xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 885e26830499284a7718f825579d6ebeb8b6cd89)
1 /*
2  * Copyright (c) 2013-2022, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/pubsub_events.h>
24 #include <lib/extensions/amu.h>
25 #include <lib/extensions/brbe.h>
26 #include <lib/extensions/mpam.h>
27 #include <lib/extensions/sme.h>
28 #include <lib/extensions/spe.h>
29 #include <lib/extensions/sve.h>
30 #include <lib/extensions/sys_reg_trace.h>
31 #include <lib/extensions/trbe.h>
32 #include <lib/extensions/trf.h>
33 #include <lib/utils.h>
34 
35 #if ENABLE_FEAT_TWED
36 /* Make sure delay value fits within the range(0-15) */
37 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
38 #endif /* ENABLE_FEAT_TWED */
39 
40 static void manage_extensions_secure(cpu_context_t *ctx);
41 
42 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
43 {
44 	u_register_t sctlr_elx, actlr_elx;
45 
46 	/*
47 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
48 	 * execution state setting all fields rather than relying on the hw.
49 	 * Some fields have architecturally UNKNOWN reset values and these are
50 	 * set to zero.
51 	 *
52 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
53 	 *
54 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
55 	 * required by PSCI specification)
56 	 */
57 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
58 	if (GET_RW(ep->spsr) == MODE_RW_64) {
59 		sctlr_elx |= SCTLR_EL1_RES1;
60 	} else {
61 		/*
62 		 * If the target execution state is AArch32 then the following
63 		 * fields need to be set.
64 		 *
65 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
66 		 *  instructions are not trapped to EL1.
67 		 *
68 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
69 		 *  instructions are not trapped to EL1.
70 		 *
71 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
72 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
73 		 */
74 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
75 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
76 	}
77 
78 #if ERRATA_A75_764081
79 	/*
80 	 * If workaround of errata 764081 for Cortex-A75 is used then set
81 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
82 	 */
83 	sctlr_elx |= SCTLR_IESB_BIT;
84 #endif
85 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
86 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
87 
88 	/*
89 	 * Base the context ACTLR_EL1 on the current value, as it is
90 	 * implementation defined. The context restore process will write
91 	 * the value from the context to the actual register and can cause
92 	 * problems for processor cores that don't expect certain bits to
93 	 * be zero.
94 	 */
95 	actlr_elx = read_actlr_el1();
96 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
97 }
98 
99 /******************************************************************************
100  * This function performs initializations that are specific to SECURE state
101  * and updates the cpu context specified by 'ctx'.
102  *****************************************************************************/
103 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
104 {
105 	u_register_t scr_el3;
106 	el3_state_t *state;
107 
108 	state = get_el3state_ctx(ctx);
109 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
110 
111 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
112 	/*
113 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
114 	 * indicated by the interrupt routing model for BL31.
115 	 */
116 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
117 #endif
118 
119 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
120 	/* Get Memory Tagging Extension support level */
121 	unsigned int mte = get_armv8_5_mte_support();
122 #endif
123 	/*
124 	 * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS
125 	 * is set, or when MTE is only implemented at EL0.
126 	 */
127 #if CTX_INCLUDE_MTE_REGS
128 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
129 	scr_el3 |= SCR_ATA_BIT;
130 #else
131 	if (mte == MTE_IMPLEMENTED_EL0) {
132 		scr_el3 |= SCR_ATA_BIT;
133 	}
134 #endif /* CTX_INCLUDE_MTE_REGS */
135 
136 	/* Enable S-EL2 if the next EL is EL2 and S-EL2 is present */
137 	if ((GET_EL(ep->spsr) == MODE_EL2) && is_armv8_4_sel2_present()) {
138 		if (GET_RW(ep->spsr) != MODE_RW_64) {
139 			ERROR("S-EL2 can not be used in AArch32\n.");
140 			panic();
141 		}
142 
143 		scr_el3 |= SCR_EEL2_BIT;
144 	}
145 
146 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
147 
148 	/*
149 	 * Initialize EL1 context registers unless SPMC is running
150 	 * at S-EL2.
151 	 */
152 #if !SPMD_SPM_AT_SEL2
153 	setup_el1_context(ctx, ep);
154 #endif
155 
156 	manage_extensions_secure(ctx);
157 }
158 
159 #if ENABLE_RME
160 /******************************************************************************
161  * This function performs initializations that are specific to REALM state
162  * and updates the cpu context specified by 'ctx'.
163  *****************************************************************************/
164 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
165 {
166 	u_register_t scr_el3;
167 	el3_state_t *state;
168 
169 	state = get_el3state_ctx(ctx);
170 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
171 
172 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT | SCR_EnSCXT_BIT;
173 
174 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
175 }
176 #endif /* ENABLE_RME */
177 
178 /******************************************************************************
179  * This function performs initializations that are specific to NON-SECURE state
180  * and updates the cpu context specified by 'ctx'.
181  *****************************************************************************/
182 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
183 {
184 	u_register_t scr_el3;
185 	el3_state_t *state;
186 
187 	state = get_el3state_ctx(ctx);
188 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
189 
190 	/* SCR_NS: Set the NS bit */
191 	scr_el3 |= SCR_NS_BIT;
192 
193 #if !CTX_INCLUDE_PAUTH_REGS
194 	/*
195 	 * If the pointer authentication registers aren't saved during world
196 	 * switches the value of the registers can be leaked from the Secure to
197 	 * the Non-secure world. To prevent this, rather than enabling pointer
198 	 * authentication everywhere, we only enable it in the Non-secure world.
199 	 *
200 	 * If the Secure world wants to use pointer authentication,
201 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
202 	 */
203 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
204 #endif /* !CTX_INCLUDE_PAUTH_REGS */
205 
206 	/* Allow access to Allocation Tags when MTE is implemented. */
207 	scr_el3 |= SCR_ATA_BIT;
208 
209 #ifdef IMAGE_BL31
210 	/*
211 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
212 	 *  indicated by the interrupt routing model for BL31.
213 	 */
214 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
215 #endif
216 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
217 
218 	/* Initialize EL1 context registers */
219 	setup_el1_context(ctx, ep);
220 
221 	/* Initialize EL2 context registers */
222 #if CTX_INCLUDE_EL2_REGS
223 
224 	/*
225 	 * Initialize SCTLR_EL2 context register using Endianness value
226 	 * taken from the entrypoint attribute.
227 	 */
228 	u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
229 	sctlr_el2 |= SCTLR_EL2_RES1;
230 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2,
231 			sctlr_el2);
232 
233 	/*
234 	 * Program the ICC_SRE_EL2 to make sure the correct bits are set
235 	 * when restoring NS context.
236 	 */
237 	u_register_t icc_sre_el2 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
238 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
239 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_ICC_SRE_EL2,
240 			icc_sre_el2);
241 #endif /* CTX_INCLUDE_EL2_REGS */
242 }
243 
244 /*******************************************************************************
245  * The following function performs initialization of the cpu_context 'ctx'
246  * for first use that is common to all security states, and sets the
247  * initial entrypoint state as specified by the entry_point_info structure.
248  *
249  * The EE and ST attributes are used to configure the endianness and secure
250  * timer availability for the new execution context.
251  ******************************************************************************/
252 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
253 {
254 	u_register_t scr_el3;
255 	el3_state_t *state;
256 	gp_regs_t *gp_regs;
257 
258 	/* Clear any residual register values from the context */
259 	zeromem(ctx, sizeof(*ctx));
260 
261 	/*
262 	 * SCR_EL3 was initialised during reset sequence in macro
263 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
264 	 * affect the next EL.
265 	 *
266 	 * The following fields are initially set to zero and then updated to
267 	 * the required value depending on the state of the SPSR_EL3 and the
268 	 * Security state and entrypoint attributes of the next EL.
269 	 */
270 	scr_el3 = read_scr();
271 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
272 			SCR_ST_BIT | SCR_HCE_BIT | SCR_NSE_BIT);
273 
274 	/*
275 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
276 	 *  Exception level as specified by SPSR.
277 	 */
278 	if (GET_RW(ep->spsr) == MODE_RW_64) {
279 		scr_el3 |= SCR_RW_BIT;
280 	}
281 
282 	/*
283 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
284 	 * Secure timer registers to EL3, from AArch64 state only, if specified
285 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
286 	 * bit always behaves as 1 (i.e. secure physical timer register access
287 	 * is not trapped)
288 	 */
289 	if (EP_GET_ST(ep->h.attr) != 0U) {
290 		scr_el3 |= SCR_ST_BIT;
291 	}
292 
293 	/*
294 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
295 	 * SCR_EL3.HXEn.
296 	 */
297 #if ENABLE_FEAT_HCX
298 	scr_el3 |= SCR_HXEn_BIT;
299 #endif
300 
301 	/*
302 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
303 	 * registers are trapped to EL3.
304 	 */
305 #if ENABLE_FEAT_RNG_TRAP
306 	scr_el3 |= SCR_TRNDR_BIT;
307 #endif
308 
309 #if RAS_TRAP_LOWER_EL_ERR_ACCESS
310 	/*
311 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
312 	 * and RAS ERX registers from EL1 and EL2 are trapped to EL3.
313 	 */
314 	scr_el3 |= SCR_TERR_BIT;
315 #endif
316 
317 #if !HANDLE_EA_EL3_FIRST
318 	/*
319 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
320 	 * to EL3 when executing at a lower EL. When executing at EL3, External
321 	 * Aborts are taken to EL3.
322 	 */
323 	scr_el3 &= ~SCR_EA_BIT;
324 #endif
325 
326 #if FAULT_INJECTION_SUPPORT
327 	/* Enable fault injection from lower ELs */
328 	scr_el3 |= SCR_FIEN_BIT;
329 #endif
330 
331 	/*
332 	 * CPTR_EL3 was initialized out of reset, copy that value to the
333 	 * context register.
334 	 */
335 	write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3());
336 
337 	/*
338 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
339 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
340 	 * next mode is Hyp.
341 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
342 	 * same conditions as HVC instructions and when the processor supports
343 	 * ARMv8.6-FGT.
344 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
345 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
346 	 * and when the processor supports ECV.
347 	 */
348 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
349 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
350 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
351 		scr_el3 |= SCR_HCE_BIT;
352 
353 		if (is_armv8_6_fgt_present()) {
354 			scr_el3 |= SCR_FGTEN_BIT;
355 		}
356 
357 		if (get_armv8_6_ecv_support()
358 		    == ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) {
359 			scr_el3 |= SCR_ECVEN_BIT;
360 		}
361 	}
362 
363 #if ENABLE_FEAT_TWED
364 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
365 	/* Set delay in SCR_EL3 */
366 	scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
367 	scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
368 			<< SCR_TWEDEL_SHIFT);
369 
370 	/* Enable WFE delay */
371 	scr_el3 |= SCR_TWEDEn_BIT;
372 #endif /* ENABLE_FEAT_TWED */
373 
374 	/*
375 	 * Populate EL3 state so that we've the right context
376 	 * before doing ERET
377 	 */
378 	state = get_el3state_ctx(ctx);
379 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
380 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
381 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
382 
383 	/*
384 	 * Store the X0-X7 value from the entrypoint into the context
385 	 * Use memcpy as we are in control of the layout of the structures
386 	 */
387 	gp_regs = get_gpregs_ctx(ctx);
388 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
389 }
390 
391 /*******************************************************************************
392  * Context management library initialization routine. This library is used by
393  * runtime services to share pointers to 'cpu_context' structures for secure
394  * non-secure and realm states. Management of the structures and their associated
395  * memory is not done by the context management library e.g. the PSCI service
396  * manages the cpu context used for entry from and exit to the non-secure state.
397  * The Secure payload dispatcher service manages the context(s) corresponding to
398  * the secure state. It also uses this library to get access to the non-secure
399  * state cpu context pointers.
400  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
401  * which will be used for programming an entry into a lower EL. The same context
402  * will be used to save state upon exception entry from that EL.
403  ******************************************************************************/
404 void __init cm_init(void)
405 {
406 	/*
407 	 * The context management library has only global data to intialize, but
408 	 * that will be done when the BSS is zeroed out.
409 	 */
410 }
411 
412 /*******************************************************************************
413  * This is the high-level function used to initialize the cpu_context 'ctx' for
414  * first use. It performs initializations that are common to all security states
415  * and initializations specific to the security state specified in 'ep'
416  ******************************************************************************/
417 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
418 {
419 	unsigned int security_state;
420 
421 	assert(ctx != NULL);
422 
423 	/*
424 	 * Perform initializations that are common
425 	 * to all security states
426 	 */
427 	setup_context_common(ctx, ep);
428 
429 	security_state = GET_SECURITY_STATE(ep->h.attr);
430 
431 	/* Perform security state specific initializations */
432 	switch (security_state) {
433 	case SECURE:
434 		setup_secure_context(ctx, ep);
435 		break;
436 #if ENABLE_RME
437 	case REALM:
438 		setup_realm_context(ctx, ep);
439 		break;
440 #endif
441 	case NON_SECURE:
442 		setup_ns_context(ctx, ep);
443 		break;
444 	default:
445 		ERROR("Invalid security state\n");
446 		panic();
447 		break;
448 	}
449 }
450 
451 /*******************************************************************************
452  * Enable architecture extensions on first entry to Non-secure world.
453  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
454  * it is zero.
455  ******************************************************************************/
456 static void manage_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx)
457 {
458 #if IMAGE_BL31
459 #if ENABLE_SPE_FOR_LOWER_ELS
460 	spe_enable(el2_unused);
461 #endif
462 
463 #if ENABLE_AMU
464 	amu_enable(el2_unused, ctx);
465 #endif
466 
467 #if ENABLE_SME_FOR_NS
468 	/* Enable SME, SVE, and FPU/SIMD for non-secure world. */
469 	sme_enable(ctx);
470 #elif ENABLE_SVE_FOR_NS
471 	/* Enable SVE and FPU/SIMD for non-secure world. */
472 	sve_enable(ctx);
473 #endif
474 
475 #if ENABLE_MPAM_FOR_LOWER_ELS
476 	mpam_enable(el2_unused);
477 #endif
478 
479 #if ENABLE_TRBE_FOR_NS
480 	trbe_enable();
481 #endif /* ENABLE_TRBE_FOR_NS */
482 
483 #if ENABLE_BRBE_FOR_NS
484 	brbe_enable();
485 #endif /* ENABLE_BRBE_FOR_NS */
486 
487 #if ENABLE_SYS_REG_TRACE_FOR_NS
488 	sys_reg_trace_enable(ctx);
489 #endif /* ENABLE_SYS_REG_TRACE_FOR_NS */
490 
491 #if ENABLE_TRF_FOR_NS
492 	trf_enable();
493 #endif /* ENABLE_TRF_FOR_NS */
494 #endif
495 }
496 
497 /*******************************************************************************
498  * Enable architecture extensions on first entry to Secure world.
499  ******************************************************************************/
500 static void manage_extensions_secure(cpu_context_t *ctx)
501 {
502 #if IMAGE_BL31
503  #if ENABLE_SME_FOR_NS
504   #if ENABLE_SME_FOR_SWD
505 	/*
506 	 * Enable SME, SVE, FPU/SIMD in secure context, secure manager must
507 	 * ensure SME, SVE, and FPU/SIMD context properly managed.
508 	 */
509 	sme_enable(ctx);
510   #else /* ENABLE_SME_FOR_SWD */
511 	/*
512 	 * Disable SME, SVE, FPU/SIMD in secure context so non-secure world can
513 	 * safely use the associated registers.
514 	 */
515 	sme_disable(ctx);
516   #endif /* ENABLE_SME_FOR_SWD */
517  #elif ENABLE_SVE_FOR_NS
518   #if ENABLE_SVE_FOR_SWD
519 	/*
520 	 * Enable SVE and FPU in secure context, secure manager must ensure that
521 	 * the SVE and FPU register contexts are properly managed.
522 	 */
523 	sve_enable(ctx);
524  #else /* ENABLE_SVE_FOR_SWD */
525 	/*
526 	 * Disable SVE and FPU in secure context so non-secure world can safely
527 	 * use them.
528 	 */
529 	sve_disable(ctx);
530   #endif /* ENABLE_SVE_FOR_SWD */
531  #endif /* ENABLE_SVE_FOR_NS */
532 #endif /* IMAGE_BL31 */
533 }
534 
535 /*******************************************************************************
536  * The following function initializes the cpu_context for a CPU specified by
537  * its `cpu_idx` for first use, and sets the initial entrypoint state as
538  * specified by the entry_point_info structure.
539  ******************************************************************************/
540 void cm_init_context_by_index(unsigned int cpu_idx,
541 			      const entry_point_info_t *ep)
542 {
543 	cpu_context_t *ctx;
544 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
545 	cm_setup_context(ctx, ep);
546 }
547 
548 /*******************************************************************************
549  * The following function initializes the cpu_context for the current CPU
550  * for first use, and sets the initial entrypoint state as specified by the
551  * entry_point_info structure.
552  ******************************************************************************/
553 void cm_init_my_context(const entry_point_info_t *ep)
554 {
555 	cpu_context_t *ctx;
556 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
557 	cm_setup_context(ctx, ep);
558 }
559 
560 /*******************************************************************************
561  * Prepare the CPU system registers for first entry into realm, secure, or
562  * normal world.
563  *
564  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
565  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
566  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
567  * For all entries, the EL1 registers are initialized from the cpu_context
568  ******************************************************************************/
569 void cm_prepare_el3_exit(uint32_t security_state)
570 {
571 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
572 	cpu_context_t *ctx = cm_get_context(security_state);
573 	bool el2_unused = false;
574 	uint64_t hcr_el2 = 0U;
575 
576 	assert(ctx != NULL);
577 
578 	if (security_state == NON_SECURE) {
579 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
580 						 CTX_SCR_EL3);
581 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
582 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
583 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
584 							   CTX_SCTLR_EL1);
585 			sctlr_elx &= SCTLR_EE_BIT;
586 			sctlr_elx |= SCTLR_EL2_RES1;
587 #if ERRATA_A75_764081
588 			/*
589 			 * If workaround of errata 764081 for Cortex-A75 is used
590 			 * then set SCTLR_EL2.IESB to enable Implicit Error
591 			 * Synchronization Barrier.
592 			 */
593 			sctlr_elx |= SCTLR_IESB_BIT;
594 #endif
595 			write_sctlr_el2(sctlr_elx);
596 		} else if (el_implemented(2) != EL_IMPL_NONE) {
597 			el2_unused = true;
598 
599 			/*
600 			 * EL2 present but unused, need to disable safely.
601 			 * SCTLR_EL2 can be ignored in this case.
602 			 *
603 			 * Set EL2 register width appropriately: Set HCR_EL2
604 			 * field to match SCR_EL3.RW.
605 			 */
606 			if ((scr_el3 & SCR_RW_BIT) != 0U)
607 				hcr_el2 |= HCR_RW_BIT;
608 
609 			/*
610 			 * For Armv8.3 pointer authentication feature, disable
611 			 * traps to EL2 when accessing key registers or using
612 			 * pointer authentication instructions from lower ELs.
613 			 */
614 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
615 
616 			write_hcr_el2(hcr_el2);
617 
618 			/*
619 			 * Initialise CPTR_EL2 setting all fields rather than
620 			 * relying on the hw. All fields have architecturally
621 			 * UNKNOWN reset values.
622 			 *
623 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
624 			 *  accesses to the CPACR_EL1 or CPACR from both
625 			 *  Execution states do not trap to EL2.
626 			 *
627 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
628 			 *  register accesses to the trace registers from both
629 			 *  Execution states do not trap to EL2.
630 			 *  If PE trace unit System registers are not implemented
631 			 *  then this bit is reserved, and must be set to zero.
632 			 *
633 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
634 			 *  to SIMD and floating-point functionality from both
635 			 *  Execution states do not trap to EL2.
636 			 */
637 			write_cptr_el2(CPTR_EL2_RESET_VAL &
638 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
639 					| CPTR_EL2_TFP_BIT));
640 
641 			/*
642 			 * Initialise CNTHCTL_EL2. All fields are
643 			 * architecturally UNKNOWN on reset and are set to zero
644 			 * except for field(s) listed below.
645 			 *
646 			 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to
647 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
648 			 *  physical timer registers.
649 			 *
650 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
651 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
652 			 *  physical counter registers.
653 			 */
654 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
655 						EL1PCEN_BIT | EL1PCTEN_BIT);
656 
657 			/*
658 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
659 			 * architecturally UNKNOWN value.
660 			 */
661 			write_cntvoff_el2(0);
662 
663 			/*
664 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
665 			 * MPIDR_EL1 respectively.
666 			 */
667 			write_vpidr_el2(read_midr_el1());
668 			write_vmpidr_el2(read_mpidr_el1());
669 
670 			/*
671 			 * Initialise VTTBR_EL2. All fields are architecturally
672 			 * UNKNOWN on reset.
673 			 *
674 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
675 			 *  2 address translation is disabled, cache maintenance
676 			 *  operations depend on the VMID.
677 			 *
678 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
679 			 *  translation is disabled.
680 			 */
681 			write_vttbr_el2(VTTBR_RESET_VAL &
682 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
683 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
684 
685 			/*
686 			 * Initialise MDCR_EL2, setting all fields rather than
687 			 * relying on hw. Some fields are architecturally
688 			 * UNKNOWN on reset.
689 			 *
690 			 * MDCR_EL2.HLP: Set to one so that event counter
691 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
692 			 *  occurs on the increment that changes
693 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
694 			 *  implemented. This bit is RES0 in versions of the
695 			 *  architecture earlier than ARMv8.5, setting it to 1
696 			 *  doesn't have any effect on them.
697 			 *
698 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
699 			 *  Filter Control register TRFCR_EL1 at EL1 is not
700 			 *  trapped to EL2. This bit is RES0 in versions of
701 			 *  the architecture earlier than ARMv8.4.
702 			 *
703 			 * MDCR_EL2.HPMD: Set to one so that event counting is
704 			 *  prohibited at EL2. This bit is RES0 in versions of
705 			 *  the architecture earlier than ARMv8.1, setting it
706 			 *  to 1 doesn't have any effect on them.
707 			 *
708 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
709 			 *  Statistical Profiling control registers from EL1
710 			 *  do not trap to EL2. This bit is RES0 when SPE is
711 			 *  not implemented.
712 			 *
713 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
714 			 *  EL1 System register accesses to the Debug ROM
715 			 *  registers are not trapped to EL2.
716 			 *
717 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
718 			 *  System register accesses to the powerdown debug
719 			 *  registers are not trapped to EL2.
720 			 *
721 			 * MDCR_EL2.TDA: Set to zero so that System register
722 			 *  accesses to the debug registers do not trap to EL2.
723 			 *
724 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
725 			 *  are not routed to EL2.
726 			 *
727 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
728 			 *  Monitors.
729 			 *
730 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
731 			 *  EL1 accesses to all Performance Monitors registers
732 			 *  are not trapped to EL2.
733 			 *
734 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
735 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
736 			 *  trapped to EL2.
737 			 *
738 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
739 			 *  architecturally-defined reset value.
740 			 *
741 			 * MDCR_EL2.E2TB: Set to zero so that the trace Buffer
742 			 *  owning exception level is NS-EL1 and, tracing is
743 			 *  prohibited at NS-EL2. These bits are RES0 when
744 			 *  FEAT_TRBE is not implemented.
745 			 */
746 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
747 				     MDCR_EL2_HPMD) |
748 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
749 				   >> PMCR_EL0_N_SHIFT)) &
750 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
751 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
752 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
753 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
754 				     MDCR_EL2_TPMCR_BIT |
755 				     MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1));
756 
757 			write_mdcr_el2(mdcr_el2);
758 
759 			/*
760 			 * Initialise HSTR_EL2. All fields are architecturally
761 			 * UNKNOWN on reset.
762 			 *
763 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
764 			 *  Non-secure EL0 or EL1 accesses to System registers
765 			 *  do not trap to EL2.
766 			 */
767 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
768 			/*
769 			 * Initialise CNTHP_CTL_EL2. All fields are
770 			 * architecturally UNKNOWN on reset.
771 			 *
772 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
773 			 *  physical timer and prevent timer interrupts.
774 			 */
775 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
776 						~(CNTHP_CTL_ENABLE_BIT));
777 		}
778 		manage_extensions_nonsecure(el2_unused, ctx);
779 	}
780 
781 	cm_el1_sysregs_context_restore(security_state);
782 	cm_set_next_eret_context(security_state);
783 }
784 
785 #if CTX_INCLUDE_EL2_REGS
786 /*******************************************************************************
787  * Save EL2 sysreg context
788  ******************************************************************************/
789 void cm_el2_sysregs_context_save(uint32_t security_state)
790 {
791 	u_register_t scr_el3 = read_scr();
792 
793 	/*
794 	 * Always save the non-secure and realm EL2 context, only save the
795 	 * S-EL2 context if S-EL2 is enabled.
796 	 */
797 	if ((security_state != SECURE) ||
798 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
799 		cpu_context_t *ctx;
800 		el2_sysregs_t *el2_sysregs_ctx;
801 
802 		ctx = cm_get_context(security_state);
803 		assert(ctx != NULL);
804 
805 		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
806 
807 		el2_sysregs_context_save_common(el2_sysregs_ctx);
808 #if ENABLE_SPE_FOR_LOWER_ELS
809 		el2_sysregs_context_save_spe(el2_sysregs_ctx);
810 #endif
811 #if CTX_INCLUDE_MTE_REGS
812 		el2_sysregs_context_save_mte(el2_sysregs_ctx);
813 #endif
814 #if ENABLE_MPAM_FOR_LOWER_ELS
815 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
816 #endif
817 #if ENABLE_FEAT_FGT
818 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
819 #endif
820 #if ENABLE_FEAT_ECV
821 		el2_sysregs_context_save_ecv(el2_sysregs_ctx);
822 #endif
823 #if ENABLE_FEAT_VHE
824 		el2_sysregs_context_save_vhe(el2_sysregs_ctx);
825 #endif
826 #if RAS_EXTENSION
827 		el2_sysregs_context_save_ras(el2_sysregs_ctx);
828 #endif
829 #if CTX_INCLUDE_NEVE_REGS
830 		el2_sysregs_context_save_nv2(el2_sysregs_ctx);
831 #endif
832 #if ENABLE_TRF_FOR_NS
833 		el2_sysregs_context_save_trf(el2_sysregs_ctx);
834 #endif
835 #if ENABLE_FEAT_CSV2_2
836 		el2_sysregs_context_save_csv2(el2_sysregs_ctx);
837 #endif
838 #if ENABLE_FEAT_HCX
839 		el2_sysregs_context_save_hcx(el2_sysregs_ctx);
840 #endif
841 	}
842 }
843 
844 /*******************************************************************************
845  * Restore EL2 sysreg context
846  ******************************************************************************/
847 void cm_el2_sysregs_context_restore(uint32_t security_state)
848 {
849 	u_register_t scr_el3 = read_scr();
850 
851 	/*
852 	 * Always restore the non-secure and realm EL2 context, only restore the
853 	 * S-EL2 context if S-EL2 is enabled.
854 	 */
855 	if ((security_state != SECURE) ||
856 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
857 		cpu_context_t *ctx;
858 		el2_sysregs_t *el2_sysregs_ctx;
859 
860 		ctx = cm_get_context(security_state);
861 		assert(ctx != NULL);
862 
863 		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
864 
865 		el2_sysregs_context_restore_common(el2_sysregs_ctx);
866 #if ENABLE_SPE_FOR_LOWER_ELS
867 		el2_sysregs_context_restore_spe(el2_sysregs_ctx);
868 #endif
869 #if CTX_INCLUDE_MTE_REGS
870 		el2_sysregs_context_restore_mte(el2_sysregs_ctx);
871 #endif
872 #if ENABLE_MPAM_FOR_LOWER_ELS
873 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
874 #endif
875 #if ENABLE_FEAT_FGT
876 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
877 #endif
878 #if ENABLE_FEAT_ECV
879 		el2_sysregs_context_restore_ecv(el2_sysregs_ctx);
880 #endif
881 #if ENABLE_FEAT_VHE
882 		el2_sysregs_context_restore_vhe(el2_sysregs_ctx);
883 #endif
884 #if RAS_EXTENSION
885 		el2_sysregs_context_restore_ras(el2_sysregs_ctx);
886 #endif
887 #if CTX_INCLUDE_NEVE_REGS
888 		el2_sysregs_context_restore_nv2(el2_sysregs_ctx);
889 #endif
890 #if ENABLE_TRF_FOR_NS
891 		el2_sysregs_context_restore_trf(el2_sysregs_ctx);
892 #endif
893 #if ENABLE_FEAT_CSV2_2
894 		el2_sysregs_context_restore_csv2(el2_sysregs_ctx);
895 #endif
896 #if ENABLE_FEAT_HCX
897 		el2_sysregs_context_restore_hcx(el2_sysregs_ctx);
898 #endif
899 	}
900 }
901 #endif /* CTX_INCLUDE_EL2_REGS */
902 
903 /*******************************************************************************
904  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
905  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
906  * updating EL1 and EL2 registers. Otherwise, it calls the generic
907  * cm_prepare_el3_exit function.
908  ******************************************************************************/
909 void cm_prepare_el3_exit_ns(void)
910 {
911 #if CTX_INCLUDE_EL2_REGS
912 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
913 	assert(ctx != NULL);
914 
915 	/* Assert that EL2 is used. */
916 #if ENABLE_ASSERTIONS
917 	el3_state_t *state = get_el3state_ctx(ctx);
918 	u_register_t scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
919 #endif
920 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
921 			(el_implemented(2U) != EL_IMPL_NONE));
922 
923 	/*
924 	 * Currently some extensions are configured using
925 	 * direct register updates. Therefore, do this here
926 	 * instead of when setting up context.
927 	 */
928 	manage_extensions_nonsecure(0, ctx);
929 
930 	/*
931 	 * Set the NS bit to be able to access the ICC_SRE_EL2
932 	 * register when restoring context.
933 	 */
934 	write_scr_el3(read_scr_el3() | SCR_NS_BIT);
935 
936 	/*
937 	 * Ensure the NS bit change is committed before the EL2/EL1
938 	 * state restoration.
939 	 */
940 	isb();
941 
942 	/* Restore EL2 and EL1 sysreg contexts */
943 	cm_el2_sysregs_context_restore(NON_SECURE);
944 	cm_el1_sysregs_context_restore(NON_SECURE);
945 	cm_set_next_eret_context(NON_SECURE);
946 #else
947 	cm_prepare_el3_exit(NON_SECURE);
948 #endif /* CTX_INCLUDE_EL2_REGS */
949 }
950 
951 /*******************************************************************************
952  * The next four functions are used by runtime services to save and restore
953  * EL1 context on the 'cpu_context' structure for the specified security
954  * state.
955  ******************************************************************************/
956 void cm_el1_sysregs_context_save(uint32_t security_state)
957 {
958 	cpu_context_t *ctx;
959 
960 	ctx = cm_get_context(security_state);
961 	assert(ctx != NULL);
962 
963 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
964 
965 #if IMAGE_BL31
966 	if (security_state == SECURE)
967 		PUBLISH_EVENT(cm_exited_secure_world);
968 	else
969 		PUBLISH_EVENT(cm_exited_normal_world);
970 #endif
971 }
972 
973 void cm_el1_sysregs_context_restore(uint32_t security_state)
974 {
975 	cpu_context_t *ctx;
976 
977 	ctx = cm_get_context(security_state);
978 	assert(ctx != NULL);
979 
980 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
981 
982 #if IMAGE_BL31
983 	if (security_state == SECURE)
984 		PUBLISH_EVENT(cm_entering_secure_world);
985 	else
986 		PUBLISH_EVENT(cm_entering_normal_world);
987 #endif
988 }
989 
990 /*******************************************************************************
991  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
992  * given security state with the given entrypoint
993  ******************************************************************************/
994 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
995 {
996 	cpu_context_t *ctx;
997 	el3_state_t *state;
998 
999 	ctx = cm_get_context(security_state);
1000 	assert(ctx != NULL);
1001 
1002 	/* Populate EL3 state so that ERET jumps to the correct entry */
1003 	state = get_el3state_ctx(ctx);
1004 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1005 }
1006 
1007 /*******************************************************************************
1008  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1009  * pertaining to the given security state
1010  ******************************************************************************/
1011 void cm_set_elr_spsr_el3(uint32_t security_state,
1012 			uintptr_t entrypoint, uint32_t spsr)
1013 {
1014 	cpu_context_t *ctx;
1015 	el3_state_t *state;
1016 
1017 	ctx = cm_get_context(security_state);
1018 	assert(ctx != NULL);
1019 
1020 	/* Populate EL3 state so that ERET jumps to the correct entry */
1021 	state = get_el3state_ctx(ctx);
1022 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1023 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1024 }
1025 
1026 /*******************************************************************************
1027  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1028  * pertaining to the given security state using the value and bit position
1029  * specified in the parameters. It preserves all other bits.
1030  ******************************************************************************/
1031 void cm_write_scr_el3_bit(uint32_t security_state,
1032 			  uint32_t bit_pos,
1033 			  uint32_t value)
1034 {
1035 	cpu_context_t *ctx;
1036 	el3_state_t *state;
1037 	u_register_t scr_el3;
1038 
1039 	ctx = cm_get_context(security_state);
1040 	assert(ctx != NULL);
1041 
1042 	/* Ensure that the bit position is a valid one */
1043 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1044 
1045 	/* Ensure that the 'value' is only a bit wide */
1046 	assert(value <= 1U);
1047 
1048 	/*
1049 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1050 	 * and set it to its new value.
1051 	 */
1052 	state = get_el3state_ctx(ctx);
1053 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1054 	scr_el3 &= ~(1UL << bit_pos);
1055 	scr_el3 |= (u_register_t)value << bit_pos;
1056 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1057 }
1058 
1059 /*******************************************************************************
1060  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1061  * given security state.
1062  ******************************************************************************/
1063 u_register_t cm_get_scr_el3(uint32_t security_state)
1064 {
1065 	cpu_context_t *ctx;
1066 	el3_state_t *state;
1067 
1068 	ctx = cm_get_context(security_state);
1069 	assert(ctx != NULL);
1070 
1071 	/* Populate EL3 state so that ERET jumps to the correct entry */
1072 	state = get_el3state_ctx(ctx);
1073 	return read_ctx_reg(state, CTX_SCR_EL3);
1074 }
1075 
1076 /*******************************************************************************
1077  * This function is used to program the context that's used for exception
1078  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1079  * the required security state
1080  ******************************************************************************/
1081 void cm_set_next_eret_context(uint32_t security_state)
1082 {
1083 	cpu_context_t *ctx;
1084 
1085 	ctx = cm_get_context(security_state);
1086 	assert(ctx != NULL);
1087 
1088 	cm_set_next_context(ctx);
1089 }
1090