xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 85229098ab70dfb65905f9ad7229db6478335a00)
1 /*
2  * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/cpu_data.h>
24 #include <lib/el3_runtime/pubsub_events.h>
25 #include <lib/extensions/amu.h>
26 #include <lib/extensions/brbe.h>
27 #include <lib/extensions/mpam.h>
28 #include <lib/extensions/pmuv3.h>
29 #include <lib/extensions/sme.h>
30 #include <lib/extensions/spe.h>
31 #include <lib/extensions/sve.h>
32 #include <lib/extensions/sys_reg_trace.h>
33 #include <lib/extensions/trbe.h>
34 #include <lib/extensions/trf.h>
35 #include <lib/utils.h>
36 
37 #if ENABLE_FEAT_TWED
38 /* Make sure delay value fits within the range(0-15) */
39 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
40 #endif /* ENABLE_FEAT_TWED */
41 
42 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
43 static bool has_secure_perworld_init;
44 
45 static void manage_extensions_nonsecure(cpu_context_t *ctx);
46 static void manage_extensions_secure(cpu_context_t *ctx);
47 static void manage_extensions_secure_per_world(void);
48 
49 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
50 {
51 	u_register_t sctlr_elx, actlr_elx;
52 
53 	/*
54 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
55 	 * execution state setting all fields rather than relying on the hw.
56 	 * Some fields have architecturally UNKNOWN reset values and these are
57 	 * set to zero.
58 	 *
59 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
60 	 *
61 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
62 	 * required by PSCI specification)
63 	 */
64 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
65 	if (GET_RW(ep->spsr) == MODE_RW_64) {
66 		sctlr_elx |= SCTLR_EL1_RES1;
67 	} else {
68 		/*
69 		 * If the target execution state is AArch32 then the following
70 		 * fields need to be set.
71 		 *
72 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
73 		 *  instructions are not trapped to EL1.
74 		 *
75 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
76 		 *  instructions are not trapped to EL1.
77 		 *
78 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
79 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
80 		 */
81 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
82 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
83 	}
84 
85 #if ERRATA_A75_764081
86 	/*
87 	 * If workaround of errata 764081 for Cortex-A75 is used then set
88 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
89 	 */
90 	sctlr_elx |= SCTLR_IESB_BIT;
91 #endif
92 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
93 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
94 
95 	/*
96 	 * Base the context ACTLR_EL1 on the current value, as it is
97 	 * implementation defined. The context restore process will write
98 	 * the value from the context to the actual register and can cause
99 	 * problems for processor cores that don't expect certain bits to
100 	 * be zero.
101 	 */
102 	actlr_elx = read_actlr_el1();
103 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
104 }
105 
106 /******************************************************************************
107  * This function performs initializations that are specific to SECURE state
108  * and updates the cpu context specified by 'ctx'.
109  *****************************************************************************/
110 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
111 {
112 	u_register_t scr_el3;
113 	el3_state_t *state;
114 
115 	state = get_el3state_ctx(ctx);
116 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
117 
118 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
119 	/*
120 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
121 	 * indicated by the interrupt routing model for BL31.
122 	 */
123 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
124 #endif
125 
126 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
127 	if (is_feat_mte2_supported()) {
128 		scr_el3 |= SCR_ATA_BIT;
129 	}
130 
131 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
132 
133 	/*
134 	 * Initialize EL1 context registers unless SPMC is running
135 	 * at S-EL2.
136 	 */
137 #if !SPMD_SPM_AT_SEL2
138 	setup_el1_context(ctx, ep);
139 #endif
140 
141 	manage_extensions_secure(ctx);
142 
143 	/**
144 	 * manage_extensions_secure_per_world api has to be executed once,
145 	 * as the registers getting initialised, maintain constant value across
146 	 * all the cpus for the secure world.
147 	 * Henceforth, this check ensures that the registers are initialised once
148 	 * and avoids re-initialization from multiple cores.
149 	 */
150 	if (!has_secure_perworld_init) {
151 		manage_extensions_secure_per_world();
152 	}
153 
154 }
155 
156 #if ENABLE_RME
157 /******************************************************************************
158  * This function performs initializations that are specific to REALM state
159  * and updates the cpu context specified by 'ctx'.
160  *****************************************************************************/
161 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
162 {
163 	u_register_t scr_el3;
164 	el3_state_t *state;
165 
166 	state = get_el3state_ctx(ctx);
167 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
168 
169 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
170 
171 	/* CSV2 version 2 and above */
172 	if (is_feat_csv2_2_supported()) {
173 		/* Enable access to the SCXTNUM_ELx registers. */
174 		scr_el3 |= SCR_EnSCXT_BIT;
175 	}
176 
177 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
178 }
179 #endif /* ENABLE_RME */
180 
181 /******************************************************************************
182  * This function performs initializations that are specific to NON-SECURE state
183  * and updates the cpu context specified by 'ctx'.
184  *****************************************************************************/
185 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
186 {
187 	u_register_t scr_el3;
188 	el3_state_t *state;
189 
190 	state = get_el3state_ctx(ctx);
191 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
192 
193 	/* SCR_NS: Set the NS bit */
194 	scr_el3 |= SCR_NS_BIT;
195 
196 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
197 	if (is_feat_mte2_supported()) {
198 		scr_el3 |= SCR_ATA_BIT;
199 	}
200 
201 #if !CTX_INCLUDE_PAUTH_REGS
202 	/*
203 	 * Pointer Authentication feature, if present, is always enabled by default
204 	 * for Non secure lower exception levels. We do not have an explicit
205 	 * flag to set it.
206 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
207 	 * exception levels of secure and realm worlds.
208 	 *
209 	 * To prevent the leakage between the worlds during world switch,
210 	 * we enable it only for the non-secure world.
211 	 *
212 	 * If the Secure/realm world wants to use pointer authentication,
213 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
214 	 * it will be enabled globally for all the contexts.
215 	 *
216 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
217 	 *  other than EL3
218 	 *
219 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
220 	 *  than EL3
221 	 */
222 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
223 
224 #endif /* CTX_INCLUDE_PAUTH_REGS */
225 
226 #if HANDLE_EA_EL3_FIRST_NS
227 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
228 	scr_el3 |= SCR_EA_BIT;
229 #endif
230 
231 #if RAS_TRAP_NS_ERR_REC_ACCESS
232 	/*
233 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
234 	 * and RAS ERX registers from EL1 and EL2(from any security state)
235 	 * are trapped to EL3.
236 	 * Set here to trap only for NS EL1/EL2
237 	 *
238 	 */
239 	scr_el3 |= SCR_TERR_BIT;
240 #endif
241 
242 	/* CSV2 version 2 and above */
243 	if (is_feat_csv2_2_supported()) {
244 		/* Enable access to the SCXTNUM_ELx registers. */
245 		scr_el3 |= SCR_EnSCXT_BIT;
246 	}
247 
248 #ifdef IMAGE_BL31
249 	/*
250 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
251 	 *  indicated by the interrupt routing model for BL31.
252 	 */
253 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
254 #endif
255 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
256 
257 	/* Initialize EL1 context registers */
258 	setup_el1_context(ctx, ep);
259 
260 	/* Initialize EL2 context registers */
261 #if CTX_INCLUDE_EL2_REGS
262 
263 	/*
264 	 * Initialize SCTLR_EL2 context register with reset value.
265 	 */
266 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
267 
268 	if (is_feat_hcx_supported()) {
269 		/*
270 		 * Initialize register HCRX_EL2 with its init value.
271 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
272 		 * chance that this can lead to unexpected behavior in lower
273 		 * ELs that have not been updated since the introduction of
274 		 * this feature if not properly initialized, especially when
275 		 * it comes to those bits that enable/disable traps.
276 		 */
277 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
278 			HCRX_EL2_INIT_VAL);
279 	}
280 
281 	if (is_feat_fgt_supported()) {
282 		/*
283 		 * Initialize HFG*_EL2 registers with a default value so legacy
284 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
285 		 * of initialization for this feature.
286 		 */
287 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
288 			HFGITR_EL2_INIT_VAL);
289 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
290 			HFGRTR_EL2_INIT_VAL);
291 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
292 			HFGWTR_EL2_INIT_VAL);
293 	}
294 
295 #endif /* CTX_INCLUDE_EL2_REGS */
296 
297 	manage_extensions_nonsecure(ctx);
298 }
299 
300 /*******************************************************************************
301  * The following function performs initialization of the cpu_context 'ctx'
302  * for first use that is common to all security states, and sets the
303  * initial entrypoint state as specified by the entry_point_info structure.
304  *
305  * The EE and ST attributes are used to configure the endianness and secure
306  * timer availability for the new execution context.
307  ******************************************************************************/
308 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
309 {
310 	u_register_t scr_el3;
311 	el3_state_t *state;
312 	gp_regs_t *gp_regs;
313 
314 	state = get_el3state_ctx(ctx);
315 
316 	/* Clear any residual register values from the context */
317 	zeromem(ctx, sizeof(*ctx));
318 
319 	/*
320 	 * The lower-EL context is zeroed so that no stale values leak to a world.
321 	 * It is assumed that an all-zero lower-EL context is good enough for it
322 	 * to boot correctly. However, there are very few registers where this
323 	 * is not true and some values need to be recreated.
324 	 */
325 #if CTX_INCLUDE_EL2_REGS
326 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
327 
328 	/*
329 	 * These bits are set in the gicv3 driver. Losing them (especially the
330 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
331 	 */
332 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
333 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
334 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
335 #endif /* CTX_INCLUDE_EL2_REGS */
336 
337 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
338 	scr_el3 = SCR_RESET_VAL;
339 
340 	/*
341 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
342 	 *  EL2, EL1 and EL0 are not trapped to EL3.
343 	 *
344 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
345 	 *  EL2, EL1 and EL0 are not trapped to EL3.
346 	 *
347 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
348 	 *  both Security states and both Execution states.
349 	 *
350 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
351 	 *  Non-secure memory.
352 	 */
353 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
354 
355 	scr_el3 |= SCR_SIF_BIT;
356 
357 	/*
358 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
359 	 *  Exception level as specified by SPSR.
360 	 */
361 	if (GET_RW(ep->spsr) == MODE_RW_64) {
362 		scr_el3 |= SCR_RW_BIT;
363 	}
364 
365 	/*
366 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
367 	 * Secure timer registers to EL3, from AArch64 state only, if specified
368 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
369 	 * bit always behaves as 1 (i.e. secure physical timer register access
370 	 * is not trapped)
371 	 */
372 	if (EP_GET_ST(ep->h.attr) != 0U) {
373 		scr_el3 |= SCR_ST_BIT;
374 	}
375 
376 	/*
377 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
378 	 * SCR_EL3.HXEn.
379 	 */
380 	if (is_feat_hcx_supported()) {
381 		scr_el3 |= SCR_HXEn_BIT;
382 	}
383 
384 	/*
385 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
386 	 * registers are trapped to EL3.
387 	 */
388 #if ENABLE_FEAT_RNG_TRAP
389 	scr_el3 |= SCR_TRNDR_BIT;
390 #endif
391 
392 #if FAULT_INJECTION_SUPPORT
393 	/* Enable fault injection from lower ELs */
394 	scr_el3 |= SCR_FIEN_BIT;
395 #endif
396 
397 #if CTX_INCLUDE_PAUTH_REGS
398 	/*
399 	 * Enable Pointer Authentication globally for all the worlds.
400 	 *
401 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
402 	 *  other than EL3
403 	 *
404 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
405 	 *  than EL3
406 	 */
407 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
408 #endif /* CTX_INCLUDE_PAUTH_REGS */
409 
410 	/*
411 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
412 	 */
413 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
414 		scr_el3 |= SCR_TCR2EN_BIT;
415 	}
416 
417 	/*
418 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
419 	 * registers for AArch64 if present.
420 	 */
421 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
422 		scr_el3 |= SCR_PIEN_BIT;
423 	}
424 
425 	/*
426 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
427 	 */
428 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
429 		scr_el3 |= SCR_GCSEn_BIT;
430 	}
431 
432 	/*
433 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
434 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
435 	 * next mode is Hyp.
436 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
437 	 * same conditions as HVC instructions and when the processor supports
438 	 * ARMv8.6-FGT.
439 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
440 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
441 	 * and when the processor supports ECV.
442 	 */
443 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
444 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
445 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
446 		scr_el3 |= SCR_HCE_BIT;
447 
448 		if (is_feat_fgt_supported()) {
449 			scr_el3 |= SCR_FGTEN_BIT;
450 		}
451 
452 		if (is_feat_ecv_supported()) {
453 			scr_el3 |= SCR_ECVEN_BIT;
454 		}
455 	}
456 
457 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
458 	if (is_feat_twed_supported()) {
459 		/* Set delay in SCR_EL3 */
460 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
461 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
462 				<< SCR_TWEDEL_SHIFT);
463 
464 		/* Enable WFE delay */
465 		scr_el3 |= SCR_TWEDEn_BIT;
466 	}
467 
468 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
469 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
470 	if (is_feat_sel2_supported()) {
471 		scr_el3 |= SCR_EEL2_BIT;
472 	}
473 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
474 
475 	/*
476 	 * Populate EL3 state so that we've the right context
477 	 * before doing ERET
478 	 */
479 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
480 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
481 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
482 
483 	/*
484 	 * Store the X0-X7 value from the entrypoint into the context
485 	 * Use memcpy as we are in control of the layout of the structures
486 	 */
487 	gp_regs = get_gpregs_ctx(ctx);
488 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
489 }
490 
491 /*******************************************************************************
492  * Context management library initialization routine. This library is used by
493  * runtime services to share pointers to 'cpu_context' structures for secure
494  * non-secure and realm states. Management of the structures and their associated
495  * memory is not done by the context management library e.g. the PSCI service
496  * manages the cpu context used for entry from and exit to the non-secure state.
497  * The Secure payload dispatcher service manages the context(s) corresponding to
498  * the secure state. It also uses this library to get access to the non-secure
499  * state cpu context pointers.
500  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
501  * which will be used for programming an entry into a lower EL. The same context
502  * will be used to save state upon exception entry from that EL.
503  ******************************************************************************/
504 void __init cm_init(void)
505 {
506 	/*
507 	 * The context management library has only global data to initialize, but
508 	 * that will be done when the BSS is zeroed out.
509 	 */
510 }
511 
512 /*******************************************************************************
513  * This is the high-level function used to initialize the cpu_context 'ctx' for
514  * first use. It performs initializations that are common to all security states
515  * and initializations specific to the security state specified in 'ep'
516  ******************************************************************************/
517 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
518 {
519 	unsigned int security_state;
520 
521 	assert(ctx != NULL);
522 
523 	/*
524 	 * Perform initializations that are common
525 	 * to all security states
526 	 */
527 	setup_context_common(ctx, ep);
528 
529 	security_state = GET_SECURITY_STATE(ep->h.attr);
530 
531 	/* Perform security state specific initializations */
532 	switch (security_state) {
533 	case SECURE:
534 		setup_secure_context(ctx, ep);
535 		break;
536 #if ENABLE_RME
537 	case REALM:
538 		setup_realm_context(ctx, ep);
539 		break;
540 #endif
541 	case NON_SECURE:
542 		setup_ns_context(ctx, ep);
543 		break;
544 	default:
545 		ERROR("Invalid security state\n");
546 		panic();
547 		break;
548 	}
549 }
550 
551 /*******************************************************************************
552  * Enable architecture extensions for EL3 execution. This function only updates
553  * registers in-place which are expected to either never change or be
554  * overwritten by el3_exit.
555  ******************************************************************************/
556 #if IMAGE_BL31
557 void cm_manage_extensions_el3(void)
558 {
559 	if (is_feat_spe_supported()) {
560 		spe_init_el3();
561 	}
562 
563 	if (is_feat_amu_supported()) {
564 		amu_init_el3();
565 	}
566 
567 	if (is_feat_sme_supported()) {
568 		sme_init_el3();
569 	}
570 
571 	if (is_feat_trbe_supported()) {
572 		trbe_init_el3();
573 	}
574 
575 	if (is_feat_brbe_supported()) {
576 		brbe_init_el3();
577 	}
578 
579 	if (is_feat_trf_supported()) {
580 		trf_init_el3();
581 	}
582 
583 	pmuv3_init_el3();
584 }
585 #endif /* IMAGE_BL31 */
586 
587 /******************************************************************************
588  * Function to initialise the registers with the RESET values in the context
589  * memory, which are maintained per world.
590  ******************************************************************************/
591 #if IMAGE_BL31
592 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
593 {
594 	/*
595 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
596 	 *
597 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
598 	 *  by Advanced SIMD, floating-point or SVE instructions (if
599 	 *  implemented) do not trap to EL3.
600 	 *
601 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
602 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
603 	 */
604 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
605 
606 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
607 
608 	/*
609 	 * Initialize MPAM3_EL3 to its default reset value
610 	 *
611 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
612 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
613 	 */
614 
615 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
616 }
617 #endif /* IMAGE_BL31 */
618 
619 /*******************************************************************************
620  * Initialise per_world_context for Non-Secure world.
621  * This function enables the architecture extensions, which have same value
622  * across the cores for the non-secure world.
623  ******************************************************************************/
624 #if IMAGE_BL31
625 void manage_extensions_nonsecure_per_world(void)
626 {
627 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
628 
629 	if (is_feat_sme_supported()) {
630 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
631 	}
632 
633 	if (is_feat_sve_supported()) {
634 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
635 	}
636 
637 	if (is_feat_amu_supported()) {
638 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
639 	}
640 
641 	if (is_feat_sys_reg_trace_supported()) {
642 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
643 	}
644 
645 	if (is_feat_mpam_supported()) {
646 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
647 	}
648 }
649 #endif /* IMAGE_BL31 */
650 
651 /*******************************************************************************
652  * Initialise per_world_context for Secure world.
653  * This function enables the architecture extensions, which have same value
654  * across the cores for the secure world.
655  ******************************************************************************/
656 static void manage_extensions_secure_per_world(void)
657 {
658 #if IMAGE_BL31
659 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
660 
661 	if (is_feat_sme_supported()) {
662 
663 		if (ENABLE_SME_FOR_SWD) {
664 		/*
665 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
666 		 * SME, SVE, and FPU/SIMD context properly managed.
667 		 */
668 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
669 		} else {
670 		/*
671 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
672 		 * world can safely use the associated registers.
673 		 */
674 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
675 		}
676 	}
677 	if (is_feat_sve_supported()) {
678 		if (ENABLE_SVE_FOR_SWD) {
679 		/*
680 		 * Enable SVE and FPU in secure context, SPM must ensure
681 		 * that the SVE and FPU register contexts are properly managed.
682 		 */
683 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
684 		} else {
685 		/*
686 		 * Disable SVE and FPU in secure context so non-secure world
687 		 * can safely use them.
688 		 */
689 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
690 		}
691 	}
692 
693 	/* NS can access this but Secure shouldn't */
694 	if (is_feat_sys_reg_trace_supported()) {
695 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
696 	}
697 
698 	has_secure_perworld_init = true;
699 #endif /* IMAGE_BL31 */
700 }
701 
702 /*******************************************************************************
703  * Enable architecture extensions on first entry to Non-secure world.
704  ******************************************************************************/
705 static void manage_extensions_nonsecure(cpu_context_t *ctx)
706 {
707 #if IMAGE_BL31
708 	if (is_feat_amu_supported()) {
709 		amu_enable(ctx);
710 	}
711 
712 	if (is_feat_sme_supported()) {
713 		sme_enable(ctx);
714 	}
715 
716 	pmuv3_enable(ctx);
717 #endif /* IMAGE_BL31 */
718 }
719 
720 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
721 static __unused void enable_pauth_el2(void)
722 {
723 	u_register_t hcr_el2 = read_hcr_el2();
724 	/*
725 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
726 	 *  accessing key registers or using pointer authentication instructions
727 	 *  from lower ELs.
728 	 */
729 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
730 
731 	write_hcr_el2(hcr_el2);
732 }
733 
734 #if INIT_UNUSED_NS_EL2
735 /*******************************************************************************
736  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
737  * world when EL2 is empty and unused.
738  ******************************************************************************/
739 static void manage_extensions_nonsecure_el2_unused(void)
740 {
741 #if IMAGE_BL31
742 	if (is_feat_spe_supported()) {
743 		spe_init_el2_unused();
744 	}
745 
746 	if (is_feat_amu_supported()) {
747 		amu_init_el2_unused();
748 	}
749 
750 	if (is_feat_mpam_supported()) {
751 		mpam_init_el2_unused();
752 	}
753 
754 	if (is_feat_trbe_supported()) {
755 		trbe_init_el2_unused();
756 	}
757 
758 	if (is_feat_sys_reg_trace_supported()) {
759 		sys_reg_trace_init_el2_unused();
760 	}
761 
762 	if (is_feat_trf_supported()) {
763 		trf_init_el2_unused();
764 	}
765 
766 	pmuv3_init_el2_unused();
767 
768 	if (is_feat_sve_supported()) {
769 		sve_init_el2_unused();
770 	}
771 
772 	if (is_feat_sme_supported()) {
773 		sme_init_el2_unused();
774 	}
775 
776 #if ENABLE_PAUTH
777 	enable_pauth_el2();
778 #endif /* ENABLE_PAUTH */
779 #endif /* IMAGE_BL31 */
780 }
781 #endif /* INIT_UNUSED_NS_EL2 */
782 
783 /*******************************************************************************
784  * Enable architecture extensions on first entry to Secure world.
785  ******************************************************************************/
786 static void manage_extensions_secure(cpu_context_t *ctx)
787 {
788 #if IMAGE_BL31
789 	if (is_feat_sme_supported()) {
790 		if (ENABLE_SME_FOR_SWD) {
791 		/*
792 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
793 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
794 		 */
795 			sme_init_el3();
796 			sme_enable(ctx);
797 		} else {
798 		/*
799 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
800 		 * world can safely use the associated registers.
801 		 */
802 			sme_disable(ctx);
803 		}
804 	}
805 #endif /* IMAGE_BL31 */
806 }
807 
808 #if !IMAGE_BL1
809 /*******************************************************************************
810  * The following function initializes the cpu_context for a CPU specified by
811  * its `cpu_idx` for first use, and sets the initial entrypoint state as
812  * specified by the entry_point_info structure.
813  ******************************************************************************/
814 void cm_init_context_by_index(unsigned int cpu_idx,
815 			      const entry_point_info_t *ep)
816 {
817 	cpu_context_t *ctx;
818 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
819 	cm_setup_context(ctx, ep);
820 }
821 #endif /* !IMAGE_BL1 */
822 
823 /*******************************************************************************
824  * The following function initializes the cpu_context for the current CPU
825  * for first use, and sets the initial entrypoint state as specified by the
826  * entry_point_info structure.
827  ******************************************************************************/
828 void cm_init_my_context(const entry_point_info_t *ep)
829 {
830 	cpu_context_t *ctx;
831 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
832 	cm_setup_context(ctx, ep);
833 }
834 
835 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
836 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
837 {
838 #if INIT_UNUSED_NS_EL2
839 	u_register_t hcr_el2 = HCR_RESET_VAL;
840 	u_register_t mdcr_el2;
841 	u_register_t scr_el3;
842 
843 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
844 
845 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
846 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
847 		hcr_el2 |= HCR_RW_BIT;
848 	}
849 
850 	write_hcr_el2(hcr_el2);
851 
852 	/*
853 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
854 	 * All fields have architecturally UNKNOWN reset values.
855 	 */
856 	write_cptr_el2(CPTR_EL2_RESET_VAL);
857 
858 	/*
859 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
860 	 * reset and are set to zero except for field(s) listed below.
861 	 *
862 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
863 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
864 	 *
865 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
866 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
867 	 */
868 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
869 
870 	/*
871 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
872 	 * UNKNOWN value.
873 	 */
874 	write_cntvoff_el2(0);
875 
876 	/*
877 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
878 	 * respectively.
879 	 */
880 	write_vpidr_el2(read_midr_el1());
881 	write_vmpidr_el2(read_mpidr_el1());
882 
883 	/*
884 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
885 	 *
886 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
887 	 * translation is disabled, cache maintenance operations depend on the
888 	 * VMID.
889 	 *
890 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
891 	 * disabled.
892 	 */
893 	write_vttbr_el2(VTTBR_RESET_VAL &
894 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
895 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
896 
897 	/*
898 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
899 	 * Some fields are architecturally UNKNOWN on reset.
900 	 *
901 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
902 	 * register accesses to the Debug ROM registers are not trapped to EL2.
903 	 *
904 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
905 	 * accesses to the powerdown debug registers are not trapped to EL2.
906 	 *
907 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
908 	 * debug registers do not trap to EL2.
909 	 *
910 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
911 	 * EL2.
912 	 */
913 	mdcr_el2 = MDCR_EL2_RESET_VAL &
914 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
915 		   MDCR_EL2_TDE_BIT);
916 
917 	write_mdcr_el2(mdcr_el2);
918 
919 	/*
920 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
921 	 *
922 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
923 	 * EL1 accesses to System registers do not trap to EL2.
924 	 */
925 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
926 
927 	/*
928 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
929 	 * reset.
930 	 *
931 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
932 	 * and prevent timer interrupts.
933 	 */
934 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
935 
936 	manage_extensions_nonsecure_el2_unused();
937 #endif /* INIT_UNUSED_NS_EL2 */
938 }
939 
940 /*******************************************************************************
941  * Prepare the CPU system registers for first entry into realm, secure, or
942  * normal world.
943  *
944  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
945  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
946  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
947  * For all entries, the EL1 registers are initialized from the cpu_context
948  ******************************************************************************/
949 void cm_prepare_el3_exit(uint32_t security_state)
950 {
951 	u_register_t sctlr_el2, scr_el3;
952 	cpu_context_t *ctx = cm_get_context(security_state);
953 
954 	assert(ctx != NULL);
955 
956 	if (security_state == NON_SECURE) {
957 		uint64_t el2_implemented = el_implemented(2);
958 
959 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
960 						 CTX_SCR_EL3);
961 
962 		if (el2_implemented != EL_IMPL_NONE) {
963 
964 			/*
965 			 * If context is not being used for EL2, initialize
966 			 * HCRX_EL2 with its init value here.
967 			 */
968 			if (is_feat_hcx_supported()) {
969 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
970 			}
971 
972 			/*
973 			 * Initialize Fine-grained trap registers introduced
974 			 * by FEAT_FGT so all traps are initially disabled when
975 			 * switching to EL2 or a lower EL, preventing undesired
976 			 * behavior.
977 			 */
978 			if (is_feat_fgt_supported()) {
979 				/*
980 				 * Initialize HFG*_EL2 registers with a default
981 				 * value so legacy systems unaware of FEAT_FGT
982 				 * do not get trapped due to their lack of
983 				 * initialization for this feature.
984 				 */
985 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
986 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
987 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
988 			}
989 
990 			/* Condition to ensure EL2 is being used. */
991 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
992 				/* Initialize SCTLR_EL2 register with reset value. */
993 				sctlr_el2 = SCTLR_EL2_RES1;
994 #if ERRATA_A75_764081
995 				/*
996 				 * If workaround of errata 764081 for Cortex-A75
997 				 * is used then set SCTLR_EL2.IESB to enable
998 				 * Implicit Error Synchronization Barrier.
999 				 */
1000 				sctlr_el2 |= SCTLR_IESB_BIT;
1001 #endif
1002 				write_sctlr_el2(sctlr_el2);
1003 			} else {
1004 				/*
1005 				 * (scr_el3 & SCR_HCE_BIT==0)
1006 				 * EL2 implemented but unused.
1007 				 */
1008 				init_nonsecure_el2_unused(ctx);
1009 			}
1010 		}
1011 	}
1012 	cm_el1_sysregs_context_restore(security_state);
1013 	cm_set_next_eret_context(security_state);
1014 }
1015 
1016 #if CTX_INCLUDE_EL2_REGS
1017 
1018 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1019 {
1020 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1021 	if (is_feat_amu_supported()) {
1022 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1023 	}
1024 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1025 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1026 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1027 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1028 }
1029 
1030 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1031 {
1032 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1033 	if (is_feat_amu_supported()) {
1034 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1035 	}
1036 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1037 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1038 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1039 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1040 }
1041 
1042 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1043 {
1044 	u_register_t mpam_idr = read_mpamidr_el1();
1045 
1046 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1047 
1048 	/*
1049 	 * The context registers that we intend to save would be part of the
1050 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1051 	 */
1052 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1053 		return;
1054 	}
1055 
1056 	/*
1057 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1058 	 * MPAMIDR_HAS_HCR_BIT == 1.
1059 	 */
1060 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1061 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1062 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1063 
1064 	/*
1065 	 * The number of MPAMVPM registers is implementation defined, their
1066 	 * number is stored in the MPAMIDR_EL1 register.
1067 	 */
1068 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1069 	case 7:
1070 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1071 		__fallthrough;
1072 	case 6:
1073 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1074 		__fallthrough;
1075 	case 5:
1076 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1077 		__fallthrough;
1078 	case 4:
1079 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1080 		__fallthrough;
1081 	case 3:
1082 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1083 		__fallthrough;
1084 	case 2:
1085 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1086 		__fallthrough;
1087 	case 1:
1088 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1089 		break;
1090 	}
1091 }
1092 
1093 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1094 {
1095 	u_register_t mpam_idr = read_mpamidr_el1();
1096 
1097 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1098 
1099 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1100 		return;
1101 	}
1102 
1103 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1104 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1105 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1106 
1107 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1108 	case 7:
1109 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1110 		__fallthrough;
1111 	case 6:
1112 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1113 		__fallthrough;
1114 	case 5:
1115 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1116 		__fallthrough;
1117 	case 4:
1118 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1119 		__fallthrough;
1120 	case 3:
1121 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1122 		__fallthrough;
1123 	case 2:
1124 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1125 		__fallthrough;
1126 	case 1:
1127 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1128 		break;
1129 	}
1130 }
1131 
1132 /* ---------------------------------------------------------------------------
1133  * The following registers are not added:
1134  * ICH_AP0R<n>_EL2
1135  * ICH_AP1R<n>_EL2
1136  * ICH_LR<n>_EL2
1137  *
1138  * NOTE: For a system with S-EL2 present but not enabled, accessing
1139  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1140  * SCR_EL3.NS = 1 before accessing this register.
1141  * ---------------------------------------------------------------------------
1142  */
1143 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx)
1144 {
1145 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1146 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1147 #else
1148 	u_register_t scr_el3 = read_scr_el3();
1149 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1150 	isb();
1151 
1152 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1153 
1154 	write_scr_el3(scr_el3);
1155 	isb();
1156 #endif
1157 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1158 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1159 }
1160 
1161 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx)
1162 {
1163 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1164 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1165 #else
1166 	u_register_t scr_el3 = read_scr_el3();
1167 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1168 	isb();
1169 
1170 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1171 
1172 	write_scr_el3(scr_el3);
1173 	isb();
1174 #endif
1175 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1176 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1177 }
1178 
1179 /* -----------------------------------------------------
1180  * The following registers are not added:
1181  * AMEVCNTVOFF0<n>_EL2
1182  * AMEVCNTVOFF1<n>_EL2
1183  * -----------------------------------------------------
1184  */
1185 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1186 {
1187 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1188 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1189 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1190 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1191 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1192 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1193 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1194 	if (CTX_INCLUDE_AARCH32_REGS) {
1195 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1196 	}
1197 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1198 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1199 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1200 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1201 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1202 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1203 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1204 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1205 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1206 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1207 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1208 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1209 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1210 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1211 	write_el2_ctx_common(ctx, ttbr0_el2, read_ttbr0_el2());
1212 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1213 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1214 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1215 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1216 	write_el2_ctx_common(ctx, vttbr_el2, read_vttbr_el2());
1217 }
1218 
1219 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1220 {
1221 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1222 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1223 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1224 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1225 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1226 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1227 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1228 	if (CTX_INCLUDE_AARCH32_REGS) {
1229 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1230 	}
1231 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1232 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1233 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1234 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1235 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1236 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1237 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1238 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1239 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1240 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1241 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1242 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1243 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1244 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1245 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1246 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1247 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1248 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1249 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1250 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1251 }
1252 
1253 /*******************************************************************************
1254  * Save EL2 sysreg context
1255  ******************************************************************************/
1256 void cm_el2_sysregs_context_save(uint32_t security_state)
1257 {
1258 	cpu_context_t *ctx;
1259 	el2_sysregs_t *el2_sysregs_ctx;
1260 
1261 	ctx = cm_get_context(security_state);
1262 	assert(ctx != NULL);
1263 
1264 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1265 
1266 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1267 	el2_sysregs_context_save_gic(el2_sysregs_ctx);
1268 
1269 	if (is_feat_mte2_supported()) {
1270 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1271 	}
1272 
1273 	if (is_feat_mpam_supported()) {
1274 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1275 	}
1276 
1277 	if (is_feat_fgt_supported()) {
1278 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1279 	}
1280 
1281 	if (is_feat_ecv_v2_supported()) {
1282 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1283 	}
1284 
1285 	if (is_feat_vhe_supported()) {
1286 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1287 					read_contextidr_el2());
1288 		write_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1289 	}
1290 
1291 	if (is_feat_ras_supported()) {
1292 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1293 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1294 	}
1295 
1296 	if (is_feat_nv2_supported()) {
1297 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1298 	}
1299 
1300 	if (is_feat_trf_supported()) {
1301 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1302 	}
1303 
1304 	if (is_feat_csv2_2_supported()) {
1305 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1306 					read_scxtnum_el2());
1307 	}
1308 
1309 	if (is_feat_hcx_supported()) {
1310 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1311 	}
1312 
1313 	if (is_feat_tcr2_supported()) {
1314 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1315 	}
1316 
1317 	if (is_feat_sxpie_supported()) {
1318 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1319 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1320 	}
1321 
1322 	if (is_feat_sxpoe_supported()) {
1323 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1324 	}
1325 
1326 	if (is_feat_s2pie_supported()) {
1327 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1328 	}
1329 
1330 	if (is_feat_gcs_supported()) {
1331 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1332 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1333 	}
1334 }
1335 
1336 /*******************************************************************************
1337  * Restore EL2 sysreg context
1338  ******************************************************************************/
1339 void cm_el2_sysregs_context_restore(uint32_t security_state)
1340 {
1341 	cpu_context_t *ctx;
1342 	el2_sysregs_t *el2_sysregs_ctx;
1343 
1344 	ctx = cm_get_context(security_state);
1345 	assert(ctx != NULL);
1346 
1347 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1348 
1349 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1350 	el2_sysregs_context_restore_gic(el2_sysregs_ctx);
1351 
1352 	if (is_feat_mte2_supported()) {
1353 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1354 	}
1355 
1356 	if (is_feat_mpam_supported()) {
1357 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1358 	}
1359 
1360 	if (is_feat_fgt_supported()) {
1361 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1362 	}
1363 
1364 	if (is_feat_ecv_v2_supported()) {
1365 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1366 	}
1367 
1368 	if (is_feat_vhe_supported()) {
1369 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1370 					contextidr_el2));
1371 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1372 	}
1373 
1374 	if (is_feat_ras_supported()) {
1375 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1376 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1377 	}
1378 
1379 	if (is_feat_nv2_supported()) {
1380 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1381 	}
1382 
1383 	if (is_feat_trf_supported()) {
1384 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1385 	}
1386 
1387 	if (is_feat_csv2_2_supported()) {
1388 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1389 					scxtnum_el2));
1390 	}
1391 
1392 	if (is_feat_hcx_supported()) {
1393 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1394 	}
1395 
1396 	if (is_feat_tcr2_supported()) {
1397 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1398 	}
1399 
1400 	if (is_feat_sxpie_supported()) {
1401 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1402 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1403 	}
1404 
1405 	if (is_feat_sxpoe_supported()) {
1406 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1407 	}
1408 
1409 	if (is_feat_s2pie_supported()) {
1410 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1411 	}
1412 
1413 	if (is_feat_gcs_supported()) {
1414 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1415 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1416 	}
1417 }
1418 #endif /* CTX_INCLUDE_EL2_REGS */
1419 
1420 /*******************************************************************************
1421  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1422  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1423  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1424  * cm_prepare_el3_exit function.
1425  ******************************************************************************/
1426 void cm_prepare_el3_exit_ns(void)
1427 {
1428 #if CTX_INCLUDE_EL2_REGS
1429 #if ENABLE_ASSERTIONS
1430 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1431 	assert(ctx != NULL);
1432 
1433 	/* Assert that EL2 is used. */
1434 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1435 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1436 			(el_implemented(2U) != EL_IMPL_NONE));
1437 #endif /* ENABLE_ASSERTIONS */
1438 
1439 	/* Restore EL2 and EL1 sysreg contexts */
1440 	cm_el2_sysregs_context_restore(NON_SECURE);
1441 	cm_el1_sysregs_context_restore(NON_SECURE);
1442 	cm_set_next_eret_context(NON_SECURE);
1443 #else
1444 	cm_prepare_el3_exit(NON_SECURE);
1445 #endif /* CTX_INCLUDE_EL2_REGS */
1446 }
1447 
1448 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1449 {
1450 	write_ctx_reg(ctx, CTX_SPSR_EL1, read_spsr_el1());
1451 	write_ctx_reg(ctx, CTX_ELR_EL1, read_elr_el1());
1452 
1453 #if !ERRATA_SPECULATIVE_AT
1454 	write_ctx_reg(ctx, CTX_SCTLR_EL1, read_sctlr_el1());
1455 	write_ctx_reg(ctx, CTX_TCR_EL1, read_tcr_el1());
1456 #endif /* (!ERRATA_SPECULATIVE_AT) */
1457 
1458 	write_ctx_reg(ctx, CTX_CPACR_EL1, read_cpacr_el1());
1459 	write_ctx_reg(ctx, CTX_CSSELR_EL1, read_csselr_el1());
1460 	write_ctx_reg(ctx, CTX_SP_EL1, read_sp_el1());
1461 	write_ctx_reg(ctx, CTX_ESR_EL1, read_esr_el1());
1462 	write_ctx_reg(ctx, CTX_TTBR0_EL1, read_ttbr0_el1());
1463 	write_ctx_reg(ctx, CTX_TTBR1_EL1, read_ttbr1_el1());
1464 	write_ctx_reg(ctx, CTX_MAIR_EL1, read_mair_el1());
1465 	write_ctx_reg(ctx, CTX_AMAIR_EL1, read_amair_el1());
1466 	write_ctx_reg(ctx, CTX_ACTLR_EL1, read_actlr_el1());
1467 	write_ctx_reg(ctx, CTX_TPIDR_EL1, read_tpidr_el1());
1468 	write_ctx_reg(ctx, CTX_TPIDR_EL0, read_tpidr_el0());
1469 	write_ctx_reg(ctx, CTX_TPIDRRO_EL0, read_tpidrro_el0());
1470 	write_ctx_reg(ctx, CTX_PAR_EL1, read_par_el1());
1471 	write_ctx_reg(ctx, CTX_FAR_EL1, read_far_el1());
1472 	write_ctx_reg(ctx, CTX_AFSR0_EL1, read_afsr0_el1());
1473 	write_ctx_reg(ctx, CTX_AFSR1_EL1, read_afsr1_el1());
1474 	write_ctx_reg(ctx, CTX_CONTEXTIDR_EL1, read_contextidr_el1());
1475 	write_ctx_reg(ctx, CTX_VBAR_EL1, read_vbar_el1());
1476 	write_ctx_reg(ctx, CTX_MDCCINT_EL1, read_mdccint_el1());
1477 	write_ctx_reg(ctx, CTX_MDSCR_EL1, read_mdscr_el1());
1478 
1479 #if CTX_INCLUDE_AARCH32_REGS
1480 	write_ctx_reg(ctx, CTX_SPSR_ABT, read_spsr_abt());
1481 	write_ctx_reg(ctx, CTX_SPSR_UND, read_spsr_und());
1482 	write_ctx_reg(ctx, CTX_SPSR_IRQ, read_spsr_irq());
1483 	write_ctx_reg(ctx, CTX_SPSR_FIQ, read_spsr_fiq());
1484 	write_ctx_reg(ctx, CTX_DACR32_EL2, read_dacr32_el2());
1485 	write_ctx_reg(ctx, CTX_IFSR32_EL2, read_ifsr32_el2());
1486 #endif /* CTX_INCLUDE_AARCH32_REGS */
1487 
1488 #if NS_TIMER_SWITCH
1489 	write_ctx_reg(ctx, CTX_CNTP_CTL_EL0, read_cntp_ctl_el0());
1490 	write_ctx_reg(ctx, CTX_CNTP_CVAL_EL0, read_cntp_cval_el0());
1491 	write_ctx_reg(ctx, CTX_CNTV_CTL_EL0, read_cntv_ctl_el0());
1492 	write_ctx_reg(ctx, CTX_CNTV_CVAL_EL0, read_cntv_cval_el0());
1493 	write_ctx_reg(ctx, CTX_CNTKCTL_EL1, read_cntkctl_el1());
1494 #endif /* NS_TIMER_SWITCH */
1495 
1496 #if ENABLE_FEAT_MTE2
1497 	write_ctx_reg(ctx, CTX_TFSRE0_EL1, read_tfsre0_el1());
1498 	write_ctx_reg(ctx, CTX_TFSR_EL1, read_tfsr_el1());
1499 	write_ctx_reg(ctx, CTX_RGSR_EL1, read_rgsr_el1());
1500 	write_ctx_reg(ctx, CTX_GCR_EL1, read_gcr_el1());
1501 #endif /* ENABLE_FEAT_MTE2 */
1502 
1503 #if ENABLE_FEAT_RAS
1504 	if (is_feat_ras_supported()) {
1505 		write_ctx_reg(ctx, CTX_DISR_EL1, read_disr_el1());
1506 	}
1507 #endif
1508 
1509 #if ENABLE_FEAT_S1PIE
1510 	if (is_feat_s1pie_supported()) {
1511 		write_ctx_reg(ctx, CTX_PIRE0_EL1, read_pire0_el1());
1512 		write_ctx_reg(ctx, CTX_PIR_EL1, read_pir_el1());
1513 	}
1514 #endif
1515 
1516 #if ENABLE_FEAT_S1POE
1517 	if (is_feat_s1poe_supported()) {
1518 		write_ctx_reg(ctx, CTX_POR_EL1, read_por_el1());
1519 	}
1520 #endif
1521 
1522 #if ENABLE_FEAT_S2POE
1523 	if (is_feat_s2poe_supported()) {
1524 		write_ctx_reg(ctx, CTX_S2POR_EL1, read_s2por_el1());
1525 	}
1526 #endif
1527 
1528 #if ENABLE_FEAT_TCR2
1529 	if (is_feat_tcr2_supported()) {
1530 		write_ctx_reg(ctx, CTX_TCR2_EL1, read_tcr2_el1());
1531 	}
1532 #endif
1533 
1534 #if ENABLE_TRF_FOR_NS
1535 	if (is_feat_trf_supported()) {
1536 		write_ctx_reg(ctx, CTX_TRFCR_EL1, read_trfcr_el1());
1537 	}
1538 #endif
1539 
1540 #if ENABLE_FEAT_CSV2_2
1541 	if (is_feat_csv2_2_supported()) {
1542 		write_ctx_reg(ctx, CTX_SCXTNUM_EL0, read_scxtnum_el0());
1543 		write_ctx_reg(ctx, CTX_SCXTNUM_EL1, read_scxtnum_el1());
1544 	}
1545 #endif
1546 
1547 #if ENABLE_FEAT_GCS
1548 	if (is_feat_gcs_supported()) {
1549 		write_ctx_reg(ctx, CTX_GCSCR_EL1, read_gcscr_el1());
1550 		write_ctx_reg(ctx, CTX_GCSCRE0_EL1, read_gcscre0_el1());
1551 		write_ctx_reg(ctx, CTX_GCSPR_EL1, read_gcspr_el1());
1552 		write_ctx_reg(ctx, CTX_GCSPR_EL0, read_gcspr_el0());
1553 	}
1554 #endif
1555 }
1556 
1557 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1558 {
1559 	write_spsr_el1(read_ctx_reg(ctx, CTX_SPSR_EL1));
1560 	write_elr_el1(read_ctx_reg(ctx, CTX_ELR_EL1));
1561 
1562 #if !ERRATA_SPECULATIVE_AT
1563 	write_sctlr_el1(read_ctx_reg(ctx, CTX_SCTLR_EL1));
1564 	write_tcr_el1(read_ctx_reg(ctx, CTX_TCR_EL1));
1565 #endif /* (!ERRATA_SPECULATIVE_AT) */
1566 
1567 	write_cpacr_el1(read_ctx_reg(ctx, CTX_CPACR_EL1));
1568 	write_csselr_el1(read_ctx_reg(ctx, CTX_CSSELR_EL1));
1569 	write_sp_el1(read_ctx_reg(ctx, CTX_SP_EL1));
1570 	write_esr_el1(read_ctx_reg(ctx, CTX_ESR_EL1));
1571 	write_ttbr0_el1(read_ctx_reg(ctx, CTX_TTBR0_EL1));
1572 	write_ttbr1_el1(read_ctx_reg(ctx, CTX_TTBR1_EL1));
1573 	write_mair_el1(read_ctx_reg(ctx, CTX_MAIR_EL1));
1574 	write_amair_el1(read_ctx_reg(ctx, CTX_AMAIR_EL1));
1575 	write_actlr_el1(read_ctx_reg(ctx, CTX_ACTLR_EL1));
1576 	write_tpidr_el1(read_ctx_reg(ctx, CTX_TPIDR_EL1));
1577 	write_tpidr_el0(read_ctx_reg(ctx, CTX_TPIDR_EL0));
1578 	write_tpidrro_el0(read_ctx_reg(ctx, CTX_TPIDRRO_EL0));
1579 	write_par_el1(read_ctx_reg(ctx, CTX_PAR_EL1));
1580 	write_far_el1(read_ctx_reg(ctx, CTX_FAR_EL1));
1581 	write_afsr0_el1(read_ctx_reg(ctx, CTX_AFSR0_EL1));
1582 	write_afsr1_el1(read_ctx_reg(ctx, CTX_AFSR1_EL1));
1583 	write_contextidr_el1(read_ctx_reg(ctx, CTX_CONTEXTIDR_EL1));
1584 	write_vbar_el1(read_ctx_reg(ctx, CTX_VBAR_EL1));
1585 	write_mdccint_el1(read_ctx_reg(ctx, CTX_MDCCINT_EL1));
1586 	write_mdscr_el1(read_ctx_reg(ctx, CTX_MDSCR_EL1));
1587 
1588 #if CTX_INCLUDE_AARCH32_REGS
1589 	write_spsr_abt(read_ctx_reg(ctx, CTX_SPSR_ABT));
1590 	write_spsr_und(read_ctx_reg(ctx, CTX_SPSR_UND));
1591 	write_spsr_irq(read_ctx_reg(ctx, CTX_SPSR_IRQ));
1592 	write_spsr_fiq(read_ctx_reg(ctx, CTX_SPSR_FIQ));
1593 	write_dacr32_el2(read_ctx_reg(ctx, CTX_DACR32_EL2));
1594 	write_ifsr32_el2(read_ctx_reg(ctx, CTX_IFSR32_EL2));
1595 #endif /* CTX_INCLUDE_AARCH32_REGS */
1596 
1597 #if NS_TIMER_SWITCH
1598 	write_cntp_ctl_el0(read_ctx_reg(ctx, CTX_CNTP_CTL_EL0));
1599 	write_cntp_cval_el0(read_ctx_reg(ctx, CTX_CNTP_CVAL_EL0));
1600 	write_cntv_ctl_el0(read_ctx_reg(ctx, CTX_CNTV_CTL_EL0));
1601 	write_cntv_cval_el0(read_ctx_reg(ctx, CTX_CNTV_CVAL_EL0));
1602 	write_cntkctl_el1(read_ctx_reg(ctx, CTX_CNTKCTL_EL1));
1603 #endif /* NS_TIMER_SWITCH */
1604 
1605 #if ENABLE_FEAT_MTE2
1606 	write_tfsre0_el1(read_ctx_reg(ctx, CTX_TFSRE0_EL1));
1607 	write_tfsr_el1(read_ctx_reg(ctx, CTX_TFSR_EL1));
1608 	write_rgsr_el1(read_ctx_reg(ctx, CTX_RGSR_EL1));
1609 	write_gcr_el1(read_ctx_reg(ctx, CTX_GCR_EL1));
1610 #endif /* ENABLE_FEAT_MTE2 */
1611 
1612 #if ENABLE_FEAT_RAS
1613 	if (is_feat_ras_supported()) {
1614 		write_disr_el1(read_ctx_reg(ctx, CTX_DISR_EL1));
1615 	}
1616 #endif
1617 
1618 #if ENABLE_FEAT_S1PIE
1619 	if (is_feat_s1pie_supported()) {
1620 		write_pire0_el1(read_ctx_reg(ctx, CTX_PIRE0_EL1));
1621 		write_pir_el1(read_ctx_reg(ctx, CTX_PIR_EL1));
1622 	}
1623 #endif
1624 
1625 #if ENABLE_FEAT_S1POE
1626 	if (is_feat_s1poe_supported()) {
1627 		write_por_el1(read_ctx_reg(ctx, CTX_POR_EL1));
1628 	}
1629 #endif
1630 
1631 #if ENABLE_FEAT_S2POE
1632 	if (is_feat_s2poe_supported()) {
1633 		write_s2por_el1(read_ctx_reg(ctx, CTX_S2POR_EL1));
1634 	}
1635 #endif
1636 
1637 #if ENABLE_FEAT_TCR2
1638 	if (is_feat_tcr2_supported()) {
1639 		write_tcr2_el1(read_ctx_reg(ctx, CTX_TCR2_EL1));
1640 	}
1641 #endif
1642 
1643 #if ENABLE_TRF_FOR_NS
1644 	if (is_feat_trf_supported()) {
1645 		write_trfcr_el1(read_ctx_reg(ctx, CTX_TRFCR_EL1));
1646 	}
1647 #endif
1648 
1649 #if ENABLE_FEAT_CSV2_2
1650 	if (is_feat_csv2_2_supported()) {
1651 		write_scxtnum_el0(read_ctx_reg(ctx, CTX_SCXTNUM_EL0));
1652 		write_scxtnum_el1(read_ctx_reg(ctx, CTX_SCXTNUM_EL1));
1653 	}
1654 #endif
1655 
1656 #if ENABLE_FEAT_GCS
1657 	if (is_feat_gcs_supported()) {
1658 		write_gcscr_el1(read_ctx_reg(ctx, CTX_GCSCR_EL1));
1659 		write_gcscre0_el1(read_ctx_reg(ctx, CTX_GCSCRE0_EL1));
1660 		write_gcspr_el1(read_ctx_reg(ctx, CTX_GCSPR_EL1));
1661 		write_gcspr_el0(read_ctx_reg(ctx, CTX_GCSPR_EL0));
1662 	}
1663 #endif
1664 }
1665 
1666 /*******************************************************************************
1667  * The next four functions are used by runtime services to save and restore
1668  * EL1 context on the 'cpu_context' structure for the specified security
1669  * state.
1670  ******************************************************************************/
1671 void cm_el1_sysregs_context_save(uint32_t security_state)
1672 {
1673 	cpu_context_t *ctx;
1674 
1675 	ctx = cm_get_context(security_state);
1676 	assert(ctx != NULL);
1677 
1678 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1679 
1680 #if IMAGE_BL31
1681 	if (security_state == SECURE)
1682 		PUBLISH_EVENT(cm_exited_secure_world);
1683 	else
1684 		PUBLISH_EVENT(cm_exited_normal_world);
1685 #endif
1686 }
1687 
1688 void cm_el1_sysregs_context_restore(uint32_t security_state)
1689 {
1690 	cpu_context_t *ctx;
1691 
1692 	ctx = cm_get_context(security_state);
1693 	assert(ctx != NULL);
1694 
1695 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1696 
1697 #if IMAGE_BL31
1698 	if (security_state == SECURE)
1699 		PUBLISH_EVENT(cm_entering_secure_world);
1700 	else
1701 		PUBLISH_EVENT(cm_entering_normal_world);
1702 #endif
1703 }
1704 
1705 /*******************************************************************************
1706  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1707  * given security state with the given entrypoint
1708  ******************************************************************************/
1709 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1710 {
1711 	cpu_context_t *ctx;
1712 	el3_state_t *state;
1713 
1714 	ctx = cm_get_context(security_state);
1715 	assert(ctx != NULL);
1716 
1717 	/* Populate EL3 state so that ERET jumps to the correct entry */
1718 	state = get_el3state_ctx(ctx);
1719 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1720 }
1721 
1722 /*******************************************************************************
1723  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1724  * pertaining to the given security state
1725  ******************************************************************************/
1726 void cm_set_elr_spsr_el3(uint32_t security_state,
1727 			uintptr_t entrypoint, uint32_t spsr)
1728 {
1729 	cpu_context_t *ctx;
1730 	el3_state_t *state;
1731 
1732 	ctx = cm_get_context(security_state);
1733 	assert(ctx != NULL);
1734 
1735 	/* Populate EL3 state so that ERET jumps to the correct entry */
1736 	state = get_el3state_ctx(ctx);
1737 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1738 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1739 }
1740 
1741 /*******************************************************************************
1742  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1743  * pertaining to the given security state using the value and bit position
1744  * specified in the parameters. It preserves all other bits.
1745  ******************************************************************************/
1746 void cm_write_scr_el3_bit(uint32_t security_state,
1747 			  uint32_t bit_pos,
1748 			  uint32_t value)
1749 {
1750 	cpu_context_t *ctx;
1751 	el3_state_t *state;
1752 	u_register_t scr_el3;
1753 
1754 	ctx = cm_get_context(security_state);
1755 	assert(ctx != NULL);
1756 
1757 	/* Ensure that the bit position is a valid one */
1758 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1759 
1760 	/* Ensure that the 'value' is only a bit wide */
1761 	assert(value <= 1U);
1762 
1763 	/*
1764 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1765 	 * and set it to its new value.
1766 	 */
1767 	state = get_el3state_ctx(ctx);
1768 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1769 	scr_el3 &= ~(1UL << bit_pos);
1770 	scr_el3 |= (u_register_t)value << bit_pos;
1771 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1772 }
1773 
1774 /*******************************************************************************
1775  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1776  * given security state.
1777  ******************************************************************************/
1778 u_register_t cm_get_scr_el3(uint32_t security_state)
1779 {
1780 	cpu_context_t *ctx;
1781 	el3_state_t *state;
1782 
1783 	ctx = cm_get_context(security_state);
1784 	assert(ctx != NULL);
1785 
1786 	/* Populate EL3 state so that ERET jumps to the correct entry */
1787 	state = get_el3state_ctx(ctx);
1788 	return read_ctx_reg(state, CTX_SCR_EL3);
1789 }
1790 
1791 /*******************************************************************************
1792  * This function is used to program the context that's used for exception
1793  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1794  * the required security state
1795  ******************************************************************************/
1796 void cm_set_next_eret_context(uint32_t security_state)
1797 {
1798 	cpu_context_t *ctx;
1799 
1800 	ctx = cm_get_context(security_state);
1801 	assert(ctx != NULL);
1802 
1803 	cm_set_next_context(ctx);
1804 }
1805