xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 83a4dae1af916b938659b39b7d0884359c638185)
1 /*
2  * Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/pubsub_events.h>
24 #include <lib/extensions/amu.h>
25 #include <lib/extensions/brbe.h>
26 #include <lib/extensions/mpam.h>
27 #include <lib/extensions/pmuv3.h>
28 #include <lib/extensions/sme.h>
29 #include <lib/extensions/spe.h>
30 #include <lib/extensions/sve.h>
31 #include <lib/extensions/sys_reg_trace.h>
32 #include <lib/extensions/trbe.h>
33 #include <lib/extensions/trf.h>
34 #include <lib/utils.h>
35 
36 #if ENABLE_FEAT_TWED
37 /* Make sure delay value fits within the range(0-15) */
38 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
39 #endif /* ENABLE_FEAT_TWED */
40 
41 static void manage_extensions_nonsecure(cpu_context_t *ctx);
42 static void manage_extensions_secure(cpu_context_t *ctx);
43 
44 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
45 {
46 	u_register_t sctlr_elx, actlr_elx;
47 
48 	/*
49 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
50 	 * execution state setting all fields rather than relying on the hw.
51 	 * Some fields have architecturally UNKNOWN reset values and these are
52 	 * set to zero.
53 	 *
54 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
55 	 *
56 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
57 	 * required by PSCI specification)
58 	 */
59 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
60 	if (GET_RW(ep->spsr) == MODE_RW_64) {
61 		sctlr_elx |= SCTLR_EL1_RES1;
62 	} else {
63 		/*
64 		 * If the target execution state is AArch32 then the following
65 		 * fields need to be set.
66 		 *
67 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
68 		 *  instructions are not trapped to EL1.
69 		 *
70 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
71 		 *  instructions are not trapped to EL1.
72 		 *
73 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
74 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
75 		 */
76 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
77 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
78 	}
79 
80 #if ERRATA_A75_764081
81 	/*
82 	 * If workaround of errata 764081 for Cortex-A75 is used then set
83 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
84 	 */
85 	sctlr_elx |= SCTLR_IESB_BIT;
86 #endif
87 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
88 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
89 
90 	/*
91 	 * Base the context ACTLR_EL1 on the current value, as it is
92 	 * implementation defined. The context restore process will write
93 	 * the value from the context to the actual register and can cause
94 	 * problems for processor cores that don't expect certain bits to
95 	 * be zero.
96 	 */
97 	actlr_elx = read_actlr_el1();
98 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
99 }
100 
101 /******************************************************************************
102  * This function performs initializations that are specific to SECURE state
103  * and updates the cpu context specified by 'ctx'.
104  *****************************************************************************/
105 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
106 {
107 	u_register_t scr_el3;
108 	el3_state_t *state;
109 
110 	state = get_el3state_ctx(ctx);
111 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
112 
113 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
114 	/*
115 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
116 	 * indicated by the interrupt routing model for BL31.
117 	 */
118 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
119 #endif
120 
121 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
122 	/* Get Memory Tagging Extension support level */
123 	unsigned int mte = get_armv8_5_mte_support();
124 #endif
125 	/*
126 	 * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS
127 	 * is set, or when MTE is only implemented at EL0.
128 	 */
129 #if CTX_INCLUDE_MTE_REGS
130 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
131 	scr_el3 |= SCR_ATA_BIT;
132 #else
133 	if (mte == MTE_IMPLEMENTED_EL0) {
134 		scr_el3 |= SCR_ATA_BIT;
135 	}
136 #endif /* CTX_INCLUDE_MTE_REGS */
137 
138 	/* Enable S-EL2 if the next EL is EL2 and S-EL2 is present */
139 	if ((GET_EL(ep->spsr) == MODE_EL2) && is_feat_sel2_supported()) {
140 		if (GET_RW(ep->spsr) != MODE_RW_64) {
141 			ERROR("S-EL2 can not be used in AArch32\n.");
142 			panic();
143 		}
144 
145 		scr_el3 |= SCR_EEL2_BIT;
146 	}
147 
148 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
149 
150 	/*
151 	 * Initialize EL1 context registers unless SPMC is running
152 	 * at S-EL2.
153 	 */
154 #if !SPMD_SPM_AT_SEL2
155 	setup_el1_context(ctx, ep);
156 #endif
157 
158 	manage_extensions_secure(ctx);
159 }
160 
161 #if ENABLE_RME
162 /******************************************************************************
163  * This function performs initializations that are specific to REALM state
164  * and updates the cpu context specified by 'ctx'.
165  *****************************************************************************/
166 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
167 {
168 	u_register_t scr_el3;
169 	el3_state_t *state;
170 
171 	state = get_el3state_ctx(ctx);
172 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
173 
174 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
175 
176 	if (is_feat_csv2_2_supported()) {
177 		/* Enable access to the SCXTNUM_ELx registers. */
178 		scr_el3 |= SCR_EnSCXT_BIT;
179 	}
180 
181 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
182 }
183 #endif /* ENABLE_RME */
184 
185 /******************************************************************************
186  * This function performs initializations that are specific to NON-SECURE state
187  * and updates the cpu context specified by 'ctx'.
188  *****************************************************************************/
189 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
190 {
191 	u_register_t scr_el3;
192 	el3_state_t *state;
193 
194 	state = get_el3state_ctx(ctx);
195 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
196 
197 	/* SCR_NS: Set the NS bit */
198 	scr_el3 |= SCR_NS_BIT;
199 
200 #if !CTX_INCLUDE_PAUTH_REGS
201 	/*
202 	 * If the pointer authentication registers aren't saved during world
203 	 * switches the value of the registers can be leaked from the Secure to
204 	 * the Non-secure world. To prevent this, rather than enabling pointer
205 	 * authentication everywhere, we only enable it in the Non-secure world.
206 	 *
207 	 * If the Secure world wants to use pointer authentication,
208 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
209 	 */
210 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
211 #endif /* !CTX_INCLUDE_PAUTH_REGS */
212 
213 	/* Allow access to Allocation Tags when MTE is implemented. */
214 	scr_el3 |= SCR_ATA_BIT;
215 
216 #if HANDLE_EA_EL3_FIRST_NS
217 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
218 	scr_el3 |= SCR_EA_BIT;
219 #endif
220 
221 #if RAS_TRAP_NS_ERR_REC_ACCESS
222 	/*
223 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
224 	 * and RAS ERX registers from EL1 and EL2(from any security state)
225 	 * are trapped to EL3.
226 	 * Set here to trap only for NS EL1/EL2
227 	 *
228 	 */
229 	scr_el3 |= SCR_TERR_BIT;
230 #endif
231 
232 	if (is_feat_csv2_2_supported()) {
233 		/* Enable access to the SCXTNUM_ELx registers. */
234 		scr_el3 |= SCR_EnSCXT_BIT;
235 	}
236 
237 #ifdef IMAGE_BL31
238 	/*
239 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
240 	 *  indicated by the interrupt routing model for BL31.
241 	 */
242 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
243 #endif
244 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
245 
246 	/* Initialize EL1 context registers */
247 	setup_el1_context(ctx, ep);
248 
249 	/* Initialize EL2 context registers */
250 #if CTX_INCLUDE_EL2_REGS
251 
252 	/*
253 	 * Initialize SCTLR_EL2 context register using Endianness value
254 	 * taken from the entrypoint attribute.
255 	 */
256 	u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
257 	sctlr_el2 |= SCTLR_EL2_RES1;
258 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2,
259 			sctlr_el2);
260 
261 	/*
262 	 * Program the ICC_SRE_EL2 to make sure the correct bits are set
263 	 * when restoring NS context.
264 	 */
265 	u_register_t icc_sre_el2 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
266 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
267 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_ICC_SRE_EL2,
268 			icc_sre_el2);
269 
270 	if (is_feat_hcx_supported()) {
271 		/*
272 		 * Initialize register HCRX_EL2 with its init value.
273 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
274 		 * chance that this can lead to unexpected behavior in lower
275 		 * ELs that have not been updated since the introduction of
276 		 * this feature if not properly initialized, especially when
277 		 * it comes to those bits that enable/disable traps.
278 		 */
279 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HCRX_EL2,
280 			HCRX_EL2_INIT_VAL);
281 	}
282 #endif /* CTX_INCLUDE_EL2_REGS */
283 
284 	manage_extensions_nonsecure(ctx);
285 }
286 
287 /*******************************************************************************
288  * The following function performs initialization of the cpu_context 'ctx'
289  * for first use that is common to all security states, and sets the
290  * initial entrypoint state as specified by the entry_point_info structure.
291  *
292  * The EE and ST attributes are used to configure the endianness and secure
293  * timer availability for the new execution context.
294  ******************************************************************************/
295 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
296 {
297 	u_register_t scr_el3;
298 	el3_state_t *state;
299 	gp_regs_t *gp_regs;
300 
301 	/* Clear any residual register values from the context */
302 	zeromem(ctx, sizeof(*ctx));
303 
304 	/*
305 	 * SCR_EL3 was initialised during reset sequence in macro
306 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
307 	 * affect the next EL.
308 	 *
309 	 * The following fields are initially set to zero and then updated to
310 	 * the required value depending on the state of the SPSR_EL3 and the
311 	 * Security state and entrypoint attributes of the next EL.
312 	 */
313 	scr_el3 = read_scr();
314 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_EA_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
315 			SCR_ST_BIT | SCR_HCE_BIT | SCR_NSE_BIT);
316 
317 	/*
318 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
319 	 *  Exception level as specified by SPSR.
320 	 */
321 	if (GET_RW(ep->spsr) == MODE_RW_64) {
322 		scr_el3 |= SCR_RW_BIT;
323 	}
324 
325 	/*
326 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
327 	 * Secure timer registers to EL3, from AArch64 state only, if specified
328 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
329 	 * bit always behaves as 1 (i.e. secure physical timer register access
330 	 * is not trapped)
331 	 */
332 	if (EP_GET_ST(ep->h.attr) != 0U) {
333 		scr_el3 |= SCR_ST_BIT;
334 	}
335 
336 	/*
337 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
338 	 * SCR_EL3.HXEn.
339 	 */
340 	if (is_feat_hcx_supported()) {
341 		scr_el3 |= SCR_HXEn_BIT;
342 	}
343 
344 	/*
345 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
346 	 * registers are trapped to EL3.
347 	 */
348 #if ENABLE_FEAT_RNG_TRAP
349 	scr_el3 |= SCR_TRNDR_BIT;
350 #endif
351 
352 #if FAULT_INJECTION_SUPPORT
353 	/* Enable fault injection from lower ELs */
354 	scr_el3 |= SCR_FIEN_BIT;
355 #endif
356 
357 	/*
358 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
359 	 */
360 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
361 		scr_el3 |= SCR_TCR2EN_BIT;
362 	}
363 
364 	/*
365 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
366 	 * registers for AArch64 if present.
367 	 */
368 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
369 		scr_el3 |= SCR_PIEN_BIT;
370 	}
371 
372 	/*
373 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
374 	 */
375 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
376 		scr_el3 |= SCR_GCSEn_BIT;
377 	}
378 
379 	/*
380 	 * CPTR_EL3 was initialized out of reset, copy that value to the
381 	 * context register.
382 	 */
383 	write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3());
384 
385 	/*
386 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
387 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
388 	 * next mode is Hyp.
389 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
390 	 * same conditions as HVC instructions and when the processor supports
391 	 * ARMv8.6-FGT.
392 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
393 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
394 	 * and when the processor supports ECV.
395 	 */
396 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
397 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
398 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
399 		scr_el3 |= SCR_HCE_BIT;
400 
401 		if (is_feat_fgt_supported()) {
402 			scr_el3 |= SCR_FGTEN_BIT;
403 		}
404 
405 		if (is_feat_ecv_supported()) {
406 			scr_el3 |= SCR_ECVEN_BIT;
407 		}
408 	}
409 
410 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
411 	if (is_feat_twed_supported()) {
412 		/* Set delay in SCR_EL3 */
413 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
414 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
415 				<< SCR_TWEDEL_SHIFT);
416 
417 		/* Enable WFE delay */
418 		scr_el3 |= SCR_TWEDEn_BIT;
419 	}
420 
421 	/*
422 	 * Populate EL3 state so that we've the right context
423 	 * before doing ERET
424 	 */
425 	state = get_el3state_ctx(ctx);
426 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
427 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
428 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
429 
430 	/*
431 	 * Store the X0-X7 value from the entrypoint into the context
432 	 * Use memcpy as we are in control of the layout of the structures
433 	 */
434 	gp_regs = get_gpregs_ctx(ctx);
435 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
436 }
437 
438 /*******************************************************************************
439  * Context management library initialization routine. This library is used by
440  * runtime services to share pointers to 'cpu_context' structures for secure
441  * non-secure and realm states. Management of the structures and their associated
442  * memory is not done by the context management library e.g. the PSCI service
443  * manages the cpu context used for entry from and exit to the non-secure state.
444  * The Secure payload dispatcher service manages the context(s) corresponding to
445  * the secure state. It also uses this library to get access to the non-secure
446  * state cpu context pointers.
447  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
448  * which will be used for programming an entry into a lower EL. The same context
449  * will be used to save state upon exception entry from that EL.
450  ******************************************************************************/
451 void __init cm_init(void)
452 {
453 	/*
454 	 * The context management library has only global data to initialize, but
455 	 * that will be done when the BSS is zeroed out.
456 	 */
457 }
458 
459 /*******************************************************************************
460  * This is the high-level function used to initialize the cpu_context 'ctx' for
461  * first use. It performs initializations that are common to all security states
462  * and initializations specific to the security state specified in 'ep'
463  ******************************************************************************/
464 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
465 {
466 	unsigned int security_state;
467 
468 	assert(ctx != NULL);
469 
470 	/*
471 	 * Perform initializations that are common
472 	 * to all security states
473 	 */
474 	setup_context_common(ctx, ep);
475 
476 	security_state = GET_SECURITY_STATE(ep->h.attr);
477 
478 	/* Perform security state specific initializations */
479 	switch (security_state) {
480 	case SECURE:
481 		setup_secure_context(ctx, ep);
482 		break;
483 #if ENABLE_RME
484 	case REALM:
485 		setup_realm_context(ctx, ep);
486 		break;
487 #endif
488 	case NON_SECURE:
489 		setup_ns_context(ctx, ep);
490 		break;
491 	default:
492 		ERROR("Invalid security state\n");
493 		panic();
494 		break;
495 	}
496 }
497 
498 /*******************************************************************************
499  * Enable architecture extensions on first entry to Non-secure world.
500  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
501  * it is zero. This function updates some registers in-place and its contents
502  * are being prepared to be moved to cm_manage_extensions_el3 and
503  * cm_manage_extensions_nonsecure.
504  ******************************************************************************/
505 static void manage_extensions_nonsecure_mixed(bool el2_unused, cpu_context_t *ctx)
506 {
507 #if IMAGE_BL31
508 	if (is_feat_spe_supported()) {
509 		spe_enable(el2_unused);
510 	}
511 
512 	if (is_feat_amu_supported()) {
513 		amu_enable(el2_unused, ctx);
514 	}
515 
516 	/* Enable SVE and FPU/SIMD */
517 	if (is_feat_sve_supported()) {
518 		sve_enable(ctx);
519 	}
520 
521 	if (is_feat_sme_supported()) {
522 		sme_enable(ctx);
523 	}
524 
525 	if (is_feat_mpam_supported()) {
526 		mpam_enable(el2_unused);
527 	}
528 
529 	if (is_feat_trbe_supported()) {
530 		trbe_enable();
531 	}
532 
533 	if (is_feat_brbe_supported()) {
534 		brbe_enable();
535 	}
536 
537 	if (is_feat_sys_reg_trace_supported()) {
538 		sys_reg_trace_enable(ctx);
539 	}
540 
541 	if (is_feat_trf_supported()) {
542 		trf_enable();
543 	}
544 #endif
545 }
546 
547 /*******************************************************************************
548  * Enable architecture extensions for EL3 execution. This function only updates
549  * registers in-place which are expected to either never change or be
550  * overwritten by el3_exit.
551  ******************************************************************************/
552 #if IMAGE_BL31
553 void cm_manage_extensions_el3(void)
554 {
555 	pmuv3_disable_el3();
556 }
557 #endif /* IMAGE_BL31 */
558 
559 /*******************************************************************************
560  * Enable architecture extensions on first entry to Non-secure world.
561  ******************************************************************************/
562 static void manage_extensions_nonsecure(cpu_context_t *ctx)
563 {
564 #if IMAGE_BL31
565 	pmuv3_enable(ctx);
566 #endif /* IMAGE_BL31 */
567 }
568 
569 /*******************************************************************************
570  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
571  * world when EL2 is empty and unused.
572  ******************************************************************************/
573 static void manage_extensions_nonsecure_el2_unused(void)
574 {
575 #if IMAGE_BL31
576 	pmuv3_init_el2_unused();
577 #endif /* IMAGE_BL31 */
578 }
579 
580 /*******************************************************************************
581  * Enable architecture extensions on first entry to Secure world.
582  ******************************************************************************/
583 static void manage_extensions_secure(cpu_context_t *ctx)
584 {
585 #if IMAGE_BL31
586 	if (is_feat_sve_supported()) {
587 		if (ENABLE_SVE_FOR_SWD) {
588 		/*
589 		 * Enable SVE and FPU in secure context, secure manager must
590 		 * ensure that the SVE and FPU register contexts are properly
591 		 * managed.
592 		 */
593 			sve_enable(ctx);
594 		} else {
595 		/*
596 		 * Disable SVE and FPU in secure context so non-secure world
597 		 * can safely use them.
598 		 */
599 			sve_disable(ctx);
600 		}
601 	}
602 
603 	if (is_feat_sme_supported()) {
604 		if (ENABLE_SME_FOR_SWD) {
605 		/*
606 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
607 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
608 		 */
609 			sme_enable(ctx);
610 		} else {
611 		/*
612 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
613 		 * world can safely use the associated registers.
614 		 */
615 			sme_disable(ctx);
616 		}
617 	}
618 #endif /* IMAGE_BL31 */
619 }
620 
621 /*******************************************************************************
622  * The following function initializes the cpu_context for a CPU specified by
623  * its `cpu_idx` for first use, and sets the initial entrypoint state as
624  * specified by the entry_point_info structure.
625  ******************************************************************************/
626 void cm_init_context_by_index(unsigned int cpu_idx,
627 			      const entry_point_info_t *ep)
628 {
629 	cpu_context_t *ctx;
630 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
631 	cm_setup_context(ctx, ep);
632 }
633 
634 /*******************************************************************************
635  * The following function initializes the cpu_context for the current CPU
636  * for first use, and sets the initial entrypoint state as specified by the
637  * entry_point_info structure.
638  ******************************************************************************/
639 void cm_init_my_context(const entry_point_info_t *ep)
640 {
641 	cpu_context_t *ctx;
642 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
643 	cm_setup_context(ctx, ep);
644 }
645 
646 /*******************************************************************************
647  * Prepare the CPU system registers for first entry into realm, secure, or
648  * normal world.
649  *
650  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
651  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
652  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
653  * For all entries, the EL1 registers are initialized from the cpu_context
654  ******************************************************************************/
655 void cm_prepare_el3_exit(uint32_t security_state)
656 {
657 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
658 	cpu_context_t *ctx = cm_get_context(security_state);
659 	bool el2_unused = false;
660 	uint64_t hcr_el2 = 0U;
661 
662 	assert(ctx != NULL);
663 
664 	if (security_state == NON_SECURE) {
665 		uint64_t el2_implemented = el_implemented(2);
666 
667 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
668 						 CTX_SCR_EL3);
669 
670 		if (((scr_el3 & SCR_HCE_BIT) != 0U)
671 			|| (el2_implemented != EL_IMPL_NONE)) {
672 			/*
673 			 * If context is not being used for EL2, initialize
674 			 * HCRX_EL2 with its init value here.
675 			 */
676 			if (is_feat_hcx_supported()) {
677 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
678 			}
679 		}
680 
681 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
682 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
683 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
684 							   CTX_SCTLR_EL1);
685 			sctlr_elx &= SCTLR_EE_BIT;
686 			sctlr_elx |= SCTLR_EL2_RES1;
687 #if ERRATA_A75_764081
688 			/*
689 			 * If workaround of errata 764081 for Cortex-A75 is used
690 			 * then set SCTLR_EL2.IESB to enable Implicit Error
691 			 * Synchronization Barrier.
692 			 */
693 			sctlr_elx |= SCTLR_IESB_BIT;
694 #endif
695 			write_sctlr_el2(sctlr_elx);
696 		} else if (el2_implemented != EL_IMPL_NONE) {
697 			el2_unused = true;
698 
699 			/*
700 			 * EL2 present but unused, need to disable safely.
701 			 * SCTLR_EL2 can be ignored in this case.
702 			 *
703 			 * Set EL2 register width appropriately: Set HCR_EL2
704 			 * field to match SCR_EL3.RW.
705 			 */
706 			if ((scr_el3 & SCR_RW_BIT) != 0U)
707 				hcr_el2 |= HCR_RW_BIT;
708 
709 			/*
710 			 * For Armv8.3 pointer authentication feature, disable
711 			 * traps to EL2 when accessing key registers or using
712 			 * pointer authentication instructions from lower ELs.
713 			 */
714 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
715 
716 			write_hcr_el2(hcr_el2);
717 
718 			/*
719 			 * Initialise CPTR_EL2 setting all fields rather than
720 			 * relying on the hw. All fields have architecturally
721 			 * UNKNOWN reset values.
722 			 *
723 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
724 			 *  accesses to the CPACR_EL1 or CPACR from both
725 			 *  Execution states do not trap to EL2.
726 			 *
727 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
728 			 *  register accesses to the trace registers from both
729 			 *  Execution states do not trap to EL2.
730 			 *  If PE trace unit System registers are not implemented
731 			 *  then this bit is reserved, and must be set to zero.
732 			 *
733 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
734 			 *  to SIMD and floating-point functionality from both
735 			 *  Execution states do not trap to EL2.
736 			 */
737 			write_cptr_el2(CPTR_EL2_RESET_VAL &
738 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
739 					| CPTR_EL2_TFP_BIT));
740 
741 			/*
742 			 * Initialise CNTHCTL_EL2. All fields are
743 			 * architecturally UNKNOWN on reset and are set to zero
744 			 * except for field(s) listed below.
745 			 *
746 			 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to
747 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
748 			 *  physical timer registers.
749 			 *
750 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
751 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
752 			 *  physical counter registers.
753 			 */
754 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
755 						EL1PCEN_BIT | EL1PCTEN_BIT);
756 
757 			/*
758 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
759 			 * architecturally UNKNOWN value.
760 			 */
761 			write_cntvoff_el2(0);
762 
763 			/*
764 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
765 			 * MPIDR_EL1 respectively.
766 			 */
767 			write_vpidr_el2(read_midr_el1());
768 			write_vmpidr_el2(read_mpidr_el1());
769 
770 			/*
771 			 * Initialise VTTBR_EL2. All fields are architecturally
772 			 * UNKNOWN on reset.
773 			 *
774 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
775 			 *  2 address translation is disabled, cache maintenance
776 			 *  operations depend on the VMID.
777 			 *
778 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
779 			 *  translation is disabled.
780 			 */
781 			write_vttbr_el2(VTTBR_RESET_VAL &
782 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
783 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
784 
785 			/*
786 			 * Initialise MDCR_EL2, setting all fields rather than
787 			 * relying on hw. Some fields are architecturally
788 			 * UNKNOWN on reset.
789 			 *
790 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
791 			 *  Filter Control register TRFCR_EL1 at EL1 is not
792 			 *  trapped to EL2. This bit is RES0 in versions of
793 			 *  the architecture earlier than ARMv8.4.
794 			 *
795 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
796 			 *  Statistical Profiling control registers from EL1
797 			 *  do not trap to EL2. This bit is RES0 when SPE is
798 			 *  not implemented.
799 			 *
800 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
801 			 *  EL1 System register accesses to the Debug ROM
802 			 *  registers are not trapped to EL2.
803 			 *
804 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
805 			 *  System register accesses to the powerdown debug
806 			 *  registers are not trapped to EL2.
807 			 *
808 			 * MDCR_EL2.TDA: Set to zero so that System register
809 			 *  accesses to the debug registers do not trap to EL2.
810 			 *
811 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
812 			 *  are not routed to EL2.
813 			 *
814 			 * MDCR_EL2.E2TB: Set to zero so that the trace Buffer
815 			 *  owning exception level is NS-EL1 and, tracing is
816 			 *  prohibited at NS-EL2. These bits are RES0 when
817 			 *  FEAT_TRBE is not implemented.
818 			 */
819 			mdcr_el2 = ((MDCR_EL2_RESET_VAL) & ~(MDCR_EL2_TTRF |
820 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
821 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
822 				     MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1)));
823 
824 			write_mdcr_el2(mdcr_el2);
825 
826 			/*
827 			 * Initialise HSTR_EL2. All fields are architecturally
828 			 * UNKNOWN on reset.
829 			 *
830 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
831 			 *  Non-secure EL0 or EL1 accesses to System registers
832 			 *  do not trap to EL2.
833 			 */
834 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
835 			/*
836 			 * Initialise CNTHP_CTL_EL2. All fields are
837 			 * architecturally UNKNOWN on reset.
838 			 *
839 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
840 			 *  physical timer and prevent timer interrupts.
841 			 */
842 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
843 						~(CNTHP_CTL_ENABLE_BIT));
844 
845 			manage_extensions_nonsecure_el2_unused();
846 		}
847 		manage_extensions_nonsecure_mixed(el2_unused, ctx);
848 	}
849 
850 	cm_el1_sysregs_context_restore(security_state);
851 	cm_set_next_eret_context(security_state);
852 }
853 
854 #if CTX_INCLUDE_EL2_REGS
855 
856 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
857 {
858 	write_ctx_reg(ctx, CTX_HDFGRTR_EL2, read_hdfgrtr_el2());
859 	if (is_feat_amu_supported()) {
860 		write_ctx_reg(ctx, CTX_HAFGRTR_EL2, read_hafgrtr_el2());
861 	}
862 	write_ctx_reg(ctx, CTX_HDFGWTR_EL2, read_hdfgwtr_el2());
863 	write_ctx_reg(ctx, CTX_HFGITR_EL2, read_hfgitr_el2());
864 	write_ctx_reg(ctx, CTX_HFGRTR_EL2, read_hfgrtr_el2());
865 	write_ctx_reg(ctx, CTX_HFGWTR_EL2, read_hfgwtr_el2());
866 }
867 
868 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
869 {
870 	write_hdfgrtr_el2(read_ctx_reg(ctx, CTX_HDFGRTR_EL2));
871 	if (is_feat_amu_supported()) {
872 		write_hafgrtr_el2(read_ctx_reg(ctx, CTX_HAFGRTR_EL2));
873 	}
874 	write_hdfgwtr_el2(read_ctx_reg(ctx, CTX_HDFGWTR_EL2));
875 	write_hfgitr_el2(read_ctx_reg(ctx, CTX_HFGITR_EL2));
876 	write_hfgrtr_el2(read_ctx_reg(ctx, CTX_HFGRTR_EL2));
877 	write_hfgwtr_el2(read_ctx_reg(ctx, CTX_HFGWTR_EL2));
878 }
879 
880 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
881 {
882 	u_register_t mpam_idr = read_mpamidr_el1();
883 
884 	write_ctx_reg(ctx, CTX_MPAM2_EL2, read_mpam2_el2());
885 
886 	/*
887 	 * The context registers that we intend to save would be part of the
888 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
889 	 */
890 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
891 		return;
892 	}
893 
894 	/*
895 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
896 	 * MPAMIDR_HAS_HCR_BIT == 1.
897 	 */
898 	write_ctx_reg(ctx, CTX_MPAMHCR_EL2, read_mpamhcr_el2());
899 	write_ctx_reg(ctx, CTX_MPAMVPM0_EL2, read_mpamvpm0_el2());
900 	write_ctx_reg(ctx, CTX_MPAMVPMV_EL2, read_mpamvpmv_el2());
901 
902 	/*
903 	 * The number of MPAMVPM registers is implementation defined, their
904 	 * number is stored in the MPAMIDR_EL1 register.
905 	 */
906 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
907 	case 7:
908 		write_ctx_reg(ctx, CTX_MPAMVPM7_EL2, read_mpamvpm7_el2());
909 		__fallthrough;
910 	case 6:
911 		write_ctx_reg(ctx, CTX_MPAMVPM6_EL2, read_mpamvpm6_el2());
912 		__fallthrough;
913 	case 5:
914 		write_ctx_reg(ctx, CTX_MPAMVPM5_EL2, read_mpamvpm5_el2());
915 		__fallthrough;
916 	case 4:
917 		write_ctx_reg(ctx, CTX_MPAMVPM4_EL2, read_mpamvpm4_el2());
918 		__fallthrough;
919 	case 3:
920 		write_ctx_reg(ctx, CTX_MPAMVPM3_EL2, read_mpamvpm3_el2());
921 		__fallthrough;
922 	case 2:
923 		write_ctx_reg(ctx, CTX_MPAMVPM2_EL2, read_mpamvpm2_el2());
924 		__fallthrough;
925 	case 1:
926 		write_ctx_reg(ctx, CTX_MPAMVPM1_EL2, read_mpamvpm1_el2());
927 		break;
928 	}
929 }
930 
931 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
932 {
933 	u_register_t mpam_idr = read_mpamidr_el1();
934 
935 	write_mpam2_el2(read_ctx_reg(ctx, CTX_MPAM2_EL2));
936 
937 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
938 		return;
939 	}
940 
941 	write_mpamhcr_el2(read_ctx_reg(ctx, CTX_MPAMHCR_EL2));
942 	write_mpamvpm0_el2(read_ctx_reg(ctx, CTX_MPAMVPM0_EL2));
943 	write_mpamvpmv_el2(read_ctx_reg(ctx, CTX_MPAMVPMV_EL2));
944 
945 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
946 	case 7:
947 		write_mpamvpm7_el2(read_ctx_reg(ctx, CTX_MPAMVPM7_EL2));
948 		__fallthrough;
949 	case 6:
950 		write_mpamvpm6_el2(read_ctx_reg(ctx, CTX_MPAMVPM6_EL2));
951 		__fallthrough;
952 	case 5:
953 		write_mpamvpm5_el2(read_ctx_reg(ctx, CTX_MPAMVPM5_EL2));
954 		__fallthrough;
955 	case 4:
956 		write_mpamvpm4_el2(read_ctx_reg(ctx, CTX_MPAMVPM4_EL2));
957 		__fallthrough;
958 	case 3:
959 		write_mpamvpm3_el2(read_ctx_reg(ctx, CTX_MPAMVPM3_EL2));
960 		__fallthrough;
961 	case 2:
962 		write_mpamvpm2_el2(read_ctx_reg(ctx, CTX_MPAMVPM2_EL2));
963 		__fallthrough;
964 	case 1:
965 		write_mpamvpm1_el2(read_ctx_reg(ctx, CTX_MPAMVPM1_EL2));
966 		break;
967 	}
968 }
969 
970 /*******************************************************************************
971  * Save EL2 sysreg context
972  ******************************************************************************/
973 void cm_el2_sysregs_context_save(uint32_t security_state)
974 {
975 	u_register_t scr_el3 = read_scr();
976 
977 	/*
978 	 * Always save the non-secure and realm EL2 context, only save the
979 	 * S-EL2 context if S-EL2 is enabled.
980 	 */
981 	if ((security_state != SECURE) ||
982 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
983 		cpu_context_t *ctx;
984 		el2_sysregs_t *el2_sysregs_ctx;
985 
986 		ctx = cm_get_context(security_state);
987 		assert(ctx != NULL);
988 
989 		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
990 
991 		el2_sysregs_context_save_common(el2_sysregs_ctx);
992 #if CTX_INCLUDE_MTE_REGS
993 		el2_sysregs_context_save_mte(el2_sysregs_ctx);
994 #endif
995 		if (is_feat_mpam_supported()) {
996 			el2_sysregs_context_save_mpam(el2_sysregs_ctx);
997 		}
998 
999 		if (is_feat_fgt_supported()) {
1000 			el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1001 		}
1002 
1003 		if (is_feat_ecv_v2_supported()) {
1004 			write_ctx_reg(el2_sysregs_ctx, CTX_CNTPOFF_EL2,
1005 				      read_cntpoff_el2());
1006 		}
1007 
1008 		if (is_feat_vhe_supported()) {
1009 			write_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2,
1010 				      read_contextidr_el2());
1011 			write_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2,
1012 				      read_ttbr1_el2());
1013 		}
1014 
1015 		if (is_feat_ras_supported()) {
1016 			write_ctx_reg(el2_sysregs_ctx, CTX_VDISR_EL2,
1017 				      read_vdisr_el2());
1018 			write_ctx_reg(el2_sysregs_ctx, CTX_VSESR_EL2,
1019 				      read_vsesr_el2());
1020 		}
1021 
1022 		if (is_feat_nv2_supported()) {
1023 			write_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2,
1024 				      read_vncr_el2());
1025 		}
1026 
1027 		if (is_feat_trf_supported()) {
1028 			write_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2, read_trfcr_el2());
1029 		}
1030 
1031 		if (is_feat_csv2_2_supported()) {
1032 			write_ctx_reg(el2_sysregs_ctx, CTX_SCXTNUM_EL2,
1033 				      read_scxtnum_el2());
1034 		}
1035 
1036 		if (is_feat_hcx_supported()) {
1037 			write_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2, read_hcrx_el2());
1038 		}
1039 		if (is_feat_tcr2_supported()) {
1040 			write_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2, read_tcr2_el2());
1041 		}
1042 		if (is_feat_sxpie_supported()) {
1043 			write_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2, read_pire0_el2());
1044 			write_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2, read_pir_el2());
1045 		}
1046 		if (is_feat_s2pie_supported()) {
1047 			write_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2, read_s2pir_el2());
1048 		}
1049 		if (is_feat_sxpoe_supported()) {
1050 			write_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2, read_por_el2());
1051 		}
1052 		if (is_feat_gcs_supported()) {
1053 			write_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2, read_gcspr_el2());
1054 			write_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2, read_gcscr_el2());
1055 		}
1056 	}
1057 }
1058 
1059 /*******************************************************************************
1060  * Restore EL2 sysreg context
1061  ******************************************************************************/
1062 void cm_el2_sysregs_context_restore(uint32_t security_state)
1063 {
1064 	u_register_t scr_el3 = read_scr();
1065 
1066 	/*
1067 	 * Always restore the non-secure and realm EL2 context, only restore the
1068 	 * S-EL2 context if S-EL2 is enabled.
1069 	 */
1070 	if ((security_state != SECURE) ||
1071 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
1072 		cpu_context_t *ctx;
1073 		el2_sysregs_t *el2_sysregs_ctx;
1074 
1075 		ctx = cm_get_context(security_state);
1076 		assert(ctx != NULL);
1077 
1078 		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1079 
1080 		el2_sysregs_context_restore_common(el2_sysregs_ctx);
1081 #if CTX_INCLUDE_MTE_REGS
1082 		el2_sysregs_context_restore_mte(el2_sysregs_ctx);
1083 #endif
1084 		if (is_feat_mpam_supported()) {
1085 			el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1086 		}
1087 
1088 		if (is_feat_fgt_supported()) {
1089 			el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1090 		}
1091 
1092 		if (is_feat_ecv_v2_supported()) {
1093 			write_cntpoff_el2(read_ctx_reg(el2_sysregs_ctx,
1094 						       CTX_CNTPOFF_EL2));
1095 		}
1096 
1097 		if (is_feat_vhe_supported()) {
1098 			write_contextidr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2));
1099 			write_ttbr1_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2));
1100 		}
1101 
1102 		if (is_feat_ras_supported()) {
1103 			write_vdisr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VDISR_EL2));
1104 			write_vsesr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VSESR_EL2));
1105 		}
1106 
1107 		if (is_feat_nv2_supported()) {
1108 			write_vncr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2));
1109 		}
1110 		if (is_feat_trf_supported()) {
1111 			write_trfcr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2));
1112 		}
1113 
1114 		if (is_feat_csv2_2_supported()) {
1115 			write_scxtnum_el2(read_ctx_reg(el2_sysregs_ctx,
1116 						       CTX_SCXTNUM_EL2));
1117 		}
1118 
1119 		if (is_feat_hcx_supported()) {
1120 			write_hcrx_el2(read_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2));
1121 		}
1122 		if (is_feat_tcr2_supported()) {
1123 			write_tcr2_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2));
1124 		}
1125 		if (is_feat_sxpie_supported()) {
1126 			write_pire0_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2));
1127 			write_pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2));
1128 		}
1129 		if (is_feat_s2pie_supported()) {
1130 			write_s2pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2));
1131 		}
1132 		if (is_feat_sxpoe_supported()) {
1133 			write_por_el2(read_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2));
1134 		}
1135 		if (is_feat_gcs_supported()) {
1136 			write_gcscr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2));
1137 			write_gcspr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2));
1138 		}
1139 	}
1140 }
1141 #endif /* CTX_INCLUDE_EL2_REGS */
1142 
1143 /*******************************************************************************
1144  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1145  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1146  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1147  * cm_prepare_el3_exit function.
1148  ******************************************************************************/
1149 void cm_prepare_el3_exit_ns(void)
1150 {
1151 #if CTX_INCLUDE_EL2_REGS
1152 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1153 	assert(ctx != NULL);
1154 
1155 	/* Assert that EL2 is used. */
1156 #if ENABLE_ASSERTIONS
1157 	el3_state_t *state = get_el3state_ctx(ctx);
1158 	u_register_t scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1159 #endif
1160 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1161 			(el_implemented(2U) != EL_IMPL_NONE));
1162 
1163 	/*
1164 	 * Currently some extensions are configured using
1165 	 * direct register updates. Therefore, do this here
1166 	 * instead of when setting up context.
1167 	 */
1168 	manage_extensions_nonsecure_mixed(0, ctx);
1169 
1170 	/*
1171 	 * Set the NS bit to be able to access the ICC_SRE_EL2
1172 	 * register when restoring context.
1173 	 */
1174 	write_scr_el3(read_scr_el3() | SCR_NS_BIT);
1175 
1176 	/*
1177 	 * Ensure the NS bit change is committed before the EL2/EL1
1178 	 * state restoration.
1179 	 */
1180 	isb();
1181 
1182 	/* Restore EL2 and EL1 sysreg contexts */
1183 	cm_el2_sysregs_context_restore(NON_SECURE);
1184 	cm_el1_sysregs_context_restore(NON_SECURE);
1185 	cm_set_next_eret_context(NON_SECURE);
1186 #else
1187 	cm_prepare_el3_exit(NON_SECURE);
1188 #endif /* CTX_INCLUDE_EL2_REGS */
1189 }
1190 
1191 /*******************************************************************************
1192  * The next four functions are used by runtime services to save and restore
1193  * EL1 context on the 'cpu_context' structure for the specified security
1194  * state.
1195  ******************************************************************************/
1196 void cm_el1_sysregs_context_save(uint32_t security_state)
1197 {
1198 	cpu_context_t *ctx;
1199 
1200 	ctx = cm_get_context(security_state);
1201 	assert(ctx != NULL);
1202 
1203 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1204 
1205 #if IMAGE_BL31
1206 	if (security_state == SECURE)
1207 		PUBLISH_EVENT(cm_exited_secure_world);
1208 	else
1209 		PUBLISH_EVENT(cm_exited_normal_world);
1210 #endif
1211 }
1212 
1213 void cm_el1_sysregs_context_restore(uint32_t security_state)
1214 {
1215 	cpu_context_t *ctx;
1216 
1217 	ctx = cm_get_context(security_state);
1218 	assert(ctx != NULL);
1219 
1220 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1221 
1222 #if IMAGE_BL31
1223 	if (security_state == SECURE)
1224 		PUBLISH_EVENT(cm_entering_secure_world);
1225 	else
1226 		PUBLISH_EVENT(cm_entering_normal_world);
1227 #endif
1228 }
1229 
1230 /*******************************************************************************
1231  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1232  * given security state with the given entrypoint
1233  ******************************************************************************/
1234 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1235 {
1236 	cpu_context_t *ctx;
1237 	el3_state_t *state;
1238 
1239 	ctx = cm_get_context(security_state);
1240 	assert(ctx != NULL);
1241 
1242 	/* Populate EL3 state so that ERET jumps to the correct entry */
1243 	state = get_el3state_ctx(ctx);
1244 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1245 }
1246 
1247 /*******************************************************************************
1248  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1249  * pertaining to the given security state
1250  ******************************************************************************/
1251 void cm_set_elr_spsr_el3(uint32_t security_state,
1252 			uintptr_t entrypoint, uint32_t spsr)
1253 {
1254 	cpu_context_t *ctx;
1255 	el3_state_t *state;
1256 
1257 	ctx = cm_get_context(security_state);
1258 	assert(ctx != NULL);
1259 
1260 	/* Populate EL3 state so that ERET jumps to the correct entry */
1261 	state = get_el3state_ctx(ctx);
1262 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1263 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1264 }
1265 
1266 /*******************************************************************************
1267  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1268  * pertaining to the given security state using the value and bit position
1269  * specified in the parameters. It preserves all other bits.
1270  ******************************************************************************/
1271 void cm_write_scr_el3_bit(uint32_t security_state,
1272 			  uint32_t bit_pos,
1273 			  uint32_t value)
1274 {
1275 	cpu_context_t *ctx;
1276 	el3_state_t *state;
1277 	u_register_t scr_el3;
1278 
1279 	ctx = cm_get_context(security_state);
1280 	assert(ctx != NULL);
1281 
1282 	/* Ensure that the bit position is a valid one */
1283 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1284 
1285 	/* Ensure that the 'value' is only a bit wide */
1286 	assert(value <= 1U);
1287 
1288 	/*
1289 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1290 	 * and set it to its new value.
1291 	 */
1292 	state = get_el3state_ctx(ctx);
1293 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1294 	scr_el3 &= ~(1UL << bit_pos);
1295 	scr_el3 |= (u_register_t)value << bit_pos;
1296 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1297 }
1298 
1299 /*******************************************************************************
1300  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1301  * given security state.
1302  ******************************************************************************/
1303 u_register_t cm_get_scr_el3(uint32_t security_state)
1304 {
1305 	cpu_context_t *ctx;
1306 	el3_state_t *state;
1307 
1308 	ctx = cm_get_context(security_state);
1309 	assert(ctx != NULL);
1310 
1311 	/* Populate EL3 state so that ERET jumps to the correct entry */
1312 	state = get_el3state_ctx(ctx);
1313 	return read_ctx_reg(state, CTX_SCR_EL3);
1314 }
1315 
1316 /*******************************************************************************
1317  * This function is used to program the context that's used for exception
1318  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1319  * the required security state
1320  ******************************************************************************/
1321 void cm_set_next_eret_context(uint32_t security_state)
1322 {
1323 	cpu_context_t *ctx;
1324 
1325 	ctx = cm_get_context(security_state);
1326 	assert(ctx != NULL);
1327 
1328 	cm_set_next_context(ctx);
1329 }
1330