xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 83ec7e452c182af1148af0abaf8f24da2585102a)
1 /*
2  * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/cpus/cpu_ops.h>
23 #include <lib/cpus/errata.h>
24 #include <lib/el3_runtime/context_mgmt.h>
25 #include <lib/el3_runtime/cpu_data.h>
26 #include <lib/el3_runtime/pubsub_events.h>
27 #include <lib/extensions/amu.h>
28 #include <lib/extensions/brbe.h>
29 #include <lib/extensions/debug_v8p9.h>
30 #include <lib/extensions/fgt2.h>
31 #include <lib/extensions/fpmr.h>
32 #include <lib/extensions/mpam.h>
33 #include <lib/extensions/pmuv3.h>
34 #include <lib/extensions/sme.h>
35 #include <lib/extensions/spe.h>
36 #include <lib/extensions/sve.h>
37 #include <lib/extensions/sysreg128.h>
38 #include <lib/extensions/sys_reg_trace.h>
39 #include <lib/extensions/tcr2.h>
40 #include <lib/extensions/trbe.h>
41 #include <lib/extensions/trf.h>
42 #include <lib/utils.h>
43 
44 #if ENABLE_FEAT_TWED
45 /* Make sure delay value fits within the range(0-15) */
46 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
47 #endif /* ENABLE_FEAT_TWED */
48 
49 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
50 static bool has_secure_perworld_init;
51 
52 static void manage_extensions_nonsecure(cpu_context_t *ctx);
53 static void manage_extensions_secure(cpu_context_t *ctx);
54 static void manage_extensions_secure_per_world(void);
55 
56 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
57 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
58 {
59 	u_register_t sctlr_elx, actlr_elx;
60 
61 	/*
62 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
63 	 * execution state setting all fields rather than relying on the hw.
64 	 * Some fields have architecturally UNKNOWN reset values and these are
65 	 * set to zero.
66 	 *
67 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
68 	 *
69 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
70 	 * required by PSCI specification)
71 	 */
72 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
73 	if (GET_RW(ep->spsr) == MODE_RW_64) {
74 		sctlr_elx |= SCTLR_EL1_RES1;
75 	} else {
76 		/*
77 		 * If the target execution state is AArch32 then the following
78 		 * fields need to be set.
79 		 *
80 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
81 		 *  instructions are not trapped to EL1.
82 		 *
83 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
84 		 *  instructions are not trapped to EL1.
85 		 *
86 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
87 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
88 		 */
89 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
90 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
91 	}
92 
93 	/*
94 	 * If workaround of errata 764081 for Cortex-A75 is used then set
95 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
96 	 */
97 	if (errata_a75_764081_applies()) {
98 		sctlr_elx |= SCTLR_IESB_BIT;
99 	}
100 
101 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
102 	write_ctx_sctlr_el1_reg_errata(ctx, sctlr_elx);
103 
104 	/*
105 	 * Base the context ACTLR_EL1 on the current value, as it is
106 	 * implementation defined. The context restore process will write
107 	 * the value from the context to the actual register and can cause
108 	 * problems for processor cores that don't expect certain bits to
109 	 * be zero.
110 	 */
111 	actlr_elx = read_actlr_el1();
112 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx);
113 }
114 #endif /* (IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)) */
115 
116 /******************************************************************************
117  * This function performs initializations that are specific to SECURE state
118  * and updates the cpu context specified by 'ctx'.
119  *****************************************************************************/
120 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
121 {
122 	u_register_t scr_el3;
123 	el3_state_t *state;
124 
125 	state = get_el3state_ctx(ctx);
126 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
127 
128 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
129 	/*
130 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
131 	 * indicated by the interrupt routing model for BL31.
132 	 */
133 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
134 #endif
135 
136 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
137 	if (is_feat_mte2_supported()) {
138 		scr_el3 |= SCR_ATA_BIT;
139 	}
140 
141 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
142 
143 	/*
144 	 * Initialize EL1 context registers unless SPMC is running
145 	 * at S-EL2.
146 	 */
147 #if (!SPMD_SPM_AT_SEL2)
148 	setup_el1_context(ctx, ep);
149 #endif
150 
151 	manage_extensions_secure(ctx);
152 
153 	/**
154 	 * manage_extensions_secure_per_world api has to be executed once,
155 	 * as the registers getting initialised, maintain constant value across
156 	 * all the cpus for the secure world.
157 	 * Henceforth, this check ensures that the registers are initialised once
158 	 * and avoids re-initialization from multiple cores.
159 	 */
160 	if (!has_secure_perworld_init) {
161 		manage_extensions_secure_per_world();
162 	}
163 }
164 
165 #if ENABLE_RME
166 /******************************************************************************
167  * This function performs initializations that are specific to REALM state
168  * and updates the cpu context specified by 'ctx'.
169  *****************************************************************************/
170 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
171 {
172 	u_register_t scr_el3;
173 	el3_state_t *state;
174 
175 	state = get_el3state_ctx(ctx);
176 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
177 
178 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
179 
180 	/* CSV2 version 2 and above */
181 	if (is_feat_csv2_2_supported()) {
182 		/* Enable access to the SCXTNUM_ELx registers. */
183 		scr_el3 |= SCR_EnSCXT_BIT;
184 	}
185 
186 	if (is_feat_sctlr2_supported()) {
187 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
188 		 * SCTLR2_ELx registers.
189 		 */
190 		scr_el3 |= SCR_SCTLR2En_BIT;
191 	}
192 
193 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
194 
195 	if (is_feat_fgt2_supported()) {
196 		fgt2_enable(ctx);
197 	}
198 
199 	if (is_feat_debugv8p9_supported()) {
200 		debugv8p9_extended_bp_wp_enable(ctx);
201 	}
202 
203 	if (is_feat_brbe_supported()) {
204 		brbe_enable(ctx);
205 	}
206 
207 }
208 #endif /* ENABLE_RME */
209 
210 /******************************************************************************
211  * This function performs initializations that are specific to NON-SECURE state
212  * and updates the cpu context specified by 'ctx'.
213  *****************************************************************************/
214 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
215 {
216 	u_register_t scr_el3;
217 	el3_state_t *state;
218 
219 	state = get_el3state_ctx(ctx);
220 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
221 
222 	/* SCR_NS: Set the NS bit */
223 	scr_el3 |= SCR_NS_BIT;
224 
225 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
226 	if (is_feat_mte2_supported()) {
227 		scr_el3 |= SCR_ATA_BIT;
228 	}
229 
230 #if !CTX_INCLUDE_PAUTH_REGS
231 	/*
232 	 * Pointer Authentication feature, if present, is always enabled by default
233 	 * for Non secure lower exception levels. We do not have an explicit
234 	 * flag to set it.
235 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
236 	 * exception levels of secure and realm worlds.
237 	 *
238 	 * To prevent the leakage between the worlds during world switch,
239 	 * we enable it only for the non-secure world.
240 	 *
241 	 * If the Secure/realm world wants to use pointer authentication,
242 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
243 	 * it will be enabled globally for all the contexts.
244 	 *
245 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
246 	 *  other than EL3
247 	 *
248 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
249 	 *  than EL3
250 	 */
251 	if (is_armv8_3_pauth_present()) {
252 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
253 	}
254 #endif /* CTX_INCLUDE_PAUTH_REGS */
255 
256 #if HANDLE_EA_EL3_FIRST_NS
257 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
258 	scr_el3 |= SCR_EA_BIT;
259 #endif
260 
261 #if RAS_TRAP_NS_ERR_REC_ACCESS
262 	/*
263 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
264 	 * and RAS ERX registers from EL1 and EL2(from any security state)
265 	 * are trapped to EL3.
266 	 * Set here to trap only for NS EL1/EL2
267 	 */
268 	scr_el3 |= SCR_TERR_BIT;
269 #endif
270 
271 	/* CSV2 version 2 and above */
272 	if (is_feat_csv2_2_supported()) {
273 		/* Enable access to the SCXTNUM_ELx registers. */
274 		scr_el3 |= SCR_EnSCXT_BIT;
275 	}
276 
277 #ifdef IMAGE_BL31
278 	/*
279 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
280 	 *  indicated by the interrupt routing model for BL31.
281 	 */
282 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
283 #endif
284 
285 	if (is_feat_the_supported()) {
286 		/* Set the RCWMASKEn bit in SCR_EL3 to enable access to
287 		 * RCWMASK_EL1 and RCWSMASK_EL1 registers.
288 		 */
289 		scr_el3 |= SCR_RCWMASKEn_BIT;
290 	}
291 
292 	if (is_feat_sctlr2_supported()) {
293 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
294 		 * SCTLR2_ELx registers.
295 		 */
296 		scr_el3 |= SCR_SCTLR2En_BIT;
297 	}
298 
299 	if (is_feat_d128_supported()) {
300 		/* Set the D128En bit in SCR_EL3 to enable access to 128-bit
301 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
302 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
303 		 */
304 		scr_el3 |= SCR_D128En_BIT;
305 	}
306 
307 	if (is_feat_fpmr_supported()) {
308 		/* Set the EnFPM bit in SCR_EL3 to enable access to FPMR
309 		 * register.
310 		 */
311 		scr_el3 |= SCR_EnFPM_BIT;
312 	}
313 
314 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
315 
316 	/* Initialize EL2 context registers */
317 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
318 
319 	/*
320 	 * Initialize SCTLR_EL2 context register with reset value.
321 	 */
322 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
323 
324 	if (is_feat_hcx_supported()) {
325 		/*
326 		 * Initialize register HCRX_EL2 with its init value.
327 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
328 		 * chance that this can lead to unexpected behavior in lower
329 		 * ELs that have not been updated since the introduction of
330 		 * this feature if not properly initialized, especially when
331 		 * it comes to those bits that enable/disable traps.
332 		 */
333 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
334 			HCRX_EL2_INIT_VAL);
335 	}
336 
337 	if (is_feat_fgt_supported()) {
338 		/*
339 		 * Initialize HFG*_EL2 registers with a default value so legacy
340 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
341 		 * of initialization for this feature.
342 		 */
343 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
344 			HFGITR_EL2_INIT_VAL);
345 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
346 			HFGRTR_EL2_INIT_VAL);
347 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
348 			HFGWTR_EL2_INIT_VAL);
349 	}
350 #else
351 	/* Initialize EL1 context registers */
352 	setup_el1_context(ctx, ep);
353 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
354 
355 	manage_extensions_nonsecure(ctx);
356 }
357 
358 /*******************************************************************************
359  * The following function performs initialization of the cpu_context 'ctx'
360  * for first use that is common to all security states, and sets the
361  * initial entrypoint state as specified by the entry_point_info structure.
362  *
363  * The EE and ST attributes are used to configure the endianness and secure
364  * timer availability for the new execution context.
365  ******************************************************************************/
366 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
367 {
368 	u_register_t scr_el3;
369 	u_register_t mdcr_el3;
370 	el3_state_t *state;
371 	gp_regs_t *gp_regs;
372 
373 	state = get_el3state_ctx(ctx);
374 
375 	/* Clear any residual register values from the context */
376 	zeromem(ctx, sizeof(*ctx));
377 
378 	/*
379 	 * The lower-EL context is zeroed so that no stale values leak to a world.
380 	 * It is assumed that an all-zero lower-EL context is good enough for it
381 	 * to boot correctly. However, there are very few registers where this
382 	 * is not true and some values need to be recreated.
383 	 */
384 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
385 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
386 
387 	/*
388 	 * These bits are set in the gicv3 driver. Losing them (especially the
389 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
390 	 */
391 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
392 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
393 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
394 
395 	/*
396 	 * The actlr_el2 register can be initialized in platform's reset handler
397 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
398 	 */
399 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
400 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
401 
402 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
403 	scr_el3 = SCR_RESET_VAL;
404 
405 	/*
406 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
407 	 *  EL2, EL1 and EL0 are not trapped to EL3.
408 	 *
409 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
410 	 *  EL2, EL1 and EL0 are not trapped to EL3.
411 	 *
412 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
413 	 *  both Security states and both Execution states.
414 	 *
415 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
416 	 *  Non-secure memory.
417 	 */
418 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
419 
420 	scr_el3 |= SCR_SIF_BIT;
421 
422 	/*
423 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
424 	 *  Exception level as specified by SPSR.
425 	 */
426 	if (GET_RW(ep->spsr) == MODE_RW_64) {
427 		scr_el3 |= SCR_RW_BIT;
428 	}
429 
430 	/*
431 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
432 	 * Secure timer registers to EL3, from AArch64 state only, if specified
433 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
434 	 * bit always behaves as 1 (i.e. secure physical timer register access
435 	 * is not trapped)
436 	 */
437 	if (EP_GET_ST(ep->h.attr) != 0U) {
438 		scr_el3 |= SCR_ST_BIT;
439 	}
440 
441 	/*
442 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
443 	 * SCR_EL3.HXEn.
444 	 */
445 	if (is_feat_hcx_supported()) {
446 		scr_el3 |= SCR_HXEn_BIT;
447 	}
448 
449 	/*
450 	 * If FEAT_LS64_ACCDATA is enabled, enable access to ACCDATA_EL1 by
451 	 * setting SCR_EL3.ADEn and allow the ST64BV0 instruction by setting
452 	 * SCR_EL3.EnAS0.
453 	 */
454 	if (is_feat_ls64_accdata_supported()) {
455 		scr_el3 |= SCR_ADEn_BIT | SCR_EnAS0_BIT;
456 	}
457 
458 	/*
459 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
460 	 * registers are trapped to EL3.
461 	 */
462 	if (is_feat_rng_trap_supported()) {
463 		scr_el3 |= SCR_TRNDR_BIT;
464 	}
465 
466 #if FAULT_INJECTION_SUPPORT
467 	/* Enable fault injection from lower ELs */
468 	scr_el3 |= SCR_FIEN_BIT;
469 #endif
470 
471 #if CTX_INCLUDE_PAUTH_REGS
472 	/*
473 	 * Enable Pointer Authentication globally for all the worlds.
474 	 *
475 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
476 	 *  other than EL3
477 	 *
478 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
479 	 *  than EL3
480 	 */
481 	if (is_armv8_3_pauth_present()) {
482 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
483 	}
484 #endif /* CTX_INCLUDE_PAUTH_REGS */
485 
486 	/*
487 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
488 	 */
489 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
490 		scr_el3 |= SCR_TCR2EN_BIT;
491 	}
492 
493 	/*
494 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
495 	 * registers for AArch64 if present.
496 	 */
497 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
498 		scr_el3 |= SCR_PIEN_BIT;
499 	}
500 
501 	/*
502 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
503 	 */
504 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
505 		scr_el3 |= SCR_GCSEn_BIT;
506 	}
507 
508 	/*
509 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
510 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
511 	 * next mode is Hyp.
512 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
513 	 * same conditions as HVC instructions and when the processor supports
514 	 * ARMv8.6-FGT.
515 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
516 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
517 	 * and when the processor supports ECV.
518 	 */
519 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
520 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
521 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
522 		scr_el3 |= SCR_HCE_BIT;
523 
524 		if (is_feat_fgt_supported()) {
525 			scr_el3 |= SCR_FGTEN_BIT;
526 		}
527 
528 		if (is_feat_ecv_supported()) {
529 			scr_el3 |= SCR_ECVEN_BIT;
530 		}
531 	}
532 
533 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
534 	if (is_feat_twed_supported()) {
535 		/* Set delay in SCR_EL3 */
536 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
537 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
538 				<< SCR_TWEDEL_SHIFT);
539 
540 		/* Enable WFE delay */
541 		scr_el3 |= SCR_TWEDEn_BIT;
542 	}
543 
544 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
545 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
546 	if (is_feat_sel2_supported()) {
547 		scr_el3 |= SCR_EEL2_BIT;
548 	}
549 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
550 
551 	/*
552 	 * Populate EL3 state so that we've the right context
553 	 * before doing ERET
554 	 */
555 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
556 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
557 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
558 
559 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
560 	mdcr_el3 = MDCR_EL3_RESET_VAL;
561 
562 	/* ---------------------------------------------------------------------
563 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
564 	 * Some fields are architecturally UNKNOWN on reset.
565 	 *
566 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
567 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
568 	 *  disabled from all ELs in Secure state.
569 	 *
570 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
571 	 *  privileged debug from S-EL1.
572 	 *
573 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
574 	 *  access to the powerdown debug registers do not trap to EL3.
575 	 *
576 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
577 	 *  debug registers, other than those registers that are controlled by
578 	 *  MDCR_EL3.TDOSA.
579 	 */
580 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
581 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
582 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
583 
584 #if IMAGE_BL31
585 	/* Enable FEAT_TRF for Non-Secure and prohibit for Secure state. */
586 	if (is_feat_trf_supported()) {
587 		trf_enable(ctx);
588 	}
589 
590 	pmuv3_enable(ctx);
591 #endif /* IMAGE_BL31 */
592 
593 	/*
594 	 * Store the X0-X7 value from the entrypoint into the context
595 	 * Use memcpy as we are in control of the layout of the structures
596 	 */
597 	gp_regs = get_gpregs_ctx(ctx);
598 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
599 }
600 
601 /*******************************************************************************
602  * Context management library initialization routine. This library is used by
603  * runtime services to share pointers to 'cpu_context' structures for secure
604  * non-secure and realm states. Management of the structures and their associated
605  * memory is not done by the context management library e.g. the PSCI service
606  * manages the cpu context used for entry from and exit to the non-secure state.
607  * The Secure payload dispatcher service manages the context(s) corresponding to
608  * the secure state. It also uses this library to get access to the non-secure
609  * state cpu context pointers.
610  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
611  * which will be used for programming an entry into a lower EL. The same context
612  * will be used to save state upon exception entry from that EL.
613  ******************************************************************************/
614 void __init cm_init(void)
615 {
616 	/*
617 	 * The context management library has only global data to initialize, but
618 	 * that will be done when the BSS is zeroed out.
619 	 */
620 }
621 
622 /*******************************************************************************
623  * This is the high-level function used to initialize the cpu_context 'ctx' for
624  * first use. It performs initializations that are common to all security states
625  * and initializations specific to the security state specified in 'ep'
626  ******************************************************************************/
627 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
628 {
629 	unsigned int security_state;
630 
631 	assert(ctx != NULL);
632 
633 	/*
634 	 * Perform initializations that are common
635 	 * to all security states
636 	 */
637 	setup_context_common(ctx, ep);
638 
639 	security_state = GET_SECURITY_STATE(ep->h.attr);
640 
641 	/* Perform security state specific initializations */
642 	switch (security_state) {
643 	case SECURE:
644 		setup_secure_context(ctx, ep);
645 		break;
646 #if ENABLE_RME
647 	case REALM:
648 		setup_realm_context(ctx, ep);
649 		break;
650 #endif
651 	case NON_SECURE:
652 		setup_ns_context(ctx, ep);
653 		break;
654 	default:
655 		ERROR("Invalid security state\n");
656 		panic();
657 		break;
658 	}
659 }
660 
661 /*******************************************************************************
662  * Enable architecture extensions for EL3 execution. This function only updates
663  * registers in-place which are expected to either never change or be
664  * overwritten by el3_exit. Expects the core_pos of the current core as argument.
665  ******************************************************************************/
666 #if IMAGE_BL31
667 void cm_manage_extensions_el3(unsigned int my_idx)
668 {
669 	if (is_feat_amu_supported()) {
670 		amu_init_el3(my_idx);
671 	}
672 
673 	if (is_feat_sme_supported()) {
674 		sme_init_el3();
675 	}
676 
677 	pmuv3_init_el3();
678 }
679 #endif /* IMAGE_BL31 */
680 
681 /******************************************************************************
682  * Function to initialise the registers with the RESET values in the context
683  * memory, which are maintained per world.
684  ******************************************************************************/
685 #if IMAGE_BL31
686 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
687 {
688 	/*
689 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
690 	 *
691 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
692 	 *  by Advanced SIMD, floating-point or SVE instructions (if
693 	 *  implemented) do not trap to EL3.
694 	 *
695 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
696 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
697 	 */
698 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
699 
700 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
701 
702 	/*
703 	 * Initialize MPAM3_EL3 to its default reset value
704 	 *
705 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
706 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
707 	 */
708 
709 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
710 }
711 #endif /* IMAGE_BL31 */
712 
713 /*******************************************************************************
714  * Initialise per_world_context for Non-Secure world.
715  * This function enables the architecture extensions, which have same value
716  * across the cores for the non-secure world.
717  ******************************************************************************/
718 #if IMAGE_BL31
719 void manage_extensions_nonsecure_per_world(void)
720 {
721 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
722 
723 	if (is_feat_sme_supported()) {
724 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
725 	}
726 
727 	if (is_feat_sve_supported()) {
728 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
729 	}
730 
731 	if (is_feat_amu_supported()) {
732 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
733 	}
734 
735 	if (is_feat_sys_reg_trace_supported()) {
736 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
737 	}
738 
739 	if (is_feat_mpam_supported()) {
740 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
741 	}
742 
743 	if (is_feat_fpmr_supported()) {
744 		fpmr_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
745 	}
746 }
747 #endif /* IMAGE_BL31 */
748 
749 /*******************************************************************************
750  * Initialise per_world_context for Secure world.
751  * This function enables the architecture extensions, which have same value
752  * across the cores for the secure world.
753  ******************************************************************************/
754 static void manage_extensions_secure_per_world(void)
755 {
756 #if IMAGE_BL31
757 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
758 
759 	if (is_feat_sme_supported()) {
760 
761 		if (ENABLE_SME_FOR_SWD) {
762 		/*
763 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
764 		 * SME, SVE, and FPU/SIMD context properly managed.
765 		 */
766 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
767 		} else {
768 		/*
769 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
770 		 * world can safely use the associated registers.
771 		 */
772 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
773 		}
774 	}
775 	if (is_feat_sve_supported()) {
776 		if (ENABLE_SVE_FOR_SWD) {
777 		/*
778 		 * Enable SVE and FPU in secure context, SPM must ensure
779 		 * that the SVE and FPU register contexts are properly managed.
780 		 */
781 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
782 		} else {
783 		/*
784 		 * Disable SVE and FPU in secure context so non-secure world
785 		 * can safely use them.
786 		 */
787 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
788 		}
789 	}
790 
791 	/* NS can access this but Secure shouldn't */
792 	if (is_feat_sys_reg_trace_supported()) {
793 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
794 	}
795 
796 	has_secure_perworld_init = true;
797 #endif /* IMAGE_BL31 */
798 }
799 
800 /*******************************************************************************
801  * Enable architecture extensions on first entry to Non-secure world.
802  ******************************************************************************/
803 static void manage_extensions_nonsecure(cpu_context_t *ctx)
804 {
805 #if IMAGE_BL31
806 	/* NOTE: registers are not context switched */
807 	if (is_feat_amu_supported()) {
808 		amu_enable(ctx);
809 	}
810 
811 	if (is_feat_sme_supported()) {
812 		sme_enable(ctx);
813 	}
814 
815 	if (is_feat_fgt2_supported()) {
816 		fgt2_enable(ctx);
817 	}
818 
819 	if (is_feat_debugv8p9_supported()) {
820 		debugv8p9_extended_bp_wp_enable(ctx);
821 	}
822 
823 	/*
824 	 * SPE, TRBE, and BRBE have multi-field enables that affect which world
825 	 * they apply to. Despite this, it is useful to ignore these for
826 	 * simplicity in determining the feature's per world enablement status.
827 	 * This is only possible when context is written per-world. Relied on
828 	 * by SMCCC_ARCH_FEATURE_AVAILABILITY
829 	 */
830 	if (is_feat_spe_supported()) {
831 		spe_enable(ctx);
832 	}
833 
834 	if (is_feat_trbe_supported()) {
835 		trbe_enable(ctx);
836 	}
837 
838 	if (is_feat_brbe_supported()) {
839 		brbe_enable(ctx);
840 	}
841 #endif /* IMAGE_BL31 */
842 }
843 
844 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
845 static __unused void enable_pauth_el2(void)
846 {
847 	u_register_t hcr_el2 = read_hcr_el2();
848 	/*
849 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
850 	 *  accessing key registers or using pointer authentication instructions
851 	 *  from lower ELs.
852 	 */
853 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
854 
855 	write_hcr_el2(hcr_el2);
856 }
857 
858 #if INIT_UNUSED_NS_EL2
859 /*******************************************************************************
860  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
861  * world when EL2 is empty and unused.
862  ******************************************************************************/
863 static void manage_extensions_nonsecure_el2_unused(void)
864 {
865 #if IMAGE_BL31
866 	if (is_feat_spe_supported()) {
867 		spe_init_el2_unused();
868 	}
869 
870 	if (is_feat_amu_supported()) {
871 		amu_init_el2_unused();
872 	}
873 
874 	if (is_feat_mpam_supported()) {
875 		mpam_init_el2_unused();
876 	}
877 
878 	if (is_feat_trbe_supported()) {
879 		trbe_init_el2_unused();
880 	}
881 
882 	if (is_feat_sys_reg_trace_supported()) {
883 		sys_reg_trace_init_el2_unused();
884 	}
885 
886 	if (is_feat_trf_supported()) {
887 		trf_init_el2_unused();
888 	}
889 
890 	pmuv3_init_el2_unused();
891 
892 	if (is_feat_sve_supported()) {
893 		sve_init_el2_unused();
894 	}
895 
896 	if (is_feat_sme_supported()) {
897 		sme_init_el2_unused();
898 	}
899 
900 	if (is_feat_mops_supported()) {
901 		write_hcrx_el2(read_hcrx_el2() | HCRX_EL2_MSCEn_BIT);
902 	}
903 
904 #if ENABLE_PAUTH
905 	enable_pauth_el2();
906 #endif /* ENABLE_PAUTH */
907 #endif /* IMAGE_BL31 */
908 }
909 #endif /* INIT_UNUSED_NS_EL2 */
910 
911 /*******************************************************************************
912  * Enable architecture extensions on first entry to Secure world.
913  ******************************************************************************/
914 static void manage_extensions_secure(cpu_context_t *ctx)
915 {
916 #if IMAGE_BL31
917 	if (is_feat_sme_supported()) {
918 		if (ENABLE_SME_FOR_SWD) {
919 		/*
920 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
921 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
922 		 */
923 			sme_init_el3();
924 			sme_enable(ctx);
925 		} else {
926 		/*
927 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
928 		 * world can safely use the associated registers.
929 		 */
930 			sme_disable(ctx);
931 		}
932 	}
933 
934 	/*
935 	 * SPE and TRBE cannot be fully disabled from EL3 registers alone, only
936 	 * sysreg access can. In case the EL1 controls leave them active on
937 	 * context switch, we want the owning security state to be NS so Secure
938 	 * can't be DOSed.
939 	 */
940 	if (is_feat_spe_supported()) {
941 		spe_disable(ctx);
942 	}
943 
944 	if (is_feat_trbe_supported()) {
945 		trbe_disable(ctx);
946 	}
947 #endif /* IMAGE_BL31 */
948 }
949 
950 #if !IMAGE_BL1
951 /*******************************************************************************
952  * The following function initializes the cpu_context for a CPU specified by
953  * its `cpu_idx` for first use, and sets the initial entrypoint state as
954  * specified by the entry_point_info structure.
955  ******************************************************************************/
956 void cm_init_context_by_index(unsigned int cpu_idx,
957 			      const entry_point_info_t *ep)
958 {
959 	cpu_context_t *ctx;
960 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
961 	cm_setup_context(ctx, ep);
962 }
963 #endif /* !IMAGE_BL1 */
964 
965 /*******************************************************************************
966  * The following function initializes the cpu_context for the current CPU
967  * for first use, and sets the initial entrypoint state as specified by the
968  * entry_point_info structure.
969  ******************************************************************************/
970 void cm_init_my_context(const entry_point_info_t *ep)
971 {
972 	cpu_context_t *ctx;
973 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
974 	cm_setup_context(ctx, ep);
975 }
976 
977 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
978 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
979 {
980 #if INIT_UNUSED_NS_EL2
981 	u_register_t hcr_el2 = HCR_RESET_VAL;
982 	u_register_t mdcr_el2;
983 	u_register_t scr_el3;
984 
985 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
986 
987 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
988 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
989 		hcr_el2 |= HCR_RW_BIT;
990 	}
991 
992 	write_hcr_el2(hcr_el2);
993 
994 	/*
995 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
996 	 * All fields have architecturally UNKNOWN reset values.
997 	 */
998 	write_cptr_el2(CPTR_EL2_RESET_VAL);
999 
1000 	/*
1001 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
1002 	 * reset and are set to zero except for field(s) listed below.
1003 	 *
1004 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
1005 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
1006 	 *
1007 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
1008 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
1009 	 */
1010 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
1011 
1012 	/*
1013 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
1014 	 * UNKNOWN value.
1015 	 */
1016 	write_cntvoff_el2(0);
1017 
1018 	/*
1019 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
1020 	 * respectively.
1021 	 */
1022 	write_vpidr_el2(read_midr_el1());
1023 	write_vmpidr_el2(read_mpidr_el1());
1024 
1025 	/*
1026 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
1027 	 *
1028 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
1029 	 * translation is disabled, cache maintenance operations depend on the
1030 	 * VMID.
1031 	 *
1032 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
1033 	 * disabled.
1034 	 */
1035 	write_vttbr_el2(VTTBR_RESET_VAL &
1036 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
1037 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
1038 
1039 	/*
1040 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
1041 	 * Some fields are architecturally UNKNOWN on reset.
1042 	 *
1043 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
1044 	 * register accesses to the Debug ROM registers are not trapped to EL2.
1045 	 *
1046 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
1047 	 * accesses to the powerdown debug registers are not trapped to EL2.
1048 	 *
1049 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
1050 	 * debug registers do not trap to EL2.
1051 	 *
1052 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
1053 	 * EL2.
1054 	 */
1055 	mdcr_el2 = MDCR_EL2_RESET_VAL &
1056 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
1057 		   MDCR_EL2_TDE_BIT);
1058 
1059 	write_mdcr_el2(mdcr_el2);
1060 
1061 	/*
1062 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
1063 	 *
1064 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
1065 	 * EL1 accesses to System registers do not trap to EL2.
1066 	 */
1067 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
1068 
1069 	/*
1070 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
1071 	 * reset.
1072 	 *
1073 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1074 	 * and prevent timer interrupts.
1075 	 */
1076 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1077 
1078 	manage_extensions_nonsecure_el2_unused();
1079 #endif /* INIT_UNUSED_NS_EL2 */
1080 }
1081 
1082 /*******************************************************************************
1083  * Prepare the CPU system registers for first entry into realm, secure, or
1084  * normal world.
1085  *
1086  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1087  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1088  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1089  * For all entries, the EL1 registers are initialized from the cpu_context
1090  ******************************************************************************/
1091 void cm_prepare_el3_exit(uint32_t security_state)
1092 {
1093 	u_register_t sctlr_el2, scr_el3;
1094 	cpu_context_t *ctx = cm_get_context(security_state);
1095 
1096 	assert(ctx != NULL);
1097 
1098 	if (security_state == NON_SECURE) {
1099 		uint64_t el2_implemented = el_implemented(2);
1100 
1101 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1102 						 CTX_SCR_EL3);
1103 
1104 		if (el2_implemented != EL_IMPL_NONE) {
1105 
1106 			/*
1107 			 * If context is not being used for EL2, initialize
1108 			 * HCRX_EL2 with its init value here.
1109 			 */
1110 			if (is_feat_hcx_supported()) {
1111 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1112 			}
1113 
1114 			/*
1115 			 * Initialize Fine-grained trap registers introduced
1116 			 * by FEAT_FGT so all traps are initially disabled when
1117 			 * switching to EL2 or a lower EL, preventing undesired
1118 			 * behavior.
1119 			 */
1120 			if (is_feat_fgt_supported()) {
1121 				/*
1122 				 * Initialize HFG*_EL2 registers with a default
1123 				 * value so legacy systems unaware of FEAT_FGT
1124 				 * do not get trapped due to their lack of
1125 				 * initialization for this feature.
1126 				 */
1127 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1128 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1129 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1130 			}
1131 
1132 			/* Condition to ensure EL2 is being used. */
1133 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1134 				/* Initialize SCTLR_EL2 register with reset value. */
1135 				sctlr_el2 = SCTLR_EL2_RES1;
1136 
1137 				/*
1138 				 * If workaround of errata 764081 for Cortex-A75
1139 				 * is used then set SCTLR_EL2.IESB to enable
1140 				 * Implicit Error Synchronization Barrier.
1141 				 */
1142 				if (errata_a75_764081_applies()) {
1143 					sctlr_el2 |= SCTLR_IESB_BIT;
1144 				}
1145 
1146 				write_sctlr_el2(sctlr_el2);
1147 			} else {
1148 				/*
1149 				 * (scr_el3 & SCR_HCE_BIT==0)
1150 				 * EL2 implemented but unused.
1151 				 */
1152 				init_nonsecure_el2_unused(ctx);
1153 			}
1154 		}
1155 	}
1156 #if (!CTX_INCLUDE_EL2_REGS)
1157 	/* Restore EL1 system registers, only when CTX_INCLUDE_EL2_REGS=0 */
1158 	cm_el1_sysregs_context_restore(security_state);
1159 #endif
1160 	cm_set_next_eret_context(security_state);
1161 }
1162 
1163 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1164 
1165 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1166 {
1167 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1168 	if (is_feat_amu_supported()) {
1169 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1170 	}
1171 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1172 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1173 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1174 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1175 }
1176 
1177 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1178 {
1179 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1180 	if (is_feat_amu_supported()) {
1181 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1182 	}
1183 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1184 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1185 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1186 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1187 }
1188 
1189 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1190 {
1191 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1192 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1193 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1194 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1195 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1196 }
1197 
1198 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1199 {
1200 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1201 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1202 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1203 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1204 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1205 }
1206 
1207 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1208 {
1209 	u_register_t mpam_idr = read_mpamidr_el1();
1210 
1211 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1212 
1213 	/*
1214 	 * The context registers that we intend to save would be part of the
1215 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1216 	 */
1217 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1218 		return;
1219 	}
1220 
1221 	/*
1222 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1223 	 * MPAMIDR_HAS_HCR_BIT == 1.
1224 	 */
1225 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1226 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1227 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1228 
1229 	/*
1230 	 * The number of MPAMVPM registers is implementation defined, their
1231 	 * number is stored in the MPAMIDR_EL1 register.
1232 	 */
1233 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1234 	case 7:
1235 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1236 		__fallthrough;
1237 	case 6:
1238 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1239 		__fallthrough;
1240 	case 5:
1241 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1242 		__fallthrough;
1243 	case 4:
1244 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1245 		__fallthrough;
1246 	case 3:
1247 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1248 		__fallthrough;
1249 	case 2:
1250 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1251 		__fallthrough;
1252 	case 1:
1253 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1254 		break;
1255 	}
1256 }
1257 
1258 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1259 {
1260 	u_register_t mpam_idr = read_mpamidr_el1();
1261 
1262 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1263 
1264 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1265 		return;
1266 	}
1267 
1268 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1269 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1270 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1271 
1272 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1273 	case 7:
1274 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1275 		__fallthrough;
1276 	case 6:
1277 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1278 		__fallthrough;
1279 	case 5:
1280 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1281 		__fallthrough;
1282 	case 4:
1283 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1284 		__fallthrough;
1285 	case 3:
1286 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1287 		__fallthrough;
1288 	case 2:
1289 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1290 		__fallthrough;
1291 	case 1:
1292 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1293 		break;
1294 	}
1295 }
1296 
1297 /* ---------------------------------------------------------------------------
1298  * The following registers are not added:
1299  * ICH_AP0R<n>_EL2
1300  * ICH_AP1R<n>_EL2
1301  * ICH_LR<n>_EL2
1302  *
1303  * NOTE: For a system with S-EL2 present but not enabled, accessing
1304  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1305  * SCR_EL3.NS = 1 before accessing this register.
1306  * ---------------------------------------------------------------------------
1307  */
1308 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx, uint32_t security_state)
1309 {
1310 	u_register_t scr_el3 = read_scr_el3();
1311 
1312 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1313 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1314 #else
1315 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1316 	isb();
1317 
1318 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1319 
1320 	write_scr_el3(scr_el3);
1321 	isb();
1322 #endif
1323 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1324 
1325 	if (errata_ich_vmcr_el2_applies()) {
1326 		if (security_state == SECURE) {
1327 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1328 		} else {
1329 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1330 		}
1331 		isb();
1332 	}
1333 
1334 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1335 
1336 	if (errata_ich_vmcr_el2_applies()) {
1337 		write_scr_el3(scr_el3);
1338 		isb();
1339 	}
1340 }
1341 
1342 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx, uint32_t security_state)
1343 {
1344 	u_register_t scr_el3 = read_scr_el3();
1345 
1346 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1347 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1348 #else
1349 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1350 	isb();
1351 
1352 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1353 
1354 	write_scr_el3(scr_el3);
1355 	isb();
1356 #endif
1357 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1358 
1359 	if (errata_ich_vmcr_el2_applies()) {
1360 		if (security_state == SECURE) {
1361 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1362 		} else {
1363 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1364 		}
1365 		isb();
1366 	}
1367 
1368 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1369 
1370 	if (errata_ich_vmcr_el2_applies()) {
1371 		write_scr_el3(scr_el3);
1372 		isb();
1373 	}
1374 }
1375 
1376 /* -----------------------------------------------------
1377  * The following registers are not added:
1378  * AMEVCNTVOFF0<n>_EL2
1379  * AMEVCNTVOFF1<n>_EL2
1380  * -----------------------------------------------------
1381  */
1382 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1383 {
1384 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1385 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1386 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1387 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1388 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1389 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1390 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1391 	if (CTX_INCLUDE_AARCH32_REGS) {
1392 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1393 	}
1394 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1395 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1396 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1397 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1398 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1399 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1400 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1401 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1402 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1403 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1404 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1405 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1406 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1407 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1408 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1409 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1410 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1411 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1412 
1413 	write_el2_ctx_common_sysreg128(ctx, ttbr0_el2, read_ttbr0_el2());
1414 	write_el2_ctx_common_sysreg128(ctx, vttbr_el2, read_vttbr_el2());
1415 }
1416 
1417 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1418 {
1419 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1420 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1421 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1422 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1423 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1424 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1425 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1426 	if (CTX_INCLUDE_AARCH32_REGS) {
1427 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1428 	}
1429 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1430 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1431 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1432 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1433 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1434 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1435 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1436 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1437 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1438 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1439 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1440 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1441 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1442 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1443 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1444 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1445 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1446 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1447 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1448 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1449 }
1450 
1451 /*******************************************************************************
1452  * Save EL2 sysreg context
1453  ******************************************************************************/
1454 void cm_el2_sysregs_context_save(uint32_t security_state)
1455 {
1456 	cpu_context_t *ctx;
1457 	el2_sysregs_t *el2_sysregs_ctx;
1458 
1459 	ctx = cm_get_context(security_state);
1460 	assert(ctx != NULL);
1461 
1462 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1463 
1464 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1465 	el2_sysregs_context_save_gic(el2_sysregs_ctx, security_state);
1466 
1467 	if (is_feat_mte2_supported()) {
1468 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1469 	}
1470 
1471 	if (is_feat_mpam_supported()) {
1472 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1473 	}
1474 
1475 	if (is_feat_fgt_supported()) {
1476 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1477 	}
1478 
1479 	if (is_feat_fgt2_supported()) {
1480 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1481 	}
1482 
1483 	if (is_feat_ecv_v2_supported()) {
1484 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1485 	}
1486 
1487 	if (is_feat_vhe_supported()) {
1488 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1489 					read_contextidr_el2());
1490 		write_el2_ctx_vhe_sysreg128(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1491 	}
1492 
1493 	if (is_feat_ras_supported()) {
1494 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1495 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1496 	}
1497 
1498 	if (is_feat_nv2_supported()) {
1499 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1500 	}
1501 
1502 	if (is_feat_trf_supported()) {
1503 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1504 	}
1505 
1506 	if (is_feat_csv2_2_supported()) {
1507 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1508 					read_scxtnum_el2());
1509 	}
1510 
1511 	if (is_feat_hcx_supported()) {
1512 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1513 	}
1514 
1515 	if (is_feat_tcr2_supported()) {
1516 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1517 	}
1518 
1519 	if (is_feat_sxpie_supported()) {
1520 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1521 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1522 	}
1523 
1524 	if (is_feat_sxpoe_supported()) {
1525 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1526 	}
1527 
1528 	if (is_feat_brbe_supported()) {
1529 		write_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2, read_brbcr_el2());
1530 	}
1531 
1532 	if (is_feat_s2pie_supported()) {
1533 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1534 	}
1535 
1536 	if (is_feat_gcs_supported()) {
1537 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1538 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1539 	}
1540 
1541 	if (is_feat_sctlr2_supported()) {
1542 		write_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2, read_sctlr2_el2());
1543 	}
1544 }
1545 
1546 /*******************************************************************************
1547  * Restore EL2 sysreg context
1548  ******************************************************************************/
1549 void cm_el2_sysregs_context_restore(uint32_t security_state)
1550 {
1551 	cpu_context_t *ctx;
1552 	el2_sysregs_t *el2_sysregs_ctx;
1553 
1554 	ctx = cm_get_context(security_state);
1555 	assert(ctx != NULL);
1556 
1557 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1558 
1559 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1560 	el2_sysregs_context_restore_gic(el2_sysregs_ctx, security_state);
1561 
1562 	if (is_feat_mte2_supported()) {
1563 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1564 	}
1565 
1566 	if (is_feat_mpam_supported()) {
1567 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1568 	}
1569 
1570 	if (is_feat_fgt_supported()) {
1571 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1572 	}
1573 
1574 	if (is_feat_fgt2_supported()) {
1575 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1576 	}
1577 
1578 	if (is_feat_ecv_v2_supported()) {
1579 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1580 	}
1581 
1582 	if (is_feat_vhe_supported()) {
1583 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1584 					contextidr_el2));
1585 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1586 	}
1587 
1588 	if (is_feat_ras_supported()) {
1589 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1590 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1591 	}
1592 
1593 	if (is_feat_nv2_supported()) {
1594 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1595 	}
1596 
1597 	if (is_feat_trf_supported()) {
1598 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1599 	}
1600 
1601 	if (is_feat_csv2_2_supported()) {
1602 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1603 					scxtnum_el2));
1604 	}
1605 
1606 	if (is_feat_hcx_supported()) {
1607 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1608 	}
1609 
1610 	if (is_feat_tcr2_supported()) {
1611 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1612 	}
1613 
1614 	if (is_feat_sxpie_supported()) {
1615 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1616 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1617 	}
1618 
1619 	if (is_feat_sxpoe_supported()) {
1620 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1621 	}
1622 
1623 	if (is_feat_s2pie_supported()) {
1624 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1625 	}
1626 
1627 	if (is_feat_gcs_supported()) {
1628 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1629 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1630 	}
1631 
1632 	if (is_feat_sctlr2_supported()) {
1633 		write_sctlr2_el2(read_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2));
1634 	}
1635 
1636 	if (is_feat_brbe_supported()) {
1637 		write_brbcr_el2(read_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2));
1638 	}
1639 }
1640 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1641 
1642 #if IMAGE_BL31
1643 /*********************************************************************************
1644 * This function allows Architecture features asymmetry among cores.
1645 * TF-A assumes that all the cores in the platform has architecture feature parity
1646 * and hence the context is setup on different core (e.g. primary sets up the
1647 * context for secondary cores).This assumption may not be true for systems where
1648 * cores are not conforming to same Arch version or there is CPU Erratum which
1649 * requires certain feature to be be disabled only on a given core.
1650 *
1651 * This function is called on secondary cores to override any disparity in context
1652 * setup by primary, this would be called during warmboot path.
1653 *********************************************************************************/
1654 void cm_handle_asymmetric_features(void)
1655 {
1656 	cpu_context_t *ctx __maybe_unused = cm_get_context(NON_SECURE);
1657 
1658 	assert(ctx != NULL);
1659 
1660 #if ENABLE_SPE_FOR_NS == FEAT_STATE_CHECK_ASYMMETRIC
1661 	if (is_feat_spe_supported()) {
1662 		spe_enable(ctx);
1663 	} else {
1664 		spe_disable(ctx);
1665 	}
1666 #endif
1667 
1668 #if ERRATA_A520_2938996 || ERRATA_X4_2726228
1669 	if (check_if_affected_core() == ERRATA_APPLIES) {
1670 		if (is_feat_trbe_supported()) {
1671 			trbe_disable(ctx);
1672 		}
1673 	}
1674 #endif
1675 
1676 #if ENABLE_FEAT_TCR2 == FEAT_STATE_CHECK_ASYMMETRIC
1677 	el3_state_t *el3_state = get_el3state_ctx(ctx);
1678 	u_register_t spsr = read_ctx_reg(el3_state, CTX_SPSR_EL3);
1679 
1680 	if (is_feat_tcr2_supported() && (GET_RW(spsr) == MODE_RW_64)) {
1681 		tcr2_enable(ctx);
1682 	} else {
1683 		tcr2_disable(ctx);
1684 	}
1685 #endif
1686 
1687 }
1688 #endif
1689 
1690 /*******************************************************************************
1691  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1692  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1693  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1694  * cm_prepare_el3_exit function.
1695  ******************************************************************************/
1696 void cm_prepare_el3_exit_ns(void)
1697 {
1698 #if IMAGE_BL31
1699 	/*
1700 	 * Check and handle Architecture feature asymmetry among cores.
1701 	 *
1702 	 * In warmboot path secondary cores context is initialized on core which
1703 	 * did CPU_ON SMC call, if there is feature asymmetry in these cores handle
1704 	 * it in this function call.
1705 	 * For Symmetric cores this is an empty function.
1706 	 */
1707 	cm_handle_asymmetric_features();
1708 #endif
1709 
1710 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1711 #if ENABLE_ASSERTIONS
1712 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1713 	assert(ctx != NULL);
1714 
1715 	/* Assert that EL2 is used. */
1716 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1717 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1718 			(el_implemented(2U) != EL_IMPL_NONE));
1719 #endif /* ENABLE_ASSERTIONS */
1720 
1721 	/* Restore EL2 sysreg contexts */
1722 	cm_el2_sysregs_context_restore(NON_SECURE);
1723 	cm_set_next_eret_context(NON_SECURE);
1724 #else
1725 	cm_prepare_el3_exit(NON_SECURE);
1726 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1727 }
1728 
1729 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
1730 /*******************************************************************************
1731  * The next set of six functions are used by runtime services to save and restore
1732  * EL1 context on the 'cpu_context' structure for the specified security state.
1733  ******************************************************************************/
1734 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1735 {
1736 	write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1());
1737 	write_el1_ctx_common(ctx, elr_el1, read_elr_el1());
1738 
1739 #if (!ERRATA_SPECULATIVE_AT)
1740 	write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1());
1741 	write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1());
1742 #endif /* (!ERRATA_SPECULATIVE_AT) */
1743 
1744 	write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1());
1745 	write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1());
1746 	write_el1_ctx_common(ctx, sp_el1, read_sp_el1());
1747 	write_el1_ctx_common(ctx, esr_el1, read_esr_el1());
1748 	write_el1_ctx_common(ctx, mair_el1, read_mair_el1());
1749 	write_el1_ctx_common(ctx, amair_el1, read_amair_el1());
1750 	write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1());
1751 	write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1());
1752 	write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0());
1753 	write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0());
1754 	write_el1_ctx_common(ctx, far_el1, read_far_el1());
1755 	write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1());
1756 	write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1());
1757 	write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1());
1758 	write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1());
1759 	write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1());
1760 	write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1());
1761 
1762 	write_el1_ctx_common_sysreg128(ctx, par_el1, read_par_el1());
1763 	write_el1_ctx_common_sysreg128(ctx, ttbr0_el1, read_ttbr0_el1());
1764 	write_el1_ctx_common_sysreg128(ctx, ttbr1_el1, read_ttbr1_el1());
1765 
1766 	if (CTX_INCLUDE_AARCH32_REGS) {
1767 		/* Save Aarch32 registers */
1768 		write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt());
1769 		write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und());
1770 		write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq());
1771 		write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq());
1772 		write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2());
1773 		write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2());
1774 	}
1775 
1776 	if (NS_TIMER_SWITCH) {
1777 		/* Save NS Timer registers */
1778 		write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0());
1779 		write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0());
1780 		write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0());
1781 		write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0());
1782 		write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1());
1783 	}
1784 
1785 	if (is_feat_mte2_supported()) {
1786 		write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1());
1787 		write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1());
1788 		write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1());
1789 		write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1());
1790 	}
1791 
1792 	if (is_feat_ras_supported()) {
1793 		write_el1_ctx_ras(ctx, disr_el1, read_disr_el1());
1794 	}
1795 
1796 	if (is_feat_s1pie_supported()) {
1797 		write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1());
1798 		write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1());
1799 	}
1800 
1801 	if (is_feat_s1poe_supported()) {
1802 		write_el1_ctx_s1poe(ctx, por_el1, read_por_el1());
1803 	}
1804 
1805 	if (is_feat_s2poe_supported()) {
1806 		write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1());
1807 	}
1808 
1809 	if (is_feat_tcr2_supported()) {
1810 		write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1());
1811 	}
1812 
1813 	if (is_feat_trf_supported()) {
1814 		write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1());
1815 	}
1816 
1817 	if (is_feat_csv2_2_supported()) {
1818 		write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0());
1819 		write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1());
1820 	}
1821 
1822 	if (is_feat_gcs_supported()) {
1823 		write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1());
1824 		write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1());
1825 		write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1());
1826 		write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0());
1827 	}
1828 
1829 	if (is_feat_the_supported()) {
1830 		write_el1_ctx_the_sysreg128(ctx, rcwmask_el1, read_rcwmask_el1());
1831 		write_el1_ctx_the_sysreg128(ctx, rcwsmask_el1, read_rcwsmask_el1());
1832 	}
1833 
1834 	if (is_feat_sctlr2_supported()) {
1835 		write_el1_ctx_sctlr2(ctx, sctlr2_el1, read_sctlr2_el1());
1836 	}
1837 
1838 	if (is_feat_ls64_accdata_supported()) {
1839 		write_el1_ctx_ls64(ctx, accdata_el1, read_accdata_el1());
1840 	}
1841 }
1842 
1843 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1844 {
1845 	write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1));
1846 	write_elr_el1(read_el1_ctx_common(ctx, elr_el1));
1847 
1848 #if (!ERRATA_SPECULATIVE_AT)
1849 	write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1));
1850 	write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1));
1851 #endif /* (!ERRATA_SPECULATIVE_AT) */
1852 
1853 	write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1));
1854 	write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1));
1855 	write_sp_el1(read_el1_ctx_common(ctx, sp_el1));
1856 	write_esr_el1(read_el1_ctx_common(ctx, esr_el1));
1857 	write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1));
1858 	write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1));
1859 	write_mair_el1(read_el1_ctx_common(ctx, mair_el1));
1860 	write_amair_el1(read_el1_ctx_common(ctx, amair_el1));
1861 	write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1));
1862 	write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1));
1863 	write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0));
1864 	write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0));
1865 	write_par_el1(read_el1_ctx_common(ctx, par_el1));
1866 	write_far_el1(read_el1_ctx_common(ctx, far_el1));
1867 	write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1));
1868 	write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1));
1869 	write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1));
1870 	write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1));
1871 	write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1));
1872 	write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1));
1873 
1874 	if (CTX_INCLUDE_AARCH32_REGS) {
1875 		/* Restore Aarch32 registers */
1876 		write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt));
1877 		write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und));
1878 		write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq));
1879 		write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq));
1880 		write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2));
1881 		write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2));
1882 	}
1883 
1884 	if (NS_TIMER_SWITCH) {
1885 		/* Restore NS Timer registers */
1886 		write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0));
1887 		write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0));
1888 		write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0));
1889 		write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0));
1890 		write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1));
1891 	}
1892 
1893 	if (is_feat_mte2_supported()) {
1894 		write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1));
1895 		write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1));
1896 		write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1));
1897 		write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1));
1898 	}
1899 
1900 	if (is_feat_ras_supported()) {
1901 		write_disr_el1(read_el1_ctx_ras(ctx, disr_el1));
1902 	}
1903 
1904 	if (is_feat_s1pie_supported()) {
1905 		write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1));
1906 		write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1));
1907 	}
1908 
1909 	if (is_feat_s1poe_supported()) {
1910 		write_por_el1(read_el1_ctx_s1poe(ctx, por_el1));
1911 	}
1912 
1913 	if (is_feat_s2poe_supported()) {
1914 		write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1));
1915 	}
1916 
1917 	if (is_feat_tcr2_supported()) {
1918 		write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1));
1919 	}
1920 
1921 	if (is_feat_trf_supported()) {
1922 		write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1));
1923 	}
1924 
1925 	if (is_feat_csv2_2_supported()) {
1926 		write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0));
1927 		write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1));
1928 	}
1929 
1930 	if (is_feat_gcs_supported()) {
1931 		write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1));
1932 		write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1));
1933 		write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1));
1934 		write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0));
1935 	}
1936 
1937 	if (is_feat_the_supported()) {
1938 		write_rcwmask_el1(read_el1_ctx_the(ctx, rcwmask_el1));
1939 		write_rcwsmask_el1(read_el1_ctx_the(ctx, rcwsmask_el1));
1940 	}
1941 
1942 	if (is_feat_sctlr2_supported()) {
1943 		write_sctlr2_el1(read_el1_ctx_sctlr2(ctx, sctlr2_el1));
1944 	}
1945 
1946 	if (is_feat_ls64_accdata_supported()) {
1947 		write_accdata_el1(read_el1_ctx_ls64(ctx, accdata_el1));
1948 	}
1949 }
1950 
1951 /*******************************************************************************
1952  * The next couple of functions are used by runtime services to save and restore
1953  * EL1 context on the 'cpu_context' structure for the specified security state.
1954  ******************************************************************************/
1955 void cm_el1_sysregs_context_save(uint32_t security_state)
1956 {
1957 	cpu_context_t *ctx;
1958 
1959 	ctx = cm_get_context(security_state);
1960 	assert(ctx != NULL);
1961 
1962 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1963 
1964 #if IMAGE_BL31
1965 	if (security_state == SECURE)
1966 		PUBLISH_EVENT(cm_exited_secure_world);
1967 	else
1968 		PUBLISH_EVENT(cm_exited_normal_world);
1969 #endif
1970 }
1971 
1972 void cm_el1_sysregs_context_restore(uint32_t security_state)
1973 {
1974 	cpu_context_t *ctx;
1975 
1976 	ctx = cm_get_context(security_state);
1977 	assert(ctx != NULL);
1978 
1979 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1980 
1981 #if IMAGE_BL31
1982 	if (security_state == SECURE)
1983 		PUBLISH_EVENT(cm_entering_secure_world);
1984 	else
1985 		PUBLISH_EVENT(cm_entering_normal_world);
1986 #endif
1987 }
1988 
1989 #endif /* ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) */
1990 
1991 /*******************************************************************************
1992  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1993  * given security state with the given entrypoint
1994  ******************************************************************************/
1995 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1996 {
1997 	cpu_context_t *ctx;
1998 	el3_state_t *state;
1999 
2000 	ctx = cm_get_context(security_state);
2001 	assert(ctx != NULL);
2002 
2003 	/* Populate EL3 state so that ERET jumps to the correct entry */
2004 	state = get_el3state_ctx(ctx);
2005 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
2006 }
2007 
2008 /*******************************************************************************
2009  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
2010  * pertaining to the given security state
2011  ******************************************************************************/
2012 void cm_set_elr_spsr_el3(uint32_t security_state,
2013 			uintptr_t entrypoint, uint32_t spsr)
2014 {
2015 	cpu_context_t *ctx;
2016 	el3_state_t *state;
2017 
2018 	ctx = cm_get_context(security_state);
2019 	assert(ctx != NULL);
2020 
2021 	/* Populate EL3 state so that ERET jumps to the correct entry */
2022 	state = get_el3state_ctx(ctx);
2023 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
2024 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
2025 }
2026 
2027 /*******************************************************************************
2028  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
2029  * pertaining to the given security state using the value and bit position
2030  * specified in the parameters. It preserves all other bits.
2031  ******************************************************************************/
2032 void cm_write_scr_el3_bit(uint32_t security_state,
2033 			  uint32_t bit_pos,
2034 			  uint32_t value)
2035 {
2036 	cpu_context_t *ctx;
2037 	el3_state_t *state;
2038 	u_register_t scr_el3;
2039 
2040 	ctx = cm_get_context(security_state);
2041 	assert(ctx != NULL);
2042 
2043 	/* Ensure that the bit position is a valid one */
2044 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
2045 
2046 	/* Ensure that the 'value' is only a bit wide */
2047 	assert(value <= 1U);
2048 
2049 	/*
2050 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
2051 	 * and set it to its new value.
2052 	 */
2053 	state = get_el3state_ctx(ctx);
2054 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
2055 	scr_el3 &= ~(1UL << bit_pos);
2056 	scr_el3 |= (u_register_t)value << bit_pos;
2057 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
2058 }
2059 
2060 /*******************************************************************************
2061  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
2062  * given security state.
2063  ******************************************************************************/
2064 u_register_t cm_get_scr_el3(uint32_t security_state)
2065 {
2066 	cpu_context_t *ctx;
2067 	el3_state_t *state;
2068 
2069 	ctx = cm_get_context(security_state);
2070 	assert(ctx != NULL);
2071 
2072 	/* Populate EL3 state so that ERET jumps to the correct entry */
2073 	state = get_el3state_ctx(ctx);
2074 	return read_ctx_reg(state, CTX_SCR_EL3);
2075 }
2076 
2077 /*******************************************************************************
2078  * This function is used to program the context that's used for exception
2079  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
2080  * the required security state
2081  ******************************************************************************/
2082 void cm_set_next_eret_context(uint32_t security_state)
2083 {
2084 	cpu_context_t *ctx;
2085 
2086 	ctx = cm_get_context(security_state);
2087 	assert(ctx != NULL);
2088 
2089 	cm_set_next_context(ctx);
2090 }
2091