xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 83271d5a5aae06c23c59a32c30a0fe83fb82e79f)
1 /*
2  * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/cpu_data.h>
24 #include <lib/el3_runtime/pubsub_events.h>
25 #include <lib/extensions/amu.h>
26 #include <lib/extensions/brbe.h>
27 #include <lib/extensions/debug_v8p9.h>
28 #include <lib/extensions/mpam.h>
29 #include <lib/extensions/pmuv3.h>
30 #include <lib/extensions/sme.h>
31 #include <lib/extensions/spe.h>
32 #include <lib/extensions/sve.h>
33 #include <lib/extensions/sys_reg_trace.h>
34 #include <lib/extensions/trbe.h>
35 #include <lib/extensions/trf.h>
36 #include <lib/utils.h>
37 
38 #if ENABLE_FEAT_TWED
39 /* Make sure delay value fits within the range(0-15) */
40 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
41 #endif /* ENABLE_FEAT_TWED */
42 
43 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
44 static bool has_secure_perworld_init;
45 
46 static void manage_extensions_common(cpu_context_t *ctx);
47 static void manage_extensions_nonsecure(cpu_context_t *ctx);
48 static void manage_extensions_secure(cpu_context_t *ctx);
49 static void manage_extensions_secure_per_world(void);
50 
51 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
52 {
53 	u_register_t sctlr_elx, actlr_elx;
54 
55 	/*
56 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
57 	 * execution state setting all fields rather than relying on the hw.
58 	 * Some fields have architecturally UNKNOWN reset values and these are
59 	 * set to zero.
60 	 *
61 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
62 	 *
63 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
64 	 * required by PSCI specification)
65 	 */
66 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
67 	if (GET_RW(ep->spsr) == MODE_RW_64) {
68 		sctlr_elx |= SCTLR_EL1_RES1;
69 	} else {
70 		/*
71 		 * If the target execution state is AArch32 then the following
72 		 * fields need to be set.
73 		 *
74 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
75 		 *  instructions are not trapped to EL1.
76 		 *
77 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
78 		 *  instructions are not trapped to EL1.
79 		 *
80 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
81 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
82 		 */
83 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
84 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
85 	}
86 
87 #if ERRATA_A75_764081
88 	/*
89 	 * If workaround of errata 764081 for Cortex-A75 is used then set
90 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
91 	 */
92 	sctlr_elx |= SCTLR_IESB_BIT;
93 #endif
94 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
95 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
96 
97 	/*
98 	 * Base the context ACTLR_EL1 on the current value, as it is
99 	 * implementation defined. The context restore process will write
100 	 * the value from the context to the actual register and can cause
101 	 * problems for processor cores that don't expect certain bits to
102 	 * be zero.
103 	 */
104 	actlr_elx = read_actlr_el1();
105 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
106 }
107 
108 /******************************************************************************
109  * This function performs initializations that are specific to SECURE state
110  * and updates the cpu context specified by 'ctx'.
111  *****************************************************************************/
112 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
113 {
114 	u_register_t scr_el3;
115 	el3_state_t *state;
116 
117 	state = get_el3state_ctx(ctx);
118 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
119 
120 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
121 	/*
122 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
123 	 * indicated by the interrupt routing model for BL31.
124 	 */
125 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
126 #endif
127 
128 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
129 	if (is_feat_mte2_supported()) {
130 		scr_el3 |= SCR_ATA_BIT;
131 	}
132 
133 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
134 
135 	/*
136 	 * Initialize EL1 context registers unless SPMC is running
137 	 * at S-EL2.
138 	 */
139 #if !SPMD_SPM_AT_SEL2
140 	setup_el1_context(ctx, ep);
141 #endif
142 
143 	manage_extensions_secure(ctx);
144 
145 	/**
146 	 * manage_extensions_secure_per_world api has to be executed once,
147 	 * as the registers getting initialised, maintain constant value across
148 	 * all the cpus for the secure world.
149 	 * Henceforth, this check ensures that the registers are initialised once
150 	 * and avoids re-initialization from multiple cores.
151 	 */
152 	if (!has_secure_perworld_init) {
153 		manage_extensions_secure_per_world();
154 	}
155 
156 }
157 
158 #if ENABLE_RME
159 /******************************************************************************
160  * This function performs initializations that are specific to REALM state
161  * and updates the cpu context specified by 'ctx'.
162  *****************************************************************************/
163 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
164 {
165 	u_register_t scr_el3;
166 	el3_state_t *state;
167 
168 	state = get_el3state_ctx(ctx);
169 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
170 
171 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
172 
173 	/* CSV2 version 2 and above */
174 	if (is_feat_csv2_2_supported()) {
175 		/* Enable access to the SCXTNUM_ELx registers. */
176 		scr_el3 |= SCR_EnSCXT_BIT;
177 	}
178 
179 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
180 }
181 #endif /* ENABLE_RME */
182 
183 /******************************************************************************
184  * This function performs initializations that are specific to NON-SECURE state
185  * and updates the cpu context specified by 'ctx'.
186  *****************************************************************************/
187 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
188 {
189 	u_register_t scr_el3;
190 	el3_state_t *state;
191 
192 	state = get_el3state_ctx(ctx);
193 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
194 
195 	/* SCR_NS: Set the NS bit */
196 	scr_el3 |= SCR_NS_BIT;
197 
198 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
199 	if (is_feat_mte2_supported()) {
200 		scr_el3 |= SCR_ATA_BIT;
201 	}
202 
203 #if !CTX_INCLUDE_PAUTH_REGS
204 	/*
205 	 * Pointer Authentication feature, if present, is always enabled by default
206 	 * for Non secure lower exception levels. We do not have an explicit
207 	 * flag to set it.
208 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
209 	 * exception levels of secure and realm worlds.
210 	 *
211 	 * To prevent the leakage between the worlds during world switch,
212 	 * we enable it only for the non-secure world.
213 	 *
214 	 * If the Secure/realm world wants to use pointer authentication,
215 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
216 	 * it will be enabled globally for all the contexts.
217 	 *
218 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
219 	 *  other than EL3
220 	 *
221 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
222 	 *  than EL3
223 	 */
224 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
225 
226 #endif /* CTX_INCLUDE_PAUTH_REGS */
227 
228 #if HANDLE_EA_EL3_FIRST_NS
229 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
230 	scr_el3 |= SCR_EA_BIT;
231 #endif
232 
233 #if RAS_TRAP_NS_ERR_REC_ACCESS
234 	/*
235 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
236 	 * and RAS ERX registers from EL1 and EL2(from any security state)
237 	 * are trapped to EL3.
238 	 * Set here to trap only for NS EL1/EL2
239 	 *
240 	 */
241 	scr_el3 |= SCR_TERR_BIT;
242 #endif
243 
244 	/* CSV2 version 2 and above */
245 	if (is_feat_csv2_2_supported()) {
246 		/* Enable access to the SCXTNUM_ELx registers. */
247 		scr_el3 |= SCR_EnSCXT_BIT;
248 	}
249 
250 #ifdef IMAGE_BL31
251 	/*
252 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
253 	 *  indicated by the interrupt routing model for BL31.
254 	 */
255 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
256 #endif
257 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
258 
259 	/* Initialize EL1 context registers */
260 	setup_el1_context(ctx, ep);
261 
262 	/* Initialize EL2 context registers */
263 #if CTX_INCLUDE_EL2_REGS
264 
265 	/*
266 	 * Initialize SCTLR_EL2 context register with reset value.
267 	 */
268 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
269 
270 	if (is_feat_hcx_supported()) {
271 		/*
272 		 * Initialize register HCRX_EL2 with its init value.
273 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
274 		 * chance that this can lead to unexpected behavior in lower
275 		 * ELs that have not been updated since the introduction of
276 		 * this feature if not properly initialized, especially when
277 		 * it comes to those bits that enable/disable traps.
278 		 */
279 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
280 			HCRX_EL2_INIT_VAL);
281 	}
282 
283 	if (is_feat_fgt_supported()) {
284 		/*
285 		 * Initialize HFG*_EL2 registers with a default value so legacy
286 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
287 		 * of initialization for this feature.
288 		 */
289 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
290 			HFGITR_EL2_INIT_VAL);
291 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
292 			HFGRTR_EL2_INIT_VAL);
293 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
294 			HFGWTR_EL2_INIT_VAL);
295 	}
296 
297 #endif /* CTX_INCLUDE_EL2_REGS */
298 
299 	manage_extensions_nonsecure(ctx);
300 }
301 
302 /*******************************************************************************
303  * The following function performs initialization of the cpu_context 'ctx'
304  * for first use that is common to all security states, and sets the
305  * initial entrypoint state as specified by the entry_point_info structure.
306  *
307  * The EE and ST attributes are used to configure the endianness and secure
308  * timer availability for the new execution context.
309  ******************************************************************************/
310 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
311 {
312 	u_register_t scr_el3;
313 	u_register_t mdcr_el3;
314 	el3_state_t *state;
315 	gp_regs_t *gp_regs;
316 
317 	state = get_el3state_ctx(ctx);
318 
319 	/* Clear any residual register values from the context */
320 	zeromem(ctx, sizeof(*ctx));
321 
322 	/*
323 	 * The lower-EL context is zeroed so that no stale values leak to a world.
324 	 * It is assumed that an all-zero lower-EL context is good enough for it
325 	 * to boot correctly. However, there are very few registers where this
326 	 * is not true and some values need to be recreated.
327 	 */
328 #if CTX_INCLUDE_EL2_REGS
329 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
330 
331 	/*
332 	 * These bits are set in the gicv3 driver. Losing them (especially the
333 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
334 	 */
335 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
336 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
337 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
338 #endif /* CTX_INCLUDE_EL2_REGS */
339 
340 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
341 	scr_el3 = SCR_RESET_VAL;
342 
343 	/*
344 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
345 	 *  EL2, EL1 and EL0 are not trapped to EL3.
346 	 *
347 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
348 	 *  EL2, EL1 and EL0 are not trapped to EL3.
349 	 *
350 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
351 	 *  both Security states and both Execution states.
352 	 *
353 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
354 	 *  Non-secure memory.
355 	 */
356 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
357 
358 	scr_el3 |= SCR_SIF_BIT;
359 
360 	/*
361 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
362 	 *  Exception level as specified by SPSR.
363 	 */
364 	if (GET_RW(ep->spsr) == MODE_RW_64) {
365 		scr_el3 |= SCR_RW_BIT;
366 	}
367 
368 	/*
369 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
370 	 * Secure timer registers to EL3, from AArch64 state only, if specified
371 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
372 	 * bit always behaves as 1 (i.e. secure physical timer register access
373 	 * is not trapped)
374 	 */
375 	if (EP_GET_ST(ep->h.attr) != 0U) {
376 		scr_el3 |= SCR_ST_BIT;
377 	}
378 
379 	/*
380 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
381 	 * SCR_EL3.HXEn.
382 	 */
383 	if (is_feat_hcx_supported()) {
384 		scr_el3 |= SCR_HXEn_BIT;
385 	}
386 
387 	/*
388 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
389 	 * registers are trapped to EL3.
390 	 */
391 #if ENABLE_FEAT_RNG_TRAP
392 	scr_el3 |= SCR_TRNDR_BIT;
393 #endif
394 
395 #if FAULT_INJECTION_SUPPORT
396 	/* Enable fault injection from lower ELs */
397 	scr_el3 |= SCR_FIEN_BIT;
398 #endif
399 
400 #if CTX_INCLUDE_PAUTH_REGS
401 	/*
402 	 * Enable Pointer Authentication globally for all the worlds.
403 	 *
404 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
405 	 *  other than EL3
406 	 *
407 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
408 	 *  than EL3
409 	 */
410 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
411 #endif /* CTX_INCLUDE_PAUTH_REGS */
412 
413 	/*
414 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
415 	 */
416 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
417 		scr_el3 |= SCR_TCR2EN_BIT;
418 	}
419 
420 	/*
421 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
422 	 * registers for AArch64 if present.
423 	 */
424 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
425 		scr_el3 |= SCR_PIEN_BIT;
426 	}
427 
428 	/*
429 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
430 	 */
431 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
432 		scr_el3 |= SCR_GCSEn_BIT;
433 	}
434 
435 	/*
436 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
437 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
438 	 * next mode is Hyp.
439 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
440 	 * same conditions as HVC instructions and when the processor supports
441 	 * ARMv8.6-FGT.
442 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
443 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
444 	 * and when the processor supports ECV.
445 	 */
446 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
447 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
448 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
449 		scr_el3 |= SCR_HCE_BIT;
450 
451 		if (is_feat_fgt_supported()) {
452 			scr_el3 |= SCR_FGTEN_BIT;
453 		}
454 
455 		if (is_feat_ecv_supported()) {
456 			scr_el3 |= SCR_ECVEN_BIT;
457 		}
458 	}
459 
460 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
461 	if (is_feat_twed_supported()) {
462 		/* Set delay in SCR_EL3 */
463 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
464 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
465 				<< SCR_TWEDEL_SHIFT);
466 
467 		/* Enable WFE delay */
468 		scr_el3 |= SCR_TWEDEn_BIT;
469 	}
470 
471 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
472 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
473 	if (is_feat_sel2_supported()) {
474 		scr_el3 |= SCR_EEL2_BIT;
475 	}
476 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
477 
478 	/*
479 	 * Populate EL3 state so that we've the right context
480 	 * before doing ERET
481 	 */
482 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
483 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
484 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
485 
486 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
487 	mdcr_el3 = MDCR_EL3_RESET_VAL;
488 
489 	/* ---------------------------------------------------------------------
490 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
491 	 * Some fields are architecturally UNKNOWN on reset.
492 	 *
493 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
494 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
495 	 *  disabled from all ELs in Secure state.
496 	 *
497 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
498 	 *  privileged debug from S-EL1.
499 	 *
500 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
501 	 *  access to the powerdown debug registers do not trap to EL3.
502 	 *
503 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
504 	 *  debug registers, other than those registers that are controlled by
505 	 *  MDCR_EL3.TDOSA.
506 	 */
507 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
508 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
509 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
510 
511 	/*
512 	 * Configure MDCR_EL3 register as applicable for each world
513 	 * (NS/Secure/Realm) context.
514 	 */
515 	manage_extensions_common(ctx);
516 
517 	/*
518 	 * Store the X0-X7 value from the entrypoint into the context
519 	 * Use memcpy as we are in control of the layout of the structures
520 	 */
521 	gp_regs = get_gpregs_ctx(ctx);
522 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
523 }
524 
525 /*******************************************************************************
526  * Context management library initialization routine. This library is used by
527  * runtime services to share pointers to 'cpu_context' structures for secure
528  * non-secure and realm states. Management of the structures and their associated
529  * memory is not done by the context management library e.g. the PSCI service
530  * manages the cpu context used for entry from and exit to the non-secure state.
531  * The Secure payload dispatcher service manages the context(s) corresponding to
532  * the secure state. It also uses this library to get access to the non-secure
533  * state cpu context pointers.
534  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
535  * which will be used for programming an entry into a lower EL. The same context
536  * will be used to save state upon exception entry from that EL.
537  ******************************************************************************/
538 void __init cm_init(void)
539 {
540 	/*
541 	 * The context management library has only global data to initialize, but
542 	 * that will be done when the BSS is zeroed out.
543 	 */
544 }
545 
546 /*******************************************************************************
547  * This is the high-level function used to initialize the cpu_context 'ctx' for
548  * first use. It performs initializations that are common to all security states
549  * and initializations specific to the security state specified in 'ep'
550  ******************************************************************************/
551 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
552 {
553 	unsigned int security_state;
554 
555 	assert(ctx != NULL);
556 
557 	/*
558 	 * Perform initializations that are common
559 	 * to all security states
560 	 */
561 	setup_context_common(ctx, ep);
562 
563 	security_state = GET_SECURITY_STATE(ep->h.attr);
564 
565 	/* Perform security state specific initializations */
566 	switch (security_state) {
567 	case SECURE:
568 		setup_secure_context(ctx, ep);
569 		break;
570 #if ENABLE_RME
571 	case REALM:
572 		setup_realm_context(ctx, ep);
573 		break;
574 #endif
575 	case NON_SECURE:
576 		setup_ns_context(ctx, ep);
577 		break;
578 	default:
579 		ERROR("Invalid security state\n");
580 		panic();
581 		break;
582 	}
583 }
584 
585 /*******************************************************************************
586  * Enable architecture extensions for EL3 execution. This function only updates
587  * registers in-place which are expected to either never change or be
588  * overwritten by el3_exit.
589  ******************************************************************************/
590 #if IMAGE_BL31
591 void cm_manage_extensions_el3(void)
592 {
593 	if (is_feat_amu_supported()) {
594 		amu_init_el3();
595 	}
596 
597 	if (is_feat_sme_supported()) {
598 		sme_init_el3();
599 	}
600 
601 	pmuv3_init_el3();
602 }
603 #endif /* IMAGE_BL31 */
604 
605 /******************************************************************************
606  * Function to initialise the registers with the RESET values in the context
607  * memory, which are maintained per world.
608  ******************************************************************************/
609 #if IMAGE_BL31
610 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
611 {
612 	/*
613 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
614 	 *
615 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
616 	 *  by Advanced SIMD, floating-point or SVE instructions (if
617 	 *  implemented) do not trap to EL3.
618 	 *
619 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
620 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
621 	 */
622 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
623 
624 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
625 
626 	/*
627 	 * Initialize MPAM3_EL3 to its default reset value
628 	 *
629 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
630 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
631 	 */
632 
633 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
634 }
635 #endif /* IMAGE_BL31 */
636 
637 /*******************************************************************************
638  * Initialise per_world_context for Non-Secure world.
639  * This function enables the architecture extensions, which have same value
640  * across the cores for the non-secure world.
641  ******************************************************************************/
642 #if IMAGE_BL31
643 void manage_extensions_nonsecure_per_world(void)
644 {
645 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
646 
647 	if (is_feat_sme_supported()) {
648 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
649 	}
650 
651 	if (is_feat_sve_supported()) {
652 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
653 	}
654 
655 	if (is_feat_amu_supported()) {
656 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
657 	}
658 
659 	if (is_feat_sys_reg_trace_supported()) {
660 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
661 	}
662 
663 	if (is_feat_mpam_supported()) {
664 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
665 	}
666 }
667 #endif /* IMAGE_BL31 */
668 
669 /*******************************************************************************
670  * Initialise per_world_context for Secure world.
671  * This function enables the architecture extensions, which have same value
672  * across the cores for the secure world.
673  ******************************************************************************/
674 static void manage_extensions_secure_per_world(void)
675 {
676 #if IMAGE_BL31
677 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
678 
679 	if (is_feat_sme_supported()) {
680 
681 		if (ENABLE_SME_FOR_SWD) {
682 		/*
683 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
684 		 * SME, SVE, and FPU/SIMD context properly managed.
685 		 */
686 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
687 		} else {
688 		/*
689 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
690 		 * world can safely use the associated registers.
691 		 */
692 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
693 		}
694 	}
695 	if (is_feat_sve_supported()) {
696 		if (ENABLE_SVE_FOR_SWD) {
697 		/*
698 		 * Enable SVE and FPU in secure context, SPM must ensure
699 		 * that the SVE and FPU register contexts are properly managed.
700 		 */
701 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
702 		} else {
703 		/*
704 		 * Disable SVE and FPU in secure context so non-secure world
705 		 * can safely use them.
706 		 */
707 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
708 		}
709 	}
710 
711 	/* NS can access this but Secure shouldn't */
712 	if (is_feat_sys_reg_trace_supported()) {
713 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
714 	}
715 
716 	has_secure_perworld_init = true;
717 #endif /* IMAGE_BL31 */
718 }
719 
720 /*******************************************************************************
721  * Enable architecture extensions on first entry to Non-secure world only
722  * and disable for secure world.
723  *
724  * NOTE: Arch features which have been provided with the capability of getting
725  * enabled only for non-secure world and being disabled for secure world are
726  * grouped here, as the MDCR_EL3 context value remains same across the worlds.
727  ******************************************************************************/
728 static void manage_extensions_common(cpu_context_t *ctx)
729 {
730 #if IMAGE_BL31
731 	if (is_feat_spe_supported()) {
732 		/*
733 		 * Enable FEAT_SPE for Non-Secure and prohibit for Secure state.
734 		 */
735 		spe_enable(ctx);
736 	}
737 
738 	if (is_feat_trbe_supported()) {
739 		/*
740 		 * Enable FEAT_TRBE for Non-Secure and prohibit for Secure and
741 		 * Realm state.
742 		 */
743 		trbe_enable(ctx);
744 	}
745 
746 	if (is_feat_trf_supported()) {
747 		/*
748 		 * Enable FEAT_TRF for Non-Secure and prohibit for Secure state.
749 		 */
750 		trf_enable(ctx);
751 	}
752 
753 	if (is_feat_brbe_supported()) {
754 		/*
755 		 * Enable FEAT_BRBE for Non-Secure and prohibit for Secure state.
756 		 */
757 		brbe_enable(ctx);
758 	}
759 #endif /* IMAGE_BL31 */
760 }
761 
762 /*******************************************************************************
763  * Enable architecture extensions on first entry to Non-secure world.
764  ******************************************************************************/
765 static void manage_extensions_nonsecure(cpu_context_t *ctx)
766 {
767 #if IMAGE_BL31
768 	if (is_feat_amu_supported()) {
769 		amu_enable(ctx);
770 	}
771 
772 	if (is_feat_sme_supported()) {
773 		sme_enable(ctx);
774 	}
775 
776 	if (is_feat_debugv8p9_supported()) {
777 		debugv8p9_extended_bp_wp_enable(ctx);
778 	}
779 
780 	pmuv3_enable(ctx);
781 #endif /* IMAGE_BL31 */
782 }
783 
784 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
785 static __unused void enable_pauth_el2(void)
786 {
787 	u_register_t hcr_el2 = read_hcr_el2();
788 	/*
789 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
790 	 *  accessing key registers or using pointer authentication instructions
791 	 *  from lower ELs.
792 	 */
793 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
794 
795 	write_hcr_el2(hcr_el2);
796 }
797 
798 #if INIT_UNUSED_NS_EL2
799 /*******************************************************************************
800  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
801  * world when EL2 is empty and unused.
802  ******************************************************************************/
803 static void manage_extensions_nonsecure_el2_unused(void)
804 {
805 #if IMAGE_BL31
806 	if (is_feat_spe_supported()) {
807 		spe_init_el2_unused();
808 	}
809 
810 	if (is_feat_amu_supported()) {
811 		amu_init_el2_unused();
812 	}
813 
814 	if (is_feat_mpam_supported()) {
815 		mpam_init_el2_unused();
816 	}
817 
818 	if (is_feat_trbe_supported()) {
819 		trbe_init_el2_unused();
820 	}
821 
822 	if (is_feat_sys_reg_trace_supported()) {
823 		sys_reg_trace_init_el2_unused();
824 	}
825 
826 	if (is_feat_trf_supported()) {
827 		trf_init_el2_unused();
828 	}
829 
830 	pmuv3_init_el2_unused();
831 
832 	if (is_feat_sve_supported()) {
833 		sve_init_el2_unused();
834 	}
835 
836 	if (is_feat_sme_supported()) {
837 		sme_init_el2_unused();
838 	}
839 
840 #if ENABLE_PAUTH
841 	enable_pauth_el2();
842 #endif /* ENABLE_PAUTH */
843 #endif /* IMAGE_BL31 */
844 }
845 #endif /* INIT_UNUSED_NS_EL2 */
846 
847 /*******************************************************************************
848  * Enable architecture extensions on first entry to Secure world.
849  ******************************************************************************/
850 static void manage_extensions_secure(cpu_context_t *ctx)
851 {
852 #if IMAGE_BL31
853 	if (is_feat_sme_supported()) {
854 		if (ENABLE_SME_FOR_SWD) {
855 		/*
856 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
857 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
858 		 */
859 			sme_init_el3();
860 			sme_enable(ctx);
861 		} else {
862 		/*
863 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
864 		 * world can safely use the associated registers.
865 		 */
866 			sme_disable(ctx);
867 		}
868 	}
869 #endif /* IMAGE_BL31 */
870 }
871 
872 #if !IMAGE_BL1
873 /*******************************************************************************
874  * The following function initializes the cpu_context for a CPU specified by
875  * its `cpu_idx` for first use, and sets the initial entrypoint state as
876  * specified by the entry_point_info structure.
877  ******************************************************************************/
878 void cm_init_context_by_index(unsigned int cpu_idx,
879 			      const entry_point_info_t *ep)
880 {
881 	cpu_context_t *ctx;
882 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
883 	cm_setup_context(ctx, ep);
884 }
885 #endif /* !IMAGE_BL1 */
886 
887 /*******************************************************************************
888  * The following function initializes the cpu_context for the current CPU
889  * for first use, and sets the initial entrypoint state as specified by the
890  * entry_point_info structure.
891  ******************************************************************************/
892 void cm_init_my_context(const entry_point_info_t *ep)
893 {
894 	cpu_context_t *ctx;
895 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
896 	cm_setup_context(ctx, ep);
897 }
898 
899 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
900 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
901 {
902 #if INIT_UNUSED_NS_EL2
903 	u_register_t hcr_el2 = HCR_RESET_VAL;
904 	u_register_t mdcr_el2;
905 	u_register_t scr_el3;
906 
907 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
908 
909 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
910 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
911 		hcr_el2 |= HCR_RW_BIT;
912 	}
913 
914 	write_hcr_el2(hcr_el2);
915 
916 	/*
917 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
918 	 * All fields have architecturally UNKNOWN reset values.
919 	 */
920 	write_cptr_el2(CPTR_EL2_RESET_VAL);
921 
922 	/*
923 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
924 	 * reset and are set to zero except for field(s) listed below.
925 	 *
926 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
927 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
928 	 *
929 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
930 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
931 	 */
932 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
933 
934 	/*
935 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
936 	 * UNKNOWN value.
937 	 */
938 	write_cntvoff_el2(0);
939 
940 	/*
941 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
942 	 * respectively.
943 	 */
944 	write_vpidr_el2(read_midr_el1());
945 	write_vmpidr_el2(read_mpidr_el1());
946 
947 	/*
948 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
949 	 *
950 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
951 	 * translation is disabled, cache maintenance operations depend on the
952 	 * VMID.
953 	 *
954 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
955 	 * disabled.
956 	 */
957 	write_vttbr_el2(VTTBR_RESET_VAL &
958 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
959 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
960 
961 	/*
962 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
963 	 * Some fields are architecturally UNKNOWN on reset.
964 	 *
965 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
966 	 * register accesses to the Debug ROM registers are not trapped to EL2.
967 	 *
968 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
969 	 * accesses to the powerdown debug registers are not trapped to EL2.
970 	 *
971 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
972 	 * debug registers do not trap to EL2.
973 	 *
974 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
975 	 * EL2.
976 	 */
977 	mdcr_el2 = MDCR_EL2_RESET_VAL &
978 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
979 		   MDCR_EL2_TDE_BIT);
980 
981 	write_mdcr_el2(mdcr_el2);
982 
983 	/*
984 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
985 	 *
986 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
987 	 * EL1 accesses to System registers do not trap to EL2.
988 	 */
989 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
990 
991 	/*
992 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
993 	 * reset.
994 	 *
995 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
996 	 * and prevent timer interrupts.
997 	 */
998 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
999 
1000 	manage_extensions_nonsecure_el2_unused();
1001 #endif /* INIT_UNUSED_NS_EL2 */
1002 }
1003 
1004 /*******************************************************************************
1005  * Prepare the CPU system registers for first entry into realm, secure, or
1006  * normal world.
1007  *
1008  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1009  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1010  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1011  * For all entries, the EL1 registers are initialized from the cpu_context
1012  ******************************************************************************/
1013 void cm_prepare_el3_exit(uint32_t security_state)
1014 {
1015 	u_register_t sctlr_el2, scr_el3;
1016 	cpu_context_t *ctx = cm_get_context(security_state);
1017 
1018 	assert(ctx != NULL);
1019 
1020 	if (security_state == NON_SECURE) {
1021 		uint64_t el2_implemented = el_implemented(2);
1022 
1023 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1024 						 CTX_SCR_EL3);
1025 
1026 		if (el2_implemented != EL_IMPL_NONE) {
1027 
1028 			/*
1029 			 * If context is not being used for EL2, initialize
1030 			 * HCRX_EL2 with its init value here.
1031 			 */
1032 			if (is_feat_hcx_supported()) {
1033 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1034 			}
1035 
1036 			/*
1037 			 * Initialize Fine-grained trap registers introduced
1038 			 * by FEAT_FGT so all traps are initially disabled when
1039 			 * switching to EL2 or a lower EL, preventing undesired
1040 			 * behavior.
1041 			 */
1042 			if (is_feat_fgt_supported()) {
1043 				/*
1044 				 * Initialize HFG*_EL2 registers with a default
1045 				 * value so legacy systems unaware of FEAT_FGT
1046 				 * do not get trapped due to their lack of
1047 				 * initialization for this feature.
1048 				 */
1049 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1050 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1051 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1052 			}
1053 
1054 			/* Condition to ensure EL2 is being used. */
1055 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1056 				/* Initialize SCTLR_EL2 register with reset value. */
1057 				sctlr_el2 = SCTLR_EL2_RES1;
1058 #if ERRATA_A75_764081
1059 				/*
1060 				 * If workaround of errata 764081 for Cortex-A75
1061 				 * is used then set SCTLR_EL2.IESB to enable
1062 				 * Implicit Error Synchronization Barrier.
1063 				 */
1064 				sctlr_el2 |= SCTLR_IESB_BIT;
1065 #endif
1066 				write_sctlr_el2(sctlr_el2);
1067 			} else {
1068 				/*
1069 				 * (scr_el3 & SCR_HCE_BIT==0)
1070 				 * EL2 implemented but unused.
1071 				 */
1072 				init_nonsecure_el2_unused(ctx);
1073 			}
1074 		}
1075 	}
1076 	cm_el1_sysregs_context_restore(security_state);
1077 	cm_set_next_eret_context(security_state);
1078 }
1079 
1080 #if CTX_INCLUDE_EL2_REGS
1081 
1082 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1083 {
1084 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1085 	if (is_feat_amu_supported()) {
1086 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1087 	}
1088 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1089 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1090 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1091 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1092 }
1093 
1094 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1095 {
1096 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1097 	if (is_feat_amu_supported()) {
1098 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1099 	}
1100 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1101 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1102 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1103 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1104 }
1105 
1106 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1107 {
1108 	u_register_t mpam_idr = read_mpamidr_el1();
1109 
1110 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1111 
1112 	/*
1113 	 * The context registers that we intend to save would be part of the
1114 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1115 	 */
1116 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1117 		return;
1118 	}
1119 
1120 	/*
1121 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1122 	 * MPAMIDR_HAS_HCR_BIT == 1.
1123 	 */
1124 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1125 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1126 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1127 
1128 	/*
1129 	 * The number of MPAMVPM registers is implementation defined, their
1130 	 * number is stored in the MPAMIDR_EL1 register.
1131 	 */
1132 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1133 	case 7:
1134 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1135 		__fallthrough;
1136 	case 6:
1137 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1138 		__fallthrough;
1139 	case 5:
1140 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1141 		__fallthrough;
1142 	case 4:
1143 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1144 		__fallthrough;
1145 	case 3:
1146 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1147 		__fallthrough;
1148 	case 2:
1149 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1150 		__fallthrough;
1151 	case 1:
1152 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1153 		break;
1154 	}
1155 }
1156 
1157 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1158 {
1159 	u_register_t mpam_idr = read_mpamidr_el1();
1160 
1161 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1162 
1163 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1164 		return;
1165 	}
1166 
1167 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1168 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1169 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1170 
1171 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1172 	case 7:
1173 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1174 		__fallthrough;
1175 	case 6:
1176 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1177 		__fallthrough;
1178 	case 5:
1179 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1180 		__fallthrough;
1181 	case 4:
1182 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1183 		__fallthrough;
1184 	case 3:
1185 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1186 		__fallthrough;
1187 	case 2:
1188 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1189 		__fallthrough;
1190 	case 1:
1191 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1192 		break;
1193 	}
1194 }
1195 
1196 /* ---------------------------------------------------------------------------
1197  * The following registers are not added:
1198  * ICH_AP0R<n>_EL2
1199  * ICH_AP1R<n>_EL2
1200  * ICH_LR<n>_EL2
1201  *
1202  * NOTE: For a system with S-EL2 present but not enabled, accessing
1203  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1204  * SCR_EL3.NS = 1 before accessing this register.
1205  * ---------------------------------------------------------------------------
1206  */
1207 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx)
1208 {
1209 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1210 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1211 #else
1212 	u_register_t scr_el3 = read_scr_el3();
1213 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1214 	isb();
1215 
1216 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1217 
1218 	write_scr_el3(scr_el3);
1219 	isb();
1220 #endif
1221 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1222 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1223 }
1224 
1225 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx)
1226 {
1227 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1228 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1229 #else
1230 	u_register_t scr_el3 = read_scr_el3();
1231 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1232 	isb();
1233 
1234 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1235 
1236 	write_scr_el3(scr_el3);
1237 	isb();
1238 #endif
1239 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1240 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1241 }
1242 
1243 /* -----------------------------------------------------
1244  * The following registers are not added:
1245  * AMEVCNTVOFF0<n>_EL2
1246  * AMEVCNTVOFF1<n>_EL2
1247  * -----------------------------------------------------
1248  */
1249 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1250 {
1251 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1252 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1253 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1254 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1255 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1256 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1257 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1258 	if (CTX_INCLUDE_AARCH32_REGS) {
1259 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1260 	}
1261 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1262 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1263 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1264 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1265 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1266 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1267 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1268 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1269 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1270 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1271 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1272 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1273 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1274 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1275 	write_el2_ctx_common(ctx, ttbr0_el2, read_ttbr0_el2());
1276 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1277 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1278 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1279 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1280 	write_el2_ctx_common(ctx, vttbr_el2, read_vttbr_el2());
1281 }
1282 
1283 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1284 {
1285 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1286 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1287 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1288 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1289 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1290 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1291 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1292 	if (CTX_INCLUDE_AARCH32_REGS) {
1293 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1294 	}
1295 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1296 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1297 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1298 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1299 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1300 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1301 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1302 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1303 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1304 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1305 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1306 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1307 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1308 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1309 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1310 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1311 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1312 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1313 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1314 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1315 }
1316 
1317 /*******************************************************************************
1318  * Save EL2 sysreg context
1319  ******************************************************************************/
1320 void cm_el2_sysregs_context_save(uint32_t security_state)
1321 {
1322 	cpu_context_t *ctx;
1323 	el2_sysregs_t *el2_sysregs_ctx;
1324 
1325 	ctx = cm_get_context(security_state);
1326 	assert(ctx != NULL);
1327 
1328 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1329 
1330 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1331 	el2_sysregs_context_save_gic(el2_sysregs_ctx);
1332 
1333 	if (is_feat_mte2_supported()) {
1334 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1335 	}
1336 
1337 	if (is_feat_mpam_supported()) {
1338 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1339 	}
1340 
1341 	if (is_feat_fgt_supported()) {
1342 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1343 	}
1344 
1345 	if (is_feat_ecv_v2_supported()) {
1346 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1347 	}
1348 
1349 	if (is_feat_vhe_supported()) {
1350 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1351 					read_contextidr_el2());
1352 		write_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1353 	}
1354 
1355 	if (is_feat_ras_supported()) {
1356 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1357 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1358 	}
1359 
1360 	if (is_feat_nv2_supported()) {
1361 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1362 	}
1363 
1364 	if (is_feat_trf_supported()) {
1365 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1366 	}
1367 
1368 	if (is_feat_csv2_2_supported()) {
1369 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1370 					read_scxtnum_el2());
1371 	}
1372 
1373 	if (is_feat_hcx_supported()) {
1374 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1375 	}
1376 
1377 	if (is_feat_tcr2_supported()) {
1378 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1379 	}
1380 
1381 	if (is_feat_sxpie_supported()) {
1382 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1383 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1384 	}
1385 
1386 	if (is_feat_sxpoe_supported()) {
1387 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1388 	}
1389 
1390 	if (is_feat_s2pie_supported()) {
1391 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1392 	}
1393 
1394 	if (is_feat_gcs_supported()) {
1395 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1396 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1397 	}
1398 }
1399 
1400 /*******************************************************************************
1401  * Restore EL2 sysreg context
1402  ******************************************************************************/
1403 void cm_el2_sysregs_context_restore(uint32_t security_state)
1404 {
1405 	cpu_context_t *ctx;
1406 	el2_sysregs_t *el2_sysregs_ctx;
1407 
1408 	ctx = cm_get_context(security_state);
1409 	assert(ctx != NULL);
1410 
1411 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1412 
1413 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1414 	el2_sysregs_context_restore_gic(el2_sysregs_ctx);
1415 
1416 	if (is_feat_mte2_supported()) {
1417 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1418 	}
1419 
1420 	if (is_feat_mpam_supported()) {
1421 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1422 	}
1423 
1424 	if (is_feat_fgt_supported()) {
1425 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1426 	}
1427 
1428 	if (is_feat_ecv_v2_supported()) {
1429 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1430 	}
1431 
1432 	if (is_feat_vhe_supported()) {
1433 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1434 					contextidr_el2));
1435 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1436 	}
1437 
1438 	if (is_feat_ras_supported()) {
1439 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1440 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1441 	}
1442 
1443 	if (is_feat_nv2_supported()) {
1444 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1445 	}
1446 
1447 	if (is_feat_trf_supported()) {
1448 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1449 	}
1450 
1451 	if (is_feat_csv2_2_supported()) {
1452 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1453 					scxtnum_el2));
1454 	}
1455 
1456 	if (is_feat_hcx_supported()) {
1457 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1458 	}
1459 
1460 	if (is_feat_tcr2_supported()) {
1461 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1462 	}
1463 
1464 	if (is_feat_sxpie_supported()) {
1465 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1466 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1467 	}
1468 
1469 	if (is_feat_sxpoe_supported()) {
1470 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1471 	}
1472 
1473 	if (is_feat_s2pie_supported()) {
1474 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1475 	}
1476 
1477 	if (is_feat_gcs_supported()) {
1478 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1479 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1480 	}
1481 }
1482 #endif /* CTX_INCLUDE_EL2_REGS */
1483 
1484 /*******************************************************************************
1485  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1486  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1487  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1488  * cm_prepare_el3_exit function.
1489  ******************************************************************************/
1490 void cm_prepare_el3_exit_ns(void)
1491 {
1492 #if CTX_INCLUDE_EL2_REGS
1493 #if ENABLE_ASSERTIONS
1494 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1495 	assert(ctx != NULL);
1496 
1497 	/* Assert that EL2 is used. */
1498 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1499 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1500 			(el_implemented(2U) != EL_IMPL_NONE));
1501 #endif /* ENABLE_ASSERTIONS */
1502 
1503 	/* Restore EL2 and EL1 sysreg contexts */
1504 	cm_el2_sysregs_context_restore(NON_SECURE);
1505 	cm_el1_sysregs_context_restore(NON_SECURE);
1506 	cm_set_next_eret_context(NON_SECURE);
1507 #else
1508 	cm_prepare_el3_exit(NON_SECURE);
1509 #endif /* CTX_INCLUDE_EL2_REGS */
1510 }
1511 
1512 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1513 {
1514 	write_ctx_reg(ctx, CTX_SPSR_EL1, read_spsr_el1());
1515 	write_ctx_reg(ctx, CTX_ELR_EL1, read_elr_el1());
1516 
1517 #if !ERRATA_SPECULATIVE_AT
1518 	write_ctx_reg(ctx, CTX_SCTLR_EL1, read_sctlr_el1());
1519 	write_ctx_reg(ctx, CTX_TCR_EL1, read_tcr_el1());
1520 #endif /* (!ERRATA_SPECULATIVE_AT) */
1521 
1522 	write_ctx_reg(ctx, CTX_CPACR_EL1, read_cpacr_el1());
1523 	write_ctx_reg(ctx, CTX_CSSELR_EL1, read_csselr_el1());
1524 	write_ctx_reg(ctx, CTX_SP_EL1, read_sp_el1());
1525 	write_ctx_reg(ctx, CTX_ESR_EL1, read_esr_el1());
1526 	write_ctx_reg(ctx, CTX_TTBR0_EL1, read_ttbr0_el1());
1527 	write_ctx_reg(ctx, CTX_TTBR1_EL1, read_ttbr1_el1());
1528 	write_ctx_reg(ctx, CTX_MAIR_EL1, read_mair_el1());
1529 	write_ctx_reg(ctx, CTX_AMAIR_EL1, read_amair_el1());
1530 	write_ctx_reg(ctx, CTX_ACTLR_EL1, read_actlr_el1());
1531 	write_ctx_reg(ctx, CTX_TPIDR_EL1, read_tpidr_el1());
1532 	write_ctx_reg(ctx, CTX_TPIDR_EL0, read_tpidr_el0());
1533 	write_ctx_reg(ctx, CTX_TPIDRRO_EL0, read_tpidrro_el0());
1534 	write_ctx_reg(ctx, CTX_PAR_EL1, read_par_el1());
1535 	write_ctx_reg(ctx, CTX_FAR_EL1, read_far_el1());
1536 	write_ctx_reg(ctx, CTX_AFSR0_EL1, read_afsr0_el1());
1537 	write_ctx_reg(ctx, CTX_AFSR1_EL1, read_afsr1_el1());
1538 	write_ctx_reg(ctx, CTX_CONTEXTIDR_EL1, read_contextidr_el1());
1539 	write_ctx_reg(ctx, CTX_VBAR_EL1, read_vbar_el1());
1540 	write_ctx_reg(ctx, CTX_MDCCINT_EL1, read_mdccint_el1());
1541 	write_ctx_reg(ctx, CTX_MDSCR_EL1, read_mdscr_el1());
1542 
1543 #if CTX_INCLUDE_AARCH32_REGS
1544 	write_ctx_reg(ctx, CTX_SPSR_ABT, read_spsr_abt());
1545 	write_ctx_reg(ctx, CTX_SPSR_UND, read_spsr_und());
1546 	write_ctx_reg(ctx, CTX_SPSR_IRQ, read_spsr_irq());
1547 	write_ctx_reg(ctx, CTX_SPSR_FIQ, read_spsr_fiq());
1548 	write_ctx_reg(ctx, CTX_DACR32_EL2, read_dacr32_el2());
1549 	write_ctx_reg(ctx, CTX_IFSR32_EL2, read_ifsr32_el2());
1550 #endif /* CTX_INCLUDE_AARCH32_REGS */
1551 
1552 #if NS_TIMER_SWITCH
1553 	write_ctx_reg(ctx, CTX_CNTP_CTL_EL0, read_cntp_ctl_el0());
1554 	write_ctx_reg(ctx, CTX_CNTP_CVAL_EL0, read_cntp_cval_el0());
1555 	write_ctx_reg(ctx, CTX_CNTV_CTL_EL0, read_cntv_ctl_el0());
1556 	write_ctx_reg(ctx, CTX_CNTV_CVAL_EL0, read_cntv_cval_el0());
1557 	write_ctx_reg(ctx, CTX_CNTKCTL_EL1, read_cntkctl_el1());
1558 #endif /* NS_TIMER_SWITCH */
1559 
1560 #if ENABLE_FEAT_MTE2
1561 	write_ctx_reg(ctx, CTX_TFSRE0_EL1, read_tfsre0_el1());
1562 	write_ctx_reg(ctx, CTX_TFSR_EL1, read_tfsr_el1());
1563 	write_ctx_reg(ctx, CTX_RGSR_EL1, read_rgsr_el1());
1564 	write_ctx_reg(ctx, CTX_GCR_EL1, read_gcr_el1());
1565 #endif /* ENABLE_FEAT_MTE2 */
1566 
1567 #if ENABLE_FEAT_RAS
1568 	if (is_feat_ras_supported()) {
1569 		write_ctx_reg(ctx, CTX_DISR_EL1, read_disr_el1());
1570 	}
1571 #endif
1572 
1573 #if ENABLE_FEAT_S1PIE
1574 	if (is_feat_s1pie_supported()) {
1575 		write_ctx_reg(ctx, CTX_PIRE0_EL1, read_pire0_el1());
1576 		write_ctx_reg(ctx, CTX_PIR_EL1, read_pir_el1());
1577 	}
1578 #endif
1579 
1580 #if ENABLE_FEAT_S1POE
1581 	if (is_feat_s1poe_supported()) {
1582 		write_ctx_reg(ctx, CTX_POR_EL1, read_por_el1());
1583 	}
1584 #endif
1585 
1586 #if ENABLE_FEAT_S2POE
1587 	if (is_feat_s2poe_supported()) {
1588 		write_ctx_reg(ctx, CTX_S2POR_EL1, read_s2por_el1());
1589 	}
1590 #endif
1591 
1592 #if ENABLE_FEAT_TCR2
1593 	if (is_feat_tcr2_supported()) {
1594 		write_ctx_reg(ctx, CTX_TCR2_EL1, read_tcr2_el1());
1595 	}
1596 #endif
1597 
1598 #if ENABLE_TRF_FOR_NS
1599 	if (is_feat_trf_supported()) {
1600 		write_ctx_reg(ctx, CTX_TRFCR_EL1, read_trfcr_el1());
1601 	}
1602 #endif
1603 
1604 #if ENABLE_FEAT_CSV2_2
1605 	if (is_feat_csv2_2_supported()) {
1606 		write_ctx_reg(ctx, CTX_SCXTNUM_EL0, read_scxtnum_el0());
1607 		write_ctx_reg(ctx, CTX_SCXTNUM_EL1, read_scxtnum_el1());
1608 	}
1609 #endif
1610 
1611 #if ENABLE_FEAT_GCS
1612 	if (is_feat_gcs_supported()) {
1613 		write_ctx_reg(ctx, CTX_GCSCR_EL1, read_gcscr_el1());
1614 		write_ctx_reg(ctx, CTX_GCSCRE0_EL1, read_gcscre0_el1());
1615 		write_ctx_reg(ctx, CTX_GCSPR_EL1, read_gcspr_el1());
1616 		write_ctx_reg(ctx, CTX_GCSPR_EL0, read_gcspr_el0());
1617 	}
1618 #endif
1619 }
1620 
1621 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1622 {
1623 	write_spsr_el1(read_ctx_reg(ctx, CTX_SPSR_EL1));
1624 	write_elr_el1(read_ctx_reg(ctx, CTX_ELR_EL1));
1625 
1626 #if !ERRATA_SPECULATIVE_AT
1627 	write_sctlr_el1(read_ctx_reg(ctx, CTX_SCTLR_EL1));
1628 	write_tcr_el1(read_ctx_reg(ctx, CTX_TCR_EL1));
1629 #endif /* (!ERRATA_SPECULATIVE_AT) */
1630 
1631 	write_cpacr_el1(read_ctx_reg(ctx, CTX_CPACR_EL1));
1632 	write_csselr_el1(read_ctx_reg(ctx, CTX_CSSELR_EL1));
1633 	write_sp_el1(read_ctx_reg(ctx, CTX_SP_EL1));
1634 	write_esr_el1(read_ctx_reg(ctx, CTX_ESR_EL1));
1635 	write_ttbr0_el1(read_ctx_reg(ctx, CTX_TTBR0_EL1));
1636 	write_ttbr1_el1(read_ctx_reg(ctx, CTX_TTBR1_EL1));
1637 	write_mair_el1(read_ctx_reg(ctx, CTX_MAIR_EL1));
1638 	write_amair_el1(read_ctx_reg(ctx, CTX_AMAIR_EL1));
1639 	write_actlr_el1(read_ctx_reg(ctx, CTX_ACTLR_EL1));
1640 	write_tpidr_el1(read_ctx_reg(ctx, CTX_TPIDR_EL1));
1641 	write_tpidr_el0(read_ctx_reg(ctx, CTX_TPIDR_EL0));
1642 	write_tpidrro_el0(read_ctx_reg(ctx, CTX_TPIDRRO_EL0));
1643 	write_par_el1(read_ctx_reg(ctx, CTX_PAR_EL1));
1644 	write_far_el1(read_ctx_reg(ctx, CTX_FAR_EL1));
1645 	write_afsr0_el1(read_ctx_reg(ctx, CTX_AFSR0_EL1));
1646 	write_afsr1_el1(read_ctx_reg(ctx, CTX_AFSR1_EL1));
1647 	write_contextidr_el1(read_ctx_reg(ctx, CTX_CONTEXTIDR_EL1));
1648 	write_vbar_el1(read_ctx_reg(ctx, CTX_VBAR_EL1));
1649 	write_mdccint_el1(read_ctx_reg(ctx, CTX_MDCCINT_EL1));
1650 	write_mdscr_el1(read_ctx_reg(ctx, CTX_MDSCR_EL1));
1651 
1652 #if CTX_INCLUDE_AARCH32_REGS
1653 	write_spsr_abt(read_ctx_reg(ctx, CTX_SPSR_ABT));
1654 	write_spsr_und(read_ctx_reg(ctx, CTX_SPSR_UND));
1655 	write_spsr_irq(read_ctx_reg(ctx, CTX_SPSR_IRQ));
1656 	write_spsr_fiq(read_ctx_reg(ctx, CTX_SPSR_FIQ));
1657 	write_dacr32_el2(read_ctx_reg(ctx, CTX_DACR32_EL2));
1658 	write_ifsr32_el2(read_ctx_reg(ctx, CTX_IFSR32_EL2));
1659 #endif /* CTX_INCLUDE_AARCH32_REGS */
1660 
1661 #if NS_TIMER_SWITCH
1662 	write_cntp_ctl_el0(read_ctx_reg(ctx, CTX_CNTP_CTL_EL0));
1663 	write_cntp_cval_el0(read_ctx_reg(ctx, CTX_CNTP_CVAL_EL0));
1664 	write_cntv_ctl_el0(read_ctx_reg(ctx, CTX_CNTV_CTL_EL0));
1665 	write_cntv_cval_el0(read_ctx_reg(ctx, CTX_CNTV_CVAL_EL0));
1666 	write_cntkctl_el1(read_ctx_reg(ctx, CTX_CNTKCTL_EL1));
1667 #endif /* NS_TIMER_SWITCH */
1668 
1669 #if ENABLE_FEAT_MTE2
1670 	write_tfsre0_el1(read_ctx_reg(ctx, CTX_TFSRE0_EL1));
1671 	write_tfsr_el1(read_ctx_reg(ctx, CTX_TFSR_EL1));
1672 	write_rgsr_el1(read_ctx_reg(ctx, CTX_RGSR_EL1));
1673 	write_gcr_el1(read_ctx_reg(ctx, CTX_GCR_EL1));
1674 #endif /* ENABLE_FEAT_MTE2 */
1675 
1676 #if ENABLE_FEAT_RAS
1677 	if (is_feat_ras_supported()) {
1678 		write_disr_el1(read_ctx_reg(ctx, CTX_DISR_EL1));
1679 	}
1680 #endif
1681 
1682 #if ENABLE_FEAT_S1PIE
1683 	if (is_feat_s1pie_supported()) {
1684 		write_pire0_el1(read_ctx_reg(ctx, CTX_PIRE0_EL1));
1685 		write_pir_el1(read_ctx_reg(ctx, CTX_PIR_EL1));
1686 	}
1687 #endif
1688 
1689 #if ENABLE_FEAT_S1POE
1690 	if (is_feat_s1poe_supported()) {
1691 		write_por_el1(read_ctx_reg(ctx, CTX_POR_EL1));
1692 	}
1693 #endif
1694 
1695 #if ENABLE_FEAT_S2POE
1696 	if (is_feat_s2poe_supported()) {
1697 		write_s2por_el1(read_ctx_reg(ctx, CTX_S2POR_EL1));
1698 	}
1699 #endif
1700 
1701 #if ENABLE_FEAT_TCR2
1702 	if (is_feat_tcr2_supported()) {
1703 		write_tcr2_el1(read_ctx_reg(ctx, CTX_TCR2_EL1));
1704 	}
1705 #endif
1706 
1707 #if ENABLE_TRF_FOR_NS
1708 	if (is_feat_trf_supported()) {
1709 		write_trfcr_el1(read_ctx_reg(ctx, CTX_TRFCR_EL1));
1710 	}
1711 #endif
1712 
1713 #if ENABLE_FEAT_CSV2_2
1714 	if (is_feat_csv2_2_supported()) {
1715 		write_scxtnum_el0(read_ctx_reg(ctx, CTX_SCXTNUM_EL0));
1716 		write_scxtnum_el1(read_ctx_reg(ctx, CTX_SCXTNUM_EL1));
1717 	}
1718 #endif
1719 
1720 #if ENABLE_FEAT_GCS
1721 	if (is_feat_gcs_supported()) {
1722 		write_gcscr_el1(read_ctx_reg(ctx, CTX_GCSCR_EL1));
1723 		write_gcscre0_el1(read_ctx_reg(ctx, CTX_GCSCRE0_EL1));
1724 		write_gcspr_el1(read_ctx_reg(ctx, CTX_GCSPR_EL1));
1725 		write_gcspr_el0(read_ctx_reg(ctx, CTX_GCSPR_EL0));
1726 	}
1727 #endif
1728 }
1729 
1730 /*******************************************************************************
1731  * The next four functions are used by runtime services to save and restore
1732  * EL1 context on the 'cpu_context' structure for the specified security
1733  * state.
1734  ******************************************************************************/
1735 void cm_el1_sysregs_context_save(uint32_t security_state)
1736 {
1737 	cpu_context_t *ctx;
1738 
1739 	ctx = cm_get_context(security_state);
1740 	assert(ctx != NULL);
1741 
1742 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1743 
1744 #if IMAGE_BL31
1745 	if (security_state == SECURE)
1746 		PUBLISH_EVENT(cm_exited_secure_world);
1747 	else
1748 		PUBLISH_EVENT(cm_exited_normal_world);
1749 #endif
1750 }
1751 
1752 void cm_el1_sysregs_context_restore(uint32_t security_state)
1753 {
1754 	cpu_context_t *ctx;
1755 
1756 	ctx = cm_get_context(security_state);
1757 	assert(ctx != NULL);
1758 
1759 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1760 
1761 #if IMAGE_BL31
1762 	if (security_state == SECURE)
1763 		PUBLISH_EVENT(cm_entering_secure_world);
1764 	else
1765 		PUBLISH_EVENT(cm_entering_normal_world);
1766 #endif
1767 }
1768 
1769 /*******************************************************************************
1770  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1771  * given security state with the given entrypoint
1772  ******************************************************************************/
1773 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1774 {
1775 	cpu_context_t *ctx;
1776 	el3_state_t *state;
1777 
1778 	ctx = cm_get_context(security_state);
1779 	assert(ctx != NULL);
1780 
1781 	/* Populate EL3 state so that ERET jumps to the correct entry */
1782 	state = get_el3state_ctx(ctx);
1783 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1784 }
1785 
1786 /*******************************************************************************
1787  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1788  * pertaining to the given security state
1789  ******************************************************************************/
1790 void cm_set_elr_spsr_el3(uint32_t security_state,
1791 			uintptr_t entrypoint, uint32_t spsr)
1792 {
1793 	cpu_context_t *ctx;
1794 	el3_state_t *state;
1795 
1796 	ctx = cm_get_context(security_state);
1797 	assert(ctx != NULL);
1798 
1799 	/* Populate EL3 state so that ERET jumps to the correct entry */
1800 	state = get_el3state_ctx(ctx);
1801 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1802 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1803 }
1804 
1805 /*******************************************************************************
1806  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1807  * pertaining to the given security state using the value and bit position
1808  * specified in the parameters. It preserves all other bits.
1809  ******************************************************************************/
1810 void cm_write_scr_el3_bit(uint32_t security_state,
1811 			  uint32_t bit_pos,
1812 			  uint32_t value)
1813 {
1814 	cpu_context_t *ctx;
1815 	el3_state_t *state;
1816 	u_register_t scr_el3;
1817 
1818 	ctx = cm_get_context(security_state);
1819 	assert(ctx != NULL);
1820 
1821 	/* Ensure that the bit position is a valid one */
1822 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1823 
1824 	/* Ensure that the 'value' is only a bit wide */
1825 	assert(value <= 1U);
1826 
1827 	/*
1828 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1829 	 * and set it to its new value.
1830 	 */
1831 	state = get_el3state_ctx(ctx);
1832 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1833 	scr_el3 &= ~(1UL << bit_pos);
1834 	scr_el3 |= (u_register_t)value << bit_pos;
1835 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1836 }
1837 
1838 /*******************************************************************************
1839  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1840  * given security state.
1841  ******************************************************************************/
1842 u_register_t cm_get_scr_el3(uint32_t security_state)
1843 {
1844 	cpu_context_t *ctx;
1845 	el3_state_t *state;
1846 
1847 	ctx = cm_get_context(security_state);
1848 	assert(ctx != NULL);
1849 
1850 	/* Populate EL3 state so that ERET jumps to the correct entry */
1851 	state = get_el3state_ctx(ctx);
1852 	return read_ctx_reg(state, CTX_SCR_EL3);
1853 }
1854 
1855 /*******************************************************************************
1856  * This function is used to program the context that's used for exception
1857  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1858  * the required security state
1859  ******************************************************************************/
1860 void cm_set_next_eret_context(uint32_t security_state)
1861 {
1862 	cpu_context_t *ctx;
1863 
1864 	ctx = cm_get_context(security_state);
1865 	assert(ctx != NULL);
1866 
1867 	cm_set_next_context(ctx);
1868 }
1869