	state = get_el3state_ctx(ctx);
185 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
186 
187 	/* SCR_NS: Set the NS bit */
188 	scr_el3 |= SCR_NS_BIT;
189 
190 	/* Allow access to Allocation Tags when MTE is implemented. */
191 	scr_el3 |= SCR_ATA_BIT;
192 
193 #if !CTX_INCLUDE_PAUTH_REGS
194 	/*
195 	 * Pointer Authentication feature, if present, is always enabled by default
196 	 * for Non secure lower exception levels. We do not have an explicit
197 	 * flag to set it.
198 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
199 	 * exception levels of secure and realm worlds.
200 	 *
201 	 * To prevent the leakage between the worlds during world switch,
202 	 * we enable it only for the non-secure world.
203 	 *
204 	 * If the Secure/realm world wants to use pointer authentication,
205 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
206 	 * it will be enabled globally for all the contexts.
207 	 *
208 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
209 	 *  other than EL3
210 	 *
211 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
212 	 *  than EL3
213 	 */
214 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
215 
216 #endif /* CTX_INCLUDE_PAUTH_REGS */
217 
218 #if HANDLE_EA_EL3_FIRST_NS
219 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
220 	scr_el3 |= SCR_EA_BIT;
221 #endif
222 
223 #if RAS_TRAP_NS_ERR_REC_ACCESS
224 	/*
225 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
226 	 * and RAS ERX registers from EL1 and EL2(from any security state)
227 	 * are trapped to EL3.
228 	 * Set here to trap only for NS EL1/EL2
229 	 *
230 	 */
231 	scr_el3 |= SCR_TERR_BIT;
232 #endif
233 
234 	if (is_feat_csv2_2_supported()) {
235 		/* Enable access to the SCXTNUM_ELx registers. */
236 		scr_el3 |= SCR_EnSCXT_BIT;
237 	}
238 
239 #ifdef IMAGE_BL31
240 	/*
241 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
242 	 *  indicated by the interrupt routing model for BL31.
243 	 */
244 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
245 #endif
246 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
247 
248 	/* Initialize EL1 context registers */
249 	setup_el1_context(ctx, ep);
250 
251 	/* Initialize EL2 context registers */
252 #if CTX_INCLUDE_EL2_REGS
253 
254 	/*
255 	 * Initialize SCTLR_EL2 context register using Endianness value
256 	 * taken from the entrypoint attribute.
257 	 */
258 	u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
259 	sctlr_el2 |= SCTLR_EL2_RES1;
260 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2,
261 			sctlr_el2);
262 
263 	if (is_feat_hcx_supported()) {
264 		/*
265 		 * Initialize register HCRX_EL2 with its init value.
266 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
267 		 * chance that this can lead to unexpected behavior in lower
268 		 * ELs that have not been updated since the introduction of
269 		 * this feature if not properly initialized, especially when
270 		 * it comes to those bits that enable/disable traps.
271 		 */
272 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HCRX_EL2,
273 			HCRX_EL2_INIT_VAL);
274 	}
275 
276 	if (is_feat_fgt_supported()) {
277 		/*
278 		 * Initialize HFG*_EL2 registers with a default value so legacy
279 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
280 		 * of initialization for this feature.
281 		 */
282 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGITR_EL2,
283 			HFGITR_EL2_INIT_VAL);
284 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGRTR_EL2,
285 			HFGRTR_EL2_INIT_VAL);
286 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGWTR_EL2,
287 			HFGWTR_EL2_INIT_VAL);
288 	}
289 #endif /* CTX_INCLUDE_EL2_REGS */
290 
291 	manage_extensions_nonsecure(ctx);
292 }
293 
294 /*******************************************************************************
295  * The following function performs initialization of the cpu_context 'ctx'
296  * for first use that is common to all security states, and sets the
297  * initial entrypoint state as specified by the entry_point_info structure.
298  *
299  * The EE and ST attributes are used to configure the endianness and secure
300  * timer availability for the new execution context.
301  ******************************************************************************/
302 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
303 {
304 	u_register_t cptr_el3;
305 	u_register_t scr_el3;
306 	el3_state_t *state;
307 	gp_regs_t *gp_regs;
308 
309 	state = get_el3state_ctx(ctx);
310 
311 	/* Clear any residual register values from the context */
312 	zeromem(ctx, sizeof(*ctx));
313 
314 	/*
315 	 * The lower-EL context is zeroed so that no stale values leak to a world.
316 	 * It is assumed that an all-zero lower-EL context is good enough for it
317 	 * to boot correctly. However, there are very few registers where this
318 	 * is not true and some values need to be recreated.
319 	 */
320 #if CTX_INCLUDE_EL2_REGS
321 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
322 
323 	/*
324 	 * These bits are set in the gicv3 driver. Losing them (especially the
325 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
326 	 */
327 	u_register_t icc_sre_el2 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
328 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
329 	write_ctx_reg(el2_ctx, CTX_ICC_SRE_EL2, icc_sre_el2);
330 #endif /* CTX_INCLUDE_EL2_REGS */
331 
332 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
333 	scr_el3 = SCR_RESET_VAL;
334 
335 	/*
336 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
337 	 *  EL2, EL1 and EL0 are not trapped to EL3.
338 	 *
339 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
340 	 *  EL2, EL1 and EL0 are not trapped to EL3.
341 	 *
342 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
343 	 *  both Security states and both Execution states.
344 	 *
345 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
346 	 *  Non-secure memory.
347 	 */
348 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
349 
350 	scr_el3 |= SCR_SIF_BIT;
351 
352 	/*
353 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
354 	 *  Exception level as specified by SPSR.
355 	 */
356 	if (GET_RW(ep->spsr) == MODE_RW_64) {
357 		scr_el3 |= SCR_RW_BIT;
358 	}
359 
360 	/*
361 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
362 	 * Secure timer registers to EL3, from AArch64 state only, if specified
363 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
364 	 * bit always behaves as 1 (i.e. secure physical timer register access
365 	 * is not trapped)
366 	 */
367 	if (EP_GET_ST(ep->h.attr) != 0U) {
368 		scr_el3 |= SCR_ST_BIT;
369 	}
370 
371 	/*
372 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
373 	 * SCR_EL3.HXEn.
374 	 */
375 	if (is_feat_hcx_supported()) {
376 		scr_el3 |= SCR_HXEn_BIT;
377 	}
378 
379 	/*
380 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
381 	 * registers are trapped to EL3.
382 	 */
383 #if ENABLE_FEAT_RNG_TRAP
384 	scr_el3 |= SCR_TRNDR_BIT;
385 #endif
386 
387 #if FAULT_INJECTION_SUPPORT
388 	/* Enable fault injection from lower ELs */
389 	scr_el3 |= SCR_FIEN_BIT;
390 #endif
391 
392 #if CTX_INCLUDE_PAUTH_REGS
393 	/*
394 	 * Enable Pointer Authentication globally for all the worlds.
395 	 *
396 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
397 	 *  other than EL3
398 	 *
399 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
400 	 *  than EL3
401 	 */
402 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
403 #endif /* CTX_INCLUDE_PAUTH_REGS */
404 
405 	/*
406 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
407 	 */
408 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
409 		scr_el3 |= SCR_TCR2EN_BIT;
410 	}
411 
412 	/*
413 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
414 	 * registers for AArch64 if present.
415 	 */
416 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
417 		scr_el3 |= SCR_PIEN_BIT;
418 	}
419 
420 	/*
421 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
422 	 */
423 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
424 		scr_el3 |= SCR_GCSEn_BIT;
425 	}
426 
427 	/*
428 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
429 	 * All fields are architecturally UNKNOWN on reset.
430 	 *
431 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
432 	 *  by Advanced SIMD, floating-point or SVE instructions (if
433 	 *  implemented) do not trap to EL3.
434 	 *
435 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
436 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
437 	 */
438 	cptr_el3 = CPTR_EL3_RESET_VAL & ~(TFP_BIT | TCPAC_BIT);
439 
440 	write_ctx_reg(state, CTX_CPTR_EL3, cptr_el3);
441 
442 	/*
443 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
444 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
445 	 * next mode is Hyp.
446 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
447 	 * same conditions as HVC instructions and when the processor supports
448 	 * ARMv8.6-FGT.
449 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
450 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
451 	 * and when the processor supports ECV.
452 	 */
453 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
454 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
455 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
456 		scr_el3 |= SCR_HCE_BIT;
457 
458 		if (is_feat_fgt_supported()) {
459 			scr_el3 |= SCR_FGTEN_BIT;
460 		}
461 
462 		if (is_feat_ecv_supported()) {
463 			scr_el3 |= SCR_ECVEN_BIT;
464 		}
465 	}
466 
467 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
468 	if (is_feat_twed_supported()) {
469 		/* Set delay in SCR_EL3 */
470 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
471 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
472 				<< SCR_TWEDEL_SHIFT);
473 
474 		/* Enable WFE delay */
475 		scr_el3 |= SCR_TWEDEn_BIT;
476 	}
477 
478 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
479 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
480 	if (is_feat_sel2_supported()) {
481 		scr_el3 |= SCR_EEL2_BIT;
482 	}
483 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
484 
485 	/*
486 	 * Populate EL3 state so that we've the right context
487 	 * before doing ERET
488 	 */
489 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
490 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
491 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
492 
493 	/*
494 	 * Store the X0-X7 value from the entrypoint into the context
495 	 * Use memcpy as we are in control of the layout of the structures
496 	 */
497 	gp_regs = get_gpregs_ctx(ctx);
498 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
499 }
500 
501 /*******************************************************************************
502  * Context management library initialization routine. This library is used by
503  * runtime services to share pointers to 'cpu_context' structures for secure
504  * non-secure and realm states. Management of the structures and their associated
505  * memory is not done by the context management library e.g. the PSCI service
506  * manages the cpu context used for entry from and exit to the non-secure state.
507  * The Secure payload dispatcher service manages the context(s) corresponding to
508  * the secure state. It also uses this library to get access to the non-secure
509  * state cpu context pointers.
510  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
511  * which will be used for programming an entry into a lower EL. The same context
512  * will be used to save state upon exception entry from that EL.
513  ******************************************************************************/
514 void __init cm_init(void)
515 {
516 	/*
517 	 * The context management library has only global data to initialize, but
518 	 * that will be done when the BSS is zeroed out.
519 	 */
520 }
521 
522 /*******************************************************************************
523  * This is the high-level function used to initialize the cpu_context 'ctx' for
524  * first use. It performs initializations that are common to all security states
525  * and initializations specific to the security state specified in 'ep'
526  ******************************************************************************/
527 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
528 {
529 	unsigned int security_state;
530 
531 	assert(ctx != NULL);
532 
533 	/*
534 	 * Perform initializations that are common
535 	 * to all security states
536 	 */
537 	setup_context_common(ctx, ep);
538 
539 	security_state = GET_SECURITY_STATE(ep->h.attr);
540 
541 	/* Perform security state specific initializations */
542 	switch (security_state) {
543 	case SECURE:
544 		setup_secure_context(ctx, ep);
545 		break;
546 #if ENABLE_RME
547 	case REALM:
548 		setup_realm_context(ctx, ep);
549 		break;
550 #endif
551 	case NON_SECURE:
552 		setup_ns_context(ctx, ep);
553 		break;
554 	default:
555 		ERROR("Invalid security state\n");
556 		panic();
557 		break;
558 	}
559 }
560 
561 /*******************************************************************************
562  * Enable architecture extensions for EL3 execution. This function only updates
563  * registers in-place which are expected to either never change or be
564  * overwritten by el3_exit.
565  ******************************************************************************/
566 #if IMAGE_BL31
567 void cm_manage_extensions_el3(void)
568 {
569 	if (is_feat_spe_supported()) {
570 		spe_init_el3();
571 	}
572 
573 	if (is_feat_amu_supported()) {
574 		amu_init_el3();
575 	}
576 
577 	if (is_feat_sme_supported()) {
578 		sme_init_el3();
579 	}
580 
581 	if (is_feat_mpam_supported()) {
582 		mpam_init_el3();
583 	}
584 
585 	if (is_feat_trbe_supported()) {
586 		trbe_init_el3();
587 	}
588 
589 	if (is_feat_brbe_supported()) {
590 		brbe_init_el3();
591 	}
592 
593 	if (is_feat_trf_supported()) {
594 		trf_init_el3();
595 	}
596 
597 	pmuv3_init_el3();
598 }
599 #endif /* IMAGE_BL31 */
600 
601 /*******************************************************************************
602  * Enable architecture extensions on first entry to Non-secure world.
603  ******************************************************************************/
604 static void manage_extensions_nonsecure(cpu_context_t *ctx)
605 {
606 #if IMAGE_BL31
607 	if (is_feat_amu_supported()) {
608 		amu_enable(ctx);
609 	}
610 
611 	/* Enable SVE and FPU/SIMD */
612 	if (is_feat_sve_supported()) {
613 		sve_enable(ctx);
614 	}
615 
616 	if (is_feat_sme_supported()) {
617 		sme_enable(ctx);
618 	}
619 
620 	if (is_feat_sys_reg_trace_supported()) {
621 		sys_reg_trace_enable(ctx);
622 	}
623 
624 	pmuv3_enable(ctx);
625 #endif /* IMAGE_BL31 */
626 }
627 
628 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
629 static __unused void enable_pauth_el2(void)
630 {
631 	u_register_t hcr_el2 = read_hcr_el2();
632 	/*
633 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
634 	 *  accessing key registers or using pointer authentication instructions
635 	 *  from lower ELs.
636 	 */
637 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
638 
639 	write_hcr_el2(hcr_el2);
640 }
641 
642 /*******************************************************************************
643  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
644  * world when EL2 is empty and unused.
645  ******************************************************************************/
646 static void manage_extensions_nonsecure_el2_unused(void)
647 {
648 #if IMAGE_BL31
649 	if (is_feat_spe_supported()) {
650 		spe_init_el2_unused();
651 	}
652 
653 	if (is_feat_amu_supported()) {
654 		amu_init_el2_unused();
655 	}
656 
657 	if (is_feat_mpam_supported()) {
658 		mpam_init_el2_unused();
659 	}
660 
661 	if (is_feat_trbe_supported()) {
662 		trbe_init_el2_unused();
663 	}
664 
665 	if (is_feat_sys_reg_trace_supported()) {
666 		sys_reg_trace_init_el2_unused();
667 	}
668 
669 	if (is_feat_trf_supported()) {
670 		trf_init_el2_unused();
671 	}
672 
673 	pmuv3_init_el2_unused();
674 
675 	if (is_feat_sve_supported()) {
676 		sve_init_el2_unused();
677 	}
678 
679 	if (is_feat_sme_supported()) {
680 		sme_init_el2_unused();
681 	}
682 
683 #if ENABLE_PAUTH
684 	enable_pauth_el2();
685 #endif /* ENABLE_PAUTH */
686 #endif /* IMAGE_BL31 */
687 }
688 
689 /*******************************************************************************
690  * Enable architecture extensions on first entry to Secure world.
691  ******************************************************************************/
692 static void manage_extensions_secure(cpu_context_t *ctx)
693 {
694 #if IMAGE_BL31
695 	if (is_feat_sve_supported()) {
696 		if (ENABLE_SVE_FOR_SWD) {
697 		/*
698 		 * Enable SVE and FPU in secure context, secure manager must
699 		 * ensure that the SVE and FPU register contexts are properly
700 		 * managed.
701 		 */
702 			sve_enable(ctx);
703 		} else {
704 		/*
705 		 * Disable SVE and FPU in secure context so non-secure world
706 		 * can safely use them.
707 		 */
708 			sve_disable(ctx);
709 		}
710 	}
711 
712 	if (is_feat_sme_supported()) {
713 		if (ENABLE_SME_FOR_SWD) {
714 		/*
715 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
716 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
717 		 */
718 			sme_init_el3();
719 			sme_enable(ctx);
720 		} else {
721 		/*
722 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
723 		 * world can safely use the associated registers.
724 		 */
725 			sme_disable(ctx);
726 		}
727 	}
728 
729 	/* NS can access this but Secure shouldn't */
730 	if (is_feat_sys_reg_trace_supported()) {
731 		sys_reg_trace_disable(ctx);
732 	}
733 #endif /* IMAGE_BL31 */
734 }
735 
736 /*******************************************************************************
737  * The following function initializes the cpu_context for a CPU specified by
738  * its `cpu_idx` for first use, and sets the initial entrypoint state as
739  * specified by the entry_point_info structure.
740  ******************************************************************************/
741 void cm_init_context_by_index(unsigned int cpu_idx,
742 			      const entry_point_info_t *ep)
743 {
744 	cpu_context_t *ctx;
745 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
746 	cm_setup_context(ctx, ep);
747 }
748 
749 /*******************************************************************************
750  * The following function initializes the cpu_context for the current CPU
751  * for first use, and sets the initial entrypoint state as specified by the
752  * entry_point_info structure.
753  ******************************************************************************/
754 void cm_init_my_context(const entry_point_info_t *ep)
755 {
756 	cpu_context_t *ctx;
757 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
758 	cm_setup_context(ctx, ep);
759 }
760 
761 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
762 static __unused void init_nonsecure_el2_unused(cpu_context_t *ctx)
763 {
764 	u_register_t hcr_el2 = HCR_RESET_VAL;
765 	u_register_t mdcr_el2;
766 	u_register_t scr_el3;
767 
768 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
769 
770 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
771 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
772 		hcr_el2 |= HCR_RW_BIT;
773 	}
774 
775 	write_hcr_el2(hcr_el2);
776 
777 	/*
778 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
779 	 * All fields have architecturally UNKNOWN reset values.
780 	 */
781 	write_cptr_el2(CPTR_EL2_RESET_VAL);
782 
783 	/*
784 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
785 	 * reset and are set to zero except for field(s) listed below.
786 	 *
787 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
788 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
789 	 *
790 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
791 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
792 	 */
793 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
794 
795 	/*
796 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
797 	 * UNKNOWN value.
798 	 */
799 	write_cntvoff_el2(0);
800 
801 	/*
802 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
803 	 * respectively.
804 	 */
805 	write_vpidr_el2(read_midr_el1());
806 	write_vmpidr_el2(read_mpidr_el1());
807 
808 	/*
809 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
810 	 *
811 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
812 	 * translation is disabled, cache maintenance operations depend on the
813 	 * VMID.
814 	 *
815 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
816 	 * disabled.
817 	 */
818 	write_vttbr_el2(VTTBR_RESET_VAL &
819 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
820 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
821 
822 	/*
823 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
824 	 * Some fields are architecturally UNKNOWN on reset.
825 	 *
826 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
827 	 * register accesses to the Debug ROM registers are not trapped to EL2.
828 	 *
829 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
830 	 * accesses to the powerdown debug registers are not trapped to EL2.
831 	 *
832 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
833 	 * debug registers do not trap to EL2.
834 	 *
835 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
836 	 * EL2.
837 	 */
838 	mdcr_el2 = MDCR_EL2_RESET_VAL &
839 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
840 		   MDCR_EL2_TDE_BIT);
841 
842 	write_mdcr_el2(mdcr_el2);
843 
844 	/*
845 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
846 	 *
847 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
848 	 * EL1 accesses to System registers do not trap to EL2.
849 	 */
850 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
851 
852 	/*
853 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
854 	 * reset.
855 	 *
856 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
857 	 * and prevent timer interrupts.
858 	 */
859 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
860 
861 	manage_extensions_nonsecure_el2_unused();
862 }
863 
864 /*******************************************************************************
865  * Prepare the CPU system registers for first entry into realm, secure, or
866  * normal world.
867  *
868  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
869  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
870  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
871  * For all entries, the EL1 registers are initialized from the cpu_context
872  ******************************************************************************/
873 void cm_prepare_el3_exit(uint32_t security_state)
874 {
875 	u_register_t sctlr_elx, scr_el3;
876 	cpu_context_t *ctx = cm_get_context(security_state);
877 
878 	assert(ctx != NULL);
879 
880 	if (security_state == NON_SECURE) {
881 		uint64_t el2_implemented = el_implemented(2);
882 
883 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
884 						 CTX_SCR_EL3);
885 
886 		if (((scr_el3 & SCR_HCE_BIT) != 0U)
887 			|| (el2_implemented != EL_IMPL_NONE)) {
888 			/*
889 			 * If context is not being used for EL2, initialize
890 			 * HCRX_EL2 with its init value here.
891 			 */
892 			if (is_feat_hcx_supported()) {
893 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
894 			}
895 
896 			/*
897 			 * Initialize Fine-grained trap registers introduced
898 			 * by FEAT_FGT so all traps are initially disabled when
899 			 * switching to EL2 or a lower EL, preventing undesired
900 			 * behavior.
901 			 */
902 			if (is_feat_fgt_supported()) {
903 				/*
904 				 * Initialize HFG*_EL2 registers with a default
905 				 * value so legacy systems unaware of FEAT_FGT
906 				 * do not get trapped due to their lack of
907 				 * initialization for this feature.
908 				 */
909 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
910 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
911 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
912 			}
913 		}
914 
915 
916 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
917 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
918 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
919 							   CTX_SCTLR_EL1);
920 			sctlr_elx &= SCTLR_EE_BIT;
921 			sctlr_elx |= SCTLR_EL2_RES1;
922 #if ERRATA_A75_764081
923 			/*
924 			 * If workaround of errata 764081 for Cortex-A75 is used
925 			 * then set SCTLR_EL2.IESB to enable Implicit Error
926 			 * Synchronization Barrier.
927 			 */
928 			sctlr_elx |= SCTLR_IESB_BIT;
929 #endif
930 			write_sctlr_el2(sctlr_elx);
931 		} else if (el2_implemented != EL_IMPL_NONE) {
932 			init_nonsecure_el2_unused(ctx);
933 		}
934 	}
935 
936 	cm_el1_sysregs_context_restore(security_state);
937 	cm_set_next_eret_context(security_state);
938 }
939 
940 #if CTX_INCLUDE_EL2_REGS
941 
942 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
943 {
944 	write_ctx_reg(ctx, CTX_HDFGRTR_EL2, read_hdfgrtr_el2());
945 	if (is_feat_amu_supported()) {
946 		write_ctx_reg(ctx, CTX_HAFGRTR_EL2, read_hafgrtr_el2());
947 	}
948 	write_ctx_reg(ctx, CTX_HDFGWTR_EL2, read_hdfgwtr_el2());
949 	write_ctx_reg(ctx, CTX_HFGITR_EL2, read_hfgitr_el2());
950 	write_ctx_reg(ctx, CTX_HFGRTR_EL2, read_hfgrtr_el2());
951 	write_ctx_reg(ctx, CTX_HFGWTR_EL2, read_hfgwtr_el2());
952 }
953 
954 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
955 {
956 	write_hdfgrtr_el2(read_ctx_reg(ctx, CTX_HDFGRTR_EL2));
957 	if (is_feat_amu_supported()) {
958 		write_hafgrtr_el2(read_ctx_reg(ctx, CTX_HAFGRTR_EL2));
959 	}
960 	write_hdfgwtr_el2(read_ctx_reg(ctx, CTX_HDFGWTR_EL2));
961 	write_hfgitr_el2(read_ctx_reg(ctx, CTX_HFGITR_EL2));
962 	write_hfgrtr_el2(read_ctx_reg(ctx, CTX_HFGRTR_EL2));
963 	write_hfgwtr_el2(read_ctx_reg(ctx, CTX_HFGWTR_EL2));
964 }
965 
966 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
967 {
968 	u_register_t mpam_idr = read_mpamidr_el1();
969 
970 	write_ctx_reg(ctx, CTX_MPAM2_EL2, read_mpam2_el2());
971 
972 	/*
973 	 * The context registers that we intend to save would be part of the
974 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
975 	 */
976 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
977 		return;
978 	}
979 
980 	/*
981 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
982 	 * MPAMIDR_HAS_HCR_BIT == 1.
983 	 */
984 	write_ctx_reg(ctx, CTX_MPAMHCR_EL2, read_mpamhcr_el2());
985 	write_ctx_reg(ctx, CTX_MPAMVPM0_EL2, read_mpamvpm0_el2());
986 	write_ctx_reg(ctx, CTX_MPAMVPMV_EL2, read_mpamvpmv_el2());
987 
988 	/*
989 	 * The number of MPAMVPM registers is implementation defined, their
990 	 * number is stored in the MPAMIDR_EL1 register.
991 	 */
992 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
993 	case 7:
994 		write_ctx_reg(ctx, CTX_MPAMVPM7_EL2, read_mpamvpm7_el2());
995 		__fallthrough;
996 	case 6:
997 		write_ctx_reg(ctx, CTX_MPAMVPM6_EL2, read_mpamvpm6_el2());
998 		__fallthrough;
999 	case 5:
1000 		write_ctx_reg(ctx, CTX_MPAMVPM5_EL2, read_mpamvpm5_el2());
1001 		__fallthrough;
1002 	case 4:
1003 		write_ctx_reg(ctx, CTX_MPAMVPM4_EL2, read_mpamvpm4_el2());
1004 		__fallthrough;
1005 	case 3:
1006 		write_ctx_reg(ctx, CTX_MPAMVPM3_EL2, read_mpamvpm3_el2());
1007 		__fallthrough;
1008 	case 2:
1009 		write_ctx_reg(ctx, CTX_MPAMVPM2_EL2, read_mpamvpm2_el2());
1010 		__fallthrough;
1011 	case 1:
1012 		write_ctx_reg(ctx, CTX_MPAMVPM1_EL2, read_mpamvpm1_el2());
1013 		break;
1014 	}
1015 }
1016 
1017 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1018 {
1019 	u_register_t mpam_idr = read_mpamidr_el1();
1020 
1021 	write_mpam2_el2(read_ctx_reg(ctx, CTX_MPAM2_EL2));
1022 
1023 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1024 		return;
1025 	}
1026 
1027 	write_mpamhcr_el2(read_ctx_reg(ctx, CTX_MPAMHCR_EL2));
1028 	write_mpamvpm0_el2(read_ctx_reg(ctx, CTX_MPAMVPM0_EL2));
1029 	write_mpamvpmv_el2(read_ctx_reg(ctx, CTX_MPAMVPMV_EL2));
1030 
1031 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1032 	case 7:
1033 		write_mpamvpm7_el2(read_ctx_reg(ctx, CTX_MPAMVPM7_EL2));
1034 		__fallthrough;
1035 	case 6:
1036 		write_mpamvpm6_el2(read_ctx_reg(ctx, CTX_MPAMVPM6_EL2));
1037 		__fallthrough;
1038 	case 5:
1039 		write_mpamvpm5_el2(read_ctx_reg(ctx, CTX_MPAMVPM5_EL2));
1040 		__fallthrough;
1041 	case 4:
1042 		write_mpamvpm4_el2(read_ctx_reg(ctx, CTX_MPAMVPM4_EL2));
1043 		__fallthrough;
1044 	case 3:
1045 		write_mpamvpm3_el2(read_ctx_reg(ctx, CTX_MPAMVPM3_EL2));
1046 		__fallthrough;
1047 	case 2:
1048 		write_mpamvpm2_el2(read_ctx_reg(ctx, CTX_MPAMVPM2_EL2));
1049 		__fallthrough;
1050 	case 1:
1051 		write_mpamvpm1_el2(read_ctx_reg(ctx, CTX_MPAMVPM1_EL2));
1052 		break;
1053 	}
1054 }
1055 
1056 /* -----------------------------------------------------
1057  * The following registers are not added:
1058  * AMEVCNTVOFF0<n>_EL2
1059  * AMEVCNTVOFF1<n>_EL2
1060  * ICH_AP0R<n>_EL2
1061  * ICH_AP1R<n>_EL2
1062  * ICH_LR<n>_EL2
1063  * -----------------------------------------------------
1064  */
1065 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1066 {
1067 	write_ctx_reg(ctx, CTX_ACTLR_EL2, read_actlr_el2());
1068 	write_ctx_reg(ctx, CTX_AFSR0_EL2, read_afsr0_el2());
1069 	write_ctx_reg(ctx, CTX_AFSR1_EL2, read_afsr1_el2());
1070 	write_ctx_reg(ctx, CTX_AMAIR_EL2, read_amair_el2());
1071 	write_ctx_reg(ctx, CTX_CNTHCTL_EL2, read_cnthctl_el2());
1072 	write_ctx_reg(ctx, CTX_CNTVOFF_EL2, read_cntvoff_el2());
1073 	write_ctx_reg(ctx, CTX_CPTR_EL2, read_cptr_el2());
1074 	if (CTX_INCLUDE_AARCH32_REGS) {
1075 		write_ctx_reg(ctx, CTX_DBGVCR32_EL2, read_dbgvcr32_el2());
1076 	}
1077 	write_ctx_reg(ctx, CTX_ELR_EL2, read_elr_el2());
1078 	write_ctx_reg(ctx, CTX_ESR_EL2, read_esr_el2());
1079 	write_ctx_reg(ctx, CTX_FAR_EL2, read_far_el2());
1080 	write_ctx_reg(ctx, CTX_HACR_EL2, read_hacr_el2());
1081 	write_ctx_reg(ctx, CTX_HCR_EL2, read_hcr_el2());
1082 	write_ctx_reg(ctx, CTX_HPFAR_EL2, read_hpfar_el2());
1083 	write_ctx_reg(ctx, CTX_HSTR_EL2, read_hstr_el2());
1084 
1085 	/*
1086 	 * Set the NS bit to be able to access the ICC_SRE_EL2 register
1087 	 * TODO: remove with root context
1088 	 */
1089 	u_register_t scr_el3 = read_scr_el3();
1090 
1091 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1092 	isb();
1093 	write_ctx_reg(ctx, CTX_ICC_SRE_EL2, read_icc_sre_el2());
1094 
1095 	write_scr_el3(scr_el3);
1096 	isb();
1097 
1098 	write_ctx_reg(ctx, CTX_ICH_HCR_EL2, read_ich_hcr_el2());
1099 	write_ctx_reg(ctx, CTX_ICH_VMCR_EL2, read_ich_vmcr_el2());
1100 	write_ctx_reg(ctx, CTX_MAIR_EL2, read_mair_el2());
1101 	write_ctx_reg(ctx, CTX_MDCR_EL2, read_mdcr_el2());
1102 	write_ctx_reg(ctx, CTX_SCTLR_EL2, read_sctlr_el2());
1103 	write_ctx_reg(ctx, CTX_SPSR_EL2, read_spsr_el2());
1104 	write_ctx_reg(ctx, CTX_SP_EL2, read_sp_el2());
1105 	write_ctx_reg(ctx, CTX_TCR_EL2, read_tcr_el2());
1106 	write_ctx_reg(ctx, CTX_TPIDR_EL2, read_tpidr_el2());
1107 	write_ctx_reg(ctx, CTX_TTBR0_EL2, read_ttbr0_el2());
1108 	write_ctx_reg(ctx, CTX_VBAR_EL2, read_vbar_el2());
1109 	write_ctx_reg(ctx, CTX_VMPIDR_EL2, read_vmpidr_el2());
1110 	write_ctx_reg(ctx, CTX_VPIDR_EL2, read_vpidr_el2());
1111 	write_ctx_reg(ctx, CTX_VTCR_EL2, read_vtcr_el2());
1112 	write_ctx_reg(ctx, CTX_VTTBR_EL2, read_vttbr_el2());
1113 }
1114 
1115 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1116 {
1117 	write_actlr_el2(read_ctx_reg(ctx, CTX_ACTLR_EL2));
1118 	write_afsr0_el2(read_ctx_reg(ctx, CTX_AFSR0_EL2));
1119 	write_afsr1_el2(read_ctx_reg(ctx, CTX_AFSR1_EL2));
1120 	write_amair_el2(read_ctx_reg(ctx, CTX_AMAIR_EL2));
1121 	write_cnthctl_el2(read_ctx_reg(ctx, CTX_CNTHCTL_EL2));
1122 	write_cntvoff_el2(read_ctx_reg(ctx, CTX_CNTVOFF_EL2));
1123 	write_cptr_el2(read_ctx_reg(ctx, CTX_CPTR_EL2));
1124 	if (CTX_INCLUDE_AARCH32_REGS) {
1125 		write_dbgvcr32_el2(read_ctx_reg(ctx, CTX_DBGVCR32_EL2));
1126 	}
1127 	write_elr_el2(read_ctx_reg(ctx, CTX_ELR_EL2));
1128 	write_esr_el2(read_ctx_reg(ctx, CTX_ESR_EL2));
1129 	write_far_el2(read_ctx_reg(ctx, CTX_FAR_EL2));
1130 	write_hacr_el2(read_ctx_reg(ctx, CTX_HACR_EL2));
1131 	write_hcr_el2(read_ctx_reg(ctx, CTX_HCR_EL2));
1132 	write_hpfar_el2(read_ctx_reg(ctx, CTX_HPFAR_EL2));
1133 	write_hstr_el2(read_ctx_reg(ctx, CTX_HSTR_EL2));
1134 
1135 	/*
1136 	 * Set the NS bit to be able to access the ICC_SRE_EL2 register
1137 	 * TODO: remove with root context
1138 	 */
1139 	u_register_t scr_el3 = read_scr_el3();
1140 
1141 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1142 	isb();
1143 	write_icc_sre_el2(read_ctx_reg(ctx, CTX_ICC_SRE_EL2));
1144 
1145 	write_scr_el3(scr_el3);
1146 	isb();
1147 
1148 	write_ich_hcr_el2(read_ctx_reg(ctx, CTX_ICH_HCR_EL2));
1149 	write_ich_vmcr_el2(read_ctx_reg(ctx, CTX_ICH_VMCR_EL2));
1150 	write_mair_el2(read_ctx_reg(ctx, CTX_MAIR_EL2));
1151 	write_mdcr_el2(read_ctx_reg(ctx, CTX_MDCR_EL2));
1152 	write_sctlr_el2(read_ctx_reg(ctx, CTX_SCTLR_EL2));
1153 	write_spsr_el2(read_ctx_reg(ctx, CTX_SPSR_EL2));
1154 	write_sp_el2(read_ctx_reg(ctx, CTX_SP_EL2));
1155 	write_tcr_el2(read_ctx_reg(ctx, CTX_TCR_EL2));
1156 	write_tpidr_el2(read_ctx_reg(ctx, CTX_TPIDR_EL2));
1157 	write_ttbr0_el2(read_ctx_reg(ctx, CTX_TTBR0_EL2));
1158 	write_vbar_el2(read_ctx_reg(ctx, CTX_VBAR_EL2));
1159 	write_vmpidr_el2(read_ctx_reg(ctx, CTX_VMPIDR_EL2));
1160 	write_vpidr_el2(read_ctx_reg(ctx, CTX_VPIDR_EL2));
1161 	write_vtcr_el2(read_ctx_reg(ctx, CTX_VTCR_EL2));
1162 	write_vttbr_el2(read_ctx_reg(ctx, CTX_VTTBR_EL2));
1163 }
1164 
1165 /*******************************************************************************
1166  * Save EL2 sysreg context
1167  ******************************************************************************/
1168 void cm_el2_sysregs_context_save(uint32_t security_state)
1169 {
1170 	cpu_context_t *ctx;
1171 	el2_sysregs_t *el2_sysregs_ctx;
1172 
1173 	ctx = cm_get_context(security_state);
1174 	assert(ctx != NULL);
1175 
1176 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1177 
1178 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1179 #if CTX_INCLUDE_MTE_REGS
1180 	write_ctx_reg(el2_sysregs_ctx, CTX_TFSR_EL2, read_tfsr_el2());
1181 #endif
1182 	if (is_feat_mpam_supported()) {
1183 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1184 	}
1185 
1186 	if (is_feat_fgt_supported()) {
1187 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1188 	}
1189 
1190 	if (is_feat_ecv_v2_supported()) {
1191 		write_ctx_reg(el2_sysregs_ctx, CTX_CNTPOFF_EL2, read_cntpoff_el2());
1192 	}
1193 
1194 	if (is_feat_vhe_supported()) {
1195 		write_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2, read_contextidr_el2());
1196 		write_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2, read_ttbr1_el2());
1197 	}
1198 
1199 	if (is_feat_ras_supported()) {
1200 		write_ctx_reg(el2_sysregs_ctx, CTX_VDISR_EL2, read_vdisr_el2());
1201 		write_ctx_reg(el2_sysregs_ctx, CTX_VSESR_EL2, read_vsesr_el2());
1202 	}
1203 
1204 	if (is_feat_nv2_supported()) {
1205 		write_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2, read_vncr_el2());
1206 	}
1207 
1208 	if (is_feat_trf_supported()) {
1209 		write_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2, read_trfcr_el2());
1210 	}
1211 
1212 	if (is_feat_csv2_2_supported()) {
1213 		write_ctx_reg(el2_sysregs_ctx, CTX_SCXTNUM_EL2, read_scxtnum_el2());
1214 	}
1215 
1216 	if (is_feat_hcx_supported()) {
1217 		write_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2, read_hcrx_el2());
1218 	}
1219 	if (is_feat_tcr2_supported()) {
1220 		write_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2, read_tcr2_el2());
1221 	}
1222 	if (is_feat_sxpie_supported()) {
1223 		write_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2, read_pire0_el2());
1224 		write_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2, read_pir_el2());
1225 	}
1226 	if (is_feat_s2pie_supported()) {
1227 		write_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2, read_s2pir_el2());
1228 	}
1229 	if (is_feat_sxpoe_supported()) {
1230 		write_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2, read_por_el2());
1231 	}
1232 	if (is_feat_gcs_supported()) {
1233 		write_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2, read_gcspr_el2());
1234 		write_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2, read_gcscr_el2());
1235 	}
1236 }
1237 
1238 /*******************************************************************************
1239  * Restore EL2 sysreg context
1240  ******************************************************************************/
1241 void cm_el2_sysregs_context_restore(uint32_t security_state)
1242 {
1243 	cpu_context_t *ctx;
1244 	el2_sysregs_t *el2_sysregs_ctx;
1245 
1246 	ctx = cm_get_context(security_state);
1247 	assert(ctx != NULL);
1248 
1249 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1250 
1251 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1252 #if CTX_INCLUDE_MTE_REGS
1253 	write_tfsr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TFSR_EL2));
1254 #endif
1255 	if (is_feat_mpam_supported()) {
1256 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1257 	}
1258 
1259 	if (is_feat_fgt_supported()) {
1260 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1261 	}
1262 
1263 	if (is_feat_ecv_v2_supported()) {
1264 		write_cntpoff_el2(read_ctx_reg(el2_sysregs_ctx, CTX_CNTPOFF_EL2));
1265 	}
1266 
1267 	if (is_feat_vhe_supported()) {
1268 		write_contextidr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2));
1269 		write_ttbr1_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2));
1270 	}
1271 
1272 	if (is_feat_ras_supported()) {
1273 		write_vdisr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VDISR_EL2));
1274 		write_vsesr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VSESR_EL2));
1275 	}
1276 
1277 	if (is_feat_nv2_supported()) {
1278 		write_vncr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2));
1279 	}
1280 	if (is_feat_trf_supported()) {
1281 		write_trfcr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2));
1282 	}
1283 
1284 	if (is_feat_csv2_2_supported()) {
1285 		write_scxtnum_el2(read_ctx_reg(el2_sysregs_ctx, CTX_SCXTNUM_EL2));
1286 	}
1287 
1288 	if (is_feat_hcx_supported()) {
1289 		write_hcrx_el2(read_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2));
1290 	}
1291 	if (is_feat_tcr2_supported()) {
1292 		write_tcr2_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2));
1293 	}
1294 	if (is_feat_sxpie_supported()) {
1295 		write_pire0_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2));
1296 		write_pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2));
1297 	}
1298 	if (is_feat_s2pie_supported()) {
1299 		write_s2pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2));
1300 	}
1301 	if (is_feat_sxpoe_supported()) {
1302 		write_por_el2(read_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2));
1303 	}
1304 	if (is_feat_gcs_supported()) {
1305 		write_gcscr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2));
1306 		write_gcspr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2));
1307 	}
1308 }
1309 #endif /* CTX_INCLUDE_EL2_REGS */
1310 
1311 /*******************************************************************************
1312  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1313  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1314  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1315  * cm_prepare_el3_exit function.
1316  ******************************************************************************/
1317 void cm_prepare_el3_exit_ns(void)
1318 {
1319 #if CTX_INCLUDE_EL2_REGS
1320 #if ENABLE_ASSERTIONS
1321 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1322 	assert(ctx != NULL);
1323 
1324 	/* Assert that EL2 is used. */
1325 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1326 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1327 			(el_implemented(2U) != EL_IMPL_NONE));
1328 #endif /* ENABLE_ASSERTIONS */
1329 
1330 	/* Restore EL2 and EL1 sysreg contexts */
1331 	cm_el2_sysregs_context_restore(NON_SECURE);
1332 	cm_el1_sysregs_context_restore(NON_SECURE);
1333 	cm_set_next_eret_context(NON_SECURE);
1334 #else
1335 	cm_prepare_el3_exit(NON_SECURE);
1336 #endif /* CTX_INCLUDE_EL2_REGS */
1337 }
1338 
1339 /*******************************************************************************
1340  * The next four functions are used by runtime services to save and restore
1341  * EL1 context on the 'cpu_context' structure for the specified security
1342  * state.
1343  ******************************************************************************/
1344 void cm_el1_sysregs_context_save(uint32_t security_state)
1345 {
1346 	cpu_context_t *ctx;
1347 
1348 	ctx = cm_get_context(security_state);
1349 	assert(ctx != NULL);
1350 
1351 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1352 
1353 #if IMAGE_BL31
1354 	if (security_state == SECURE)
1355 		PUBLISH_EVENT(cm_exited_secure_world);
1356 	else
1357 		PUBLISH_EVENT(cm_exited_normal_world);
1358 #endif
1359 }
1360 
1361 void cm_el1_sysregs_context_restore(uint32_t security_state)
1362 {
1363 	cpu_context_t *ctx;
1364 
1365 	ctx = cm_get_context(security_state);
1366 	assert(ctx != NULL);
1367 
1368 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1369 
1370 #if IMAGE_BL31
1371 	if (security_state == SECURE)
1372 		PUBLISH_EVENT(cm_entering_secure_world);
1373 	else
1374 		PUBLISH_EVENT(cm_entering_normal_world);
1375 #endif
1376 }
1377 
1378 /*******************************************************************************
1379  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1380  * given security state with the given entrypoint
1381  ******************************************************************************/
1382 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1383 {
1384 	cpu_context_t *ctx;
1385 	el3_state_t *state;
1386 
1387 	ctx = cm_get_context(security_state);
1388 	assert(ctx != NULL);
1389 
1390 	/* Populate EL3 state so that ERET jumps to the correct entry */
1391 	state = get_el3state_ctx(ctx);
1392 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1393 }
1394 
1395 /*******************************************************************************
1396  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1397  * pertaining to the given security state
1398  ******************************************************************************/
1399 void cm_set_elr_spsr_el3(uint32_t security_state,
1400 			uintptr_t entrypoint, uint32_t spsr)
1401 {
1402 	cpu_context_t *ctx;
1403 	el3_state_t *state;
1404 
1405 	ctx = cm_get_context(security_state);
1406 	assert(ctx != NULL);
1407 
1408 	/* Populate EL3 state so that ERET jumps to the correct entry */
1409 	state = get_el3state_ctx(ctx);
1410 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1411 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1412 }
1413 
1414 /*******************************************************************************
1415  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1416  * pertaining to the given security state using the value and bit position
1417  * specified in the parameters. It preserves all other bits.
1418  ******************************************************************************/
1419 void cm_write_scr_el3_bit(uint32_t security_state,
1420 			  uint32_t bit_pos,
1421 			  uint32_t value)
1422 {
1423 	cpu_context_t *ctx;
1424 	el3_state_t *state;
1425 	u_register_t scr_el3;
1426 
1427 	ctx = cm_get_context(security_state);
1428 	assert(ctx != NULL);
1429 
1430 	/* Ensure that the bit position is a valid one */
1431 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1432 
1433 	/* Ensure that the 'value' is only a bit wide */
1434 	assert(value <= 1U);
1435 
1436 	/*
1437 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1438 	 * and set it to its new value.
1439 	 */
1440 	state = get_el3state_ctx(ctx);
1441 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1442 	scr_el3 &= ~(1UL << bit_pos);
1443 	scr_el3 |= (u_register_t)value << bit_pos;
1444 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1445 }
1446 
1447 /*******************************************************************************
1448  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1449  * given security state.
1450  ******************************************************************************/
1451 u_register_t cm_get_scr_el3(uint32_t security_state)
1452 {
1453 	cpu_context_t *ctx;
1454 	el3_state_t *state;
1455 
1456 	ctx = cm_get_context(security_state);
1457 	assert(ctx != NULL);
1458 
1459 	/* Populate EL3 state so that ERET jumps to the correct entry */
1460 	state = get_el3state_ctx(ctx);
1461 	return read_ctx_reg(state, CTX_SCR_EL3);
1462 }
1463 
1464 /*******************************************************************************
1465  * This function is used to program the context that's used for exception
1466  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1467  * the required security state
1468  ******************************************************************************/
1469 void cm_set_next_eret_context(uint32_t security_state)
1470 {
1471 	cpu_context_t *ctx;
1472 
1473 	ctx = cm_get_context(security_state);
1474 	assert(ctx != NULL);
1475 
1476 	cm_set_next_context(ctx);
1477 }
1478