xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 7f8561985778cbe5cdc7d57984c818119e87adaf)
1 /*
2  * Copyright (c) 2013-2022, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/pubsub_events.h>
24 #include <lib/extensions/amu.h>
25 #include <lib/extensions/brbe.h>
26 #include <lib/extensions/mpam.h>
27 #include <lib/extensions/sme.h>
28 #include <lib/extensions/spe.h>
29 #include <lib/extensions/sve.h>
30 #include <lib/extensions/sys_reg_trace.h>
31 #include <lib/extensions/trbe.h>
32 #include <lib/extensions/trf.h>
33 #include <lib/utils.h>
34 
35 #if ENABLE_FEAT_TWED
36 /* Make sure delay value fits within the range(0-15) */
37 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
38 #endif /* ENABLE_FEAT_TWED */
39 
40 static void manage_extensions_secure(cpu_context_t *ctx);
41 
42 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
43 {
44 	u_register_t sctlr_elx, actlr_elx;
45 
46 	/*
47 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
48 	 * execution state setting all fields rather than relying on the hw.
49 	 * Some fields have architecturally UNKNOWN reset values and these are
50 	 * set to zero.
51 	 *
52 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
53 	 *
54 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
55 	 * required by PSCI specification)
56 	 */
57 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
58 	if (GET_RW(ep->spsr) == MODE_RW_64) {
59 		sctlr_elx |= SCTLR_EL1_RES1;
60 	} else {
61 		/*
62 		 * If the target execution state is AArch32 then the following
63 		 * fields need to be set.
64 		 *
65 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
66 		 *  instructions are not trapped to EL1.
67 		 *
68 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
69 		 *  instructions are not trapped to EL1.
70 		 *
71 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
72 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
73 		 */
74 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
75 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
76 	}
77 
78 #if ERRATA_A75_764081
79 	/*
80 	 * If workaround of errata 764081 for Cortex-A75 is used then set
81 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
82 	 */
83 	sctlr_elx |= SCTLR_IESB_BIT;
84 #endif
85 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
86 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
87 
88 	/*
89 	 * Base the context ACTLR_EL1 on the current value, as it is
90 	 * implementation defined. The context restore process will write
91 	 * the value from the context to the actual register and can cause
92 	 * problems for processor cores that don't expect certain bits to
93 	 * be zero.
94 	 */
95 	actlr_elx = read_actlr_el1();
96 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
97 }
98 
99 /******************************************************************************
100  * This function performs initializations that are specific to SECURE state
101  * and updates the cpu context specified by 'ctx'.
102  *****************************************************************************/
103 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
104 {
105 	u_register_t scr_el3;
106 	el3_state_t *state;
107 
108 	state = get_el3state_ctx(ctx);
109 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
110 
111 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
112 	/*
113 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
114 	 * indicated by the interrupt routing model for BL31.
115 	 */
116 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
117 #endif
118 
119 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
120 	/* Get Memory Tagging Extension support level */
121 	unsigned int mte = get_armv8_5_mte_support();
122 #endif
123 	/*
124 	 * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS
125 	 * is set, or when MTE is only implemented at EL0.
126 	 */
127 #if CTX_INCLUDE_MTE_REGS
128 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
129 	scr_el3 |= SCR_ATA_BIT;
130 #else
131 	if (mte == MTE_IMPLEMENTED_EL0) {
132 		scr_el3 |= SCR_ATA_BIT;
133 	}
134 #endif /* CTX_INCLUDE_MTE_REGS */
135 
136 	/* Enable S-EL2 if the next EL is EL2 and S-EL2 is present */
137 	if ((GET_EL(ep->spsr) == MODE_EL2) && is_armv8_4_sel2_present()) {
138 		if (GET_RW(ep->spsr) != MODE_RW_64) {
139 			ERROR("S-EL2 can not be used in AArch32\n.");
140 			panic();
141 		}
142 
143 		scr_el3 |= SCR_EEL2_BIT;
144 	}
145 
146 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
147 
148 	/*
149 	 * Initialize EL1 context registers unless SPMC is running
150 	 * at S-EL2.
151 	 */
152 #if !SPMD_SPM_AT_SEL2
153 	setup_el1_context(ctx, ep);
154 #endif
155 
156 	manage_extensions_secure(ctx);
157 }
158 
159 #if ENABLE_RME
160 /******************************************************************************
161  * This function performs initializations that are specific to REALM state
162  * and updates the cpu context specified by 'ctx'.
163  *****************************************************************************/
164 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
165 {
166 	u_register_t scr_el3;
167 	el3_state_t *state;
168 
169 	state = get_el3state_ctx(ctx);
170 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
171 
172 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT | SCR_EnSCXT_BIT;
173 
174 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
175 }
176 #endif /* ENABLE_RME */
177 
178 /******************************************************************************
179  * This function performs initializations that are specific to NON-SECURE state
180  * and updates the cpu context specified by 'ctx'.
181  *****************************************************************************/
182 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
183 {
184 	u_register_t scr_el3;
185 	el3_state_t *state;
186 
187 	state = get_el3state_ctx(ctx);
188 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
189 
190 	/* SCR_NS: Set the NS bit */
191 	scr_el3 |= SCR_NS_BIT;
192 
193 #if !CTX_INCLUDE_PAUTH_REGS
194 	/*
195 	 * If the pointer authentication registers aren't saved during world
196 	 * switches the value of the registers can be leaked from the Secure to
197 	 * the Non-secure world. To prevent this, rather than enabling pointer
198 	 * authentication everywhere, we only enable it in the Non-secure world.
199 	 *
200 	 * If the Secure world wants to use pointer authentication,
201 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
202 	 */
203 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
204 #endif /* !CTX_INCLUDE_PAUTH_REGS */
205 
206 	/* Allow access to Allocation Tags when MTE is implemented. */
207 	scr_el3 |= SCR_ATA_BIT;
208 
209 #if RAS_TRAP_NS_ERR_REC_ACCESS
210 	/*
211 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
212 	 * and RAS ERX registers from EL1 and EL2(from any security state)
213 	 * are trapped to EL3.
214 	 * Set here to trap only for NS EL1/EL2
215 	 *
216 	 */
217 	scr_el3 |= SCR_TERR_BIT;
218 #endif
219 
220 #ifdef IMAGE_BL31
221 	/*
222 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
223 	 *  indicated by the interrupt routing model for BL31.
224 	 */
225 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
226 #endif
227 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
228 
229 	/* Initialize EL1 context registers */
230 	setup_el1_context(ctx, ep);
231 
232 	/* Initialize EL2 context registers */
233 #if CTX_INCLUDE_EL2_REGS
234 
235 	/*
236 	 * Initialize SCTLR_EL2 context register using Endianness value
237 	 * taken from the entrypoint attribute.
238 	 */
239 	u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
240 	sctlr_el2 |= SCTLR_EL2_RES1;
241 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2,
242 			sctlr_el2);
243 
244 	/*
245 	 * Program the ICC_SRE_EL2 to make sure the correct bits are set
246 	 * when restoring NS context.
247 	 */
248 	u_register_t icc_sre_el2 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
249 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
250 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_ICC_SRE_EL2,
251 			icc_sre_el2);
252 
253 	/*
254 	 * Initialize MDCR_EL2.HPMN to its hardware reset value so we don't
255 	 * throw anyone off who expects this to be sensible.
256 	 * TODO: A similar thing happens in cm_prepare_el3_exit. They should be
257 	 * unified with the proper PMU implementation
258 	 */
259 	u_register_t mdcr_el2 = ((read_pmcr_el0() >> PMCR_EL0_N_SHIFT) &
260 			PMCR_EL0_N_MASK);
261 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_MDCR_EL2, mdcr_el2);
262 #endif /* CTX_INCLUDE_EL2_REGS */
263 }
264 
265 /*******************************************************************************
266  * The following function performs initialization of the cpu_context 'ctx'
267  * for first use that is common to all security states, and sets the
268  * initial entrypoint state as specified by the entry_point_info structure.
269  *
270  * The EE and ST attributes are used to configure the endianness and secure
271  * timer availability for the new execution context.
272  ******************************************************************************/
273 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
274 {
275 	u_register_t scr_el3;
276 	el3_state_t *state;
277 	gp_regs_t *gp_regs;
278 
279 	/* Clear any residual register values from the context */
280 	zeromem(ctx, sizeof(*ctx));
281 
282 	/*
283 	 * SCR_EL3 was initialised during reset sequence in macro
284 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
285 	 * affect the next EL.
286 	 *
287 	 * The following fields are initially set to zero and then updated to
288 	 * the required value depending on the state of the SPSR_EL3 and the
289 	 * Security state and entrypoint attributes of the next EL.
290 	 */
291 	scr_el3 = read_scr();
292 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
293 			SCR_ST_BIT | SCR_HCE_BIT | SCR_NSE_BIT);
294 
295 	/*
296 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
297 	 *  Exception level as specified by SPSR.
298 	 */
299 	if (GET_RW(ep->spsr) == MODE_RW_64) {
300 		scr_el3 |= SCR_RW_BIT;
301 	}
302 
303 	/*
304 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
305 	 * Secure timer registers to EL3, from AArch64 state only, if specified
306 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
307 	 * bit always behaves as 1 (i.e. secure physical timer register access
308 	 * is not trapped)
309 	 */
310 	if (EP_GET_ST(ep->h.attr) != 0U) {
311 		scr_el3 |= SCR_ST_BIT;
312 	}
313 
314 	/*
315 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
316 	 * SCR_EL3.HXEn.
317 	 */
318 #if ENABLE_FEAT_HCX
319 	scr_el3 |= SCR_HXEn_BIT;
320 #endif
321 
322 	/*
323 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
324 	 * registers are trapped to EL3.
325 	 */
326 #if ENABLE_FEAT_RNG_TRAP
327 	scr_el3 |= SCR_TRNDR_BIT;
328 #endif
329 
330 #if !HANDLE_EA_EL3_FIRST
331 	/*
332 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
333 	 * to EL3 when executing at a lower EL. When executing at EL3, External
334 	 * Aborts are taken to EL3.
335 	 */
336 	scr_el3 &= ~SCR_EA_BIT;
337 #endif
338 
339 #if FAULT_INJECTION_SUPPORT
340 	/* Enable fault injection from lower ELs */
341 	scr_el3 |= SCR_FIEN_BIT;
342 #endif
343 
344 	/*
345 	 * CPTR_EL3 was initialized out of reset, copy that value to the
346 	 * context register.
347 	 */
348 	write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3());
349 
350 	/*
351 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
352 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
353 	 * next mode is Hyp.
354 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
355 	 * same conditions as HVC instructions and when the processor supports
356 	 * ARMv8.6-FGT.
357 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
358 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
359 	 * and when the processor supports ECV.
360 	 */
361 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
362 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
363 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
364 		scr_el3 |= SCR_HCE_BIT;
365 
366 		if (is_armv8_6_fgt_present()) {
367 			scr_el3 |= SCR_FGTEN_BIT;
368 		}
369 
370 		if (get_armv8_6_ecv_support()
371 		    == ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) {
372 			scr_el3 |= SCR_ECVEN_BIT;
373 		}
374 	}
375 
376 #if ENABLE_FEAT_TWED
377 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
378 	/* Set delay in SCR_EL3 */
379 	scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
380 	scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
381 			<< SCR_TWEDEL_SHIFT);
382 
383 	/* Enable WFE delay */
384 	scr_el3 |= SCR_TWEDEn_BIT;
385 #endif /* ENABLE_FEAT_TWED */
386 
387 	/*
388 	 * Populate EL3 state so that we've the right context
389 	 * before doing ERET
390 	 */
391 	state = get_el3state_ctx(ctx);
392 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
393 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
394 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
395 
396 	/*
397 	 * Store the X0-X7 value from the entrypoint into the context
398 	 * Use memcpy as we are in control of the layout of the structures
399 	 */
400 	gp_regs = get_gpregs_ctx(ctx);
401 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
402 }
403 
404 /*******************************************************************************
405  * Context management library initialization routine. This library is used by
406  * runtime services to share pointers to 'cpu_context' structures for secure
407  * non-secure and realm states. Management of the structures and their associated
408  * memory is not done by the context management library e.g. the PSCI service
409  * manages the cpu context used for entry from and exit to the non-secure state.
410  * The Secure payload dispatcher service manages the context(s) corresponding to
411  * the secure state. It also uses this library to get access to the non-secure
412  * state cpu context pointers.
413  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
414  * which will be used for programming an entry into a lower EL. The same context
415  * will be used to save state upon exception entry from that EL.
416  ******************************************************************************/
417 void __init cm_init(void)
418 {
419 	/*
420 	 * The context management library has only global data to intialize, but
421 	 * that will be done when the BSS is zeroed out.
422 	 */
423 }
424 
425 /*******************************************************************************
426  * This is the high-level function used to initialize the cpu_context 'ctx' for
427  * first use. It performs initializations that are common to all security states
428  * and initializations specific to the security state specified in 'ep'
429  ******************************************************************************/
430 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
431 {
432 	unsigned int security_state;
433 
434 	assert(ctx != NULL);
435 
436 	/*
437 	 * Perform initializations that are common
438 	 * to all security states
439 	 */
440 	setup_context_common(ctx, ep);
441 
442 	security_state = GET_SECURITY_STATE(ep->h.attr);
443 
444 	/* Perform security state specific initializations */
445 	switch (security_state) {
446 	case SECURE:
447 		setup_secure_context(ctx, ep);
448 		break;
449 #if ENABLE_RME
450 	case REALM:
451 		setup_realm_context(ctx, ep);
452 		break;
453 #endif
454 	case NON_SECURE:
455 		setup_ns_context(ctx, ep);
456 		break;
457 	default:
458 		ERROR("Invalid security state\n");
459 		panic();
460 		break;
461 	}
462 }
463 
464 /*******************************************************************************
465  * Enable architecture extensions on first entry to Non-secure world.
466  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
467  * it is zero.
468  ******************************************************************************/
469 static void manage_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx)
470 {
471 #if IMAGE_BL31
472 #if ENABLE_SPE_FOR_LOWER_ELS
473 	spe_enable(el2_unused);
474 #endif
475 
476 #if ENABLE_AMU
477 	amu_enable(el2_unused, ctx);
478 #endif
479 
480 #if ENABLE_SME_FOR_NS
481 	/* Enable SME, SVE, and FPU/SIMD for non-secure world. */
482 	sme_enable(ctx);
483 #elif ENABLE_SVE_FOR_NS
484 	/* Enable SVE and FPU/SIMD for non-secure world. */
485 	sve_enable(ctx);
486 #endif
487 
488 #if ENABLE_MPAM_FOR_LOWER_ELS
489 	mpam_enable(el2_unused);
490 #endif
491 
492 #if ENABLE_TRBE_FOR_NS
493 	trbe_enable();
494 #endif /* ENABLE_TRBE_FOR_NS */
495 
496 #if ENABLE_BRBE_FOR_NS
497 	brbe_enable();
498 #endif /* ENABLE_BRBE_FOR_NS */
499 
500 #if ENABLE_SYS_REG_TRACE_FOR_NS
501 	sys_reg_trace_enable(ctx);
502 #endif /* ENABLE_SYS_REG_TRACE_FOR_NS */
503 
504 #if ENABLE_TRF_FOR_NS
505 	trf_enable();
506 #endif /* ENABLE_TRF_FOR_NS */
507 #endif
508 }
509 
510 /*******************************************************************************
511  * Enable architecture extensions on first entry to Secure world.
512  ******************************************************************************/
513 static void manage_extensions_secure(cpu_context_t *ctx)
514 {
515 #if IMAGE_BL31
516  #if ENABLE_SME_FOR_NS
517   #if ENABLE_SME_FOR_SWD
518 	/*
519 	 * Enable SME, SVE, FPU/SIMD in secure context, secure manager must
520 	 * ensure SME, SVE, and FPU/SIMD context properly managed.
521 	 */
522 	sme_enable(ctx);
523   #else /* ENABLE_SME_FOR_SWD */
524 	/*
525 	 * Disable SME, SVE, FPU/SIMD in secure context so non-secure world can
526 	 * safely use the associated registers.
527 	 */
528 	sme_disable(ctx);
529   #endif /* ENABLE_SME_FOR_SWD */
530  #elif ENABLE_SVE_FOR_NS
531   #if ENABLE_SVE_FOR_SWD
532 	/*
533 	 * Enable SVE and FPU in secure context, secure manager must ensure that
534 	 * the SVE and FPU register contexts are properly managed.
535 	 */
536 	sve_enable(ctx);
537  #else /* ENABLE_SVE_FOR_SWD */
538 	/*
539 	 * Disable SVE and FPU in secure context so non-secure world can safely
540 	 * use them.
541 	 */
542 	sve_disable(ctx);
543   #endif /* ENABLE_SVE_FOR_SWD */
544  #endif /* ENABLE_SVE_FOR_NS */
545 #endif /* IMAGE_BL31 */
546 }
547 
548 /*******************************************************************************
549  * The following function initializes the cpu_context for a CPU specified by
550  * its `cpu_idx` for first use, and sets the initial entrypoint state as
551  * specified by the entry_point_info structure.
552  ******************************************************************************/
553 void cm_init_context_by_index(unsigned int cpu_idx,
554 			      const entry_point_info_t *ep)
555 {
556 	cpu_context_t *ctx;
557 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
558 	cm_setup_context(ctx, ep);
559 }
560 
561 /*******************************************************************************
562  * The following function initializes the cpu_context for the current CPU
563  * for first use, and sets the initial entrypoint state as specified by the
564  * entry_point_info structure.
565  ******************************************************************************/
566 void cm_init_my_context(const entry_point_info_t *ep)
567 {
568 	cpu_context_t *ctx;
569 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
570 	cm_setup_context(ctx, ep);
571 }
572 
573 /*******************************************************************************
574  * Prepare the CPU system registers for first entry into realm, secure, or
575  * normal world.
576  *
577  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
578  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
579  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
580  * For all entries, the EL1 registers are initialized from the cpu_context
581  ******************************************************************************/
582 void cm_prepare_el3_exit(uint32_t security_state)
583 {
584 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
585 	cpu_context_t *ctx = cm_get_context(security_state);
586 	bool el2_unused = false;
587 	uint64_t hcr_el2 = 0U;
588 
589 	assert(ctx != NULL);
590 
591 	if (security_state == NON_SECURE) {
592 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
593 						 CTX_SCR_EL3);
594 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
595 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
596 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
597 							   CTX_SCTLR_EL1);
598 			sctlr_elx &= SCTLR_EE_BIT;
599 			sctlr_elx |= SCTLR_EL2_RES1;
600 #if ERRATA_A75_764081
601 			/*
602 			 * If workaround of errata 764081 for Cortex-A75 is used
603 			 * then set SCTLR_EL2.IESB to enable Implicit Error
604 			 * Synchronization Barrier.
605 			 */
606 			sctlr_elx |= SCTLR_IESB_BIT;
607 #endif
608 			write_sctlr_el2(sctlr_elx);
609 		} else if (el_implemented(2) != EL_IMPL_NONE) {
610 			el2_unused = true;
611 
612 			/*
613 			 * EL2 present but unused, need to disable safely.
614 			 * SCTLR_EL2 can be ignored in this case.
615 			 *
616 			 * Set EL2 register width appropriately: Set HCR_EL2
617 			 * field to match SCR_EL3.RW.
618 			 */
619 			if ((scr_el3 & SCR_RW_BIT) != 0U)
620 				hcr_el2 |= HCR_RW_BIT;
621 
622 			/*
623 			 * For Armv8.3 pointer authentication feature, disable
624 			 * traps to EL2 when accessing key registers or using
625 			 * pointer authentication instructions from lower ELs.
626 			 */
627 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
628 
629 			write_hcr_el2(hcr_el2);
630 
631 			/*
632 			 * Initialise CPTR_EL2 setting all fields rather than
633 			 * relying on the hw. All fields have architecturally
634 			 * UNKNOWN reset values.
635 			 *
636 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
637 			 *  accesses to the CPACR_EL1 or CPACR from both
638 			 *  Execution states do not trap to EL2.
639 			 *
640 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
641 			 *  register accesses to the trace registers from both
642 			 *  Execution states do not trap to EL2.
643 			 *  If PE trace unit System registers are not implemented
644 			 *  then this bit is reserved, and must be set to zero.
645 			 *
646 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
647 			 *  to SIMD and floating-point functionality from both
648 			 *  Execution states do not trap to EL2.
649 			 */
650 			write_cptr_el2(CPTR_EL2_RESET_VAL &
651 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
652 					| CPTR_EL2_TFP_BIT));
653 
654 			/*
655 			 * Initialise CNTHCTL_EL2. All fields are
656 			 * architecturally UNKNOWN on reset and are set to zero
657 			 * except for field(s) listed below.
658 			 *
659 			 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to
660 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
661 			 *  physical timer registers.
662 			 *
663 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
664 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
665 			 *  physical counter registers.
666 			 */
667 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
668 						EL1PCEN_BIT | EL1PCTEN_BIT);
669 
670 			/*
671 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
672 			 * architecturally UNKNOWN value.
673 			 */
674 			write_cntvoff_el2(0);
675 
676 			/*
677 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
678 			 * MPIDR_EL1 respectively.
679 			 */
680 			write_vpidr_el2(read_midr_el1());
681 			write_vmpidr_el2(read_mpidr_el1());
682 
683 			/*
684 			 * Initialise VTTBR_EL2. All fields are architecturally
685 			 * UNKNOWN on reset.
686 			 *
687 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
688 			 *  2 address translation is disabled, cache maintenance
689 			 *  operations depend on the VMID.
690 			 *
691 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
692 			 *  translation is disabled.
693 			 */
694 			write_vttbr_el2(VTTBR_RESET_VAL &
695 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
696 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
697 
698 			/*
699 			 * Initialise MDCR_EL2, setting all fields rather than
700 			 * relying on hw. Some fields are architecturally
701 			 * UNKNOWN on reset.
702 			 *
703 			 * MDCR_EL2.HLP: Set to one so that event counter
704 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
705 			 *  occurs on the increment that changes
706 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
707 			 *  implemented. This bit is RES0 in versions of the
708 			 *  architecture earlier than ARMv8.5, setting it to 1
709 			 *  doesn't have any effect on them.
710 			 *
711 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
712 			 *  Filter Control register TRFCR_EL1 at EL1 is not
713 			 *  trapped to EL2. This bit is RES0 in versions of
714 			 *  the architecture earlier than ARMv8.4.
715 			 *
716 			 * MDCR_EL2.HPMD: Set to one so that event counting is
717 			 *  prohibited at EL2. This bit is RES0 in versions of
718 			 *  the architecture earlier than ARMv8.1, setting it
719 			 *  to 1 doesn't have any effect on them.
720 			 *
721 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
722 			 *  Statistical Profiling control registers from EL1
723 			 *  do not trap to EL2. This bit is RES0 when SPE is
724 			 *  not implemented.
725 			 *
726 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
727 			 *  EL1 System register accesses to the Debug ROM
728 			 *  registers are not trapped to EL2.
729 			 *
730 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
731 			 *  System register accesses to the powerdown debug
732 			 *  registers are not trapped to EL2.
733 			 *
734 			 * MDCR_EL2.TDA: Set to zero so that System register
735 			 *  accesses to the debug registers do not trap to EL2.
736 			 *
737 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
738 			 *  are not routed to EL2.
739 			 *
740 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
741 			 *  Monitors.
742 			 *
743 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
744 			 *  EL1 accesses to all Performance Monitors registers
745 			 *  are not trapped to EL2.
746 			 *
747 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
748 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
749 			 *  trapped to EL2.
750 			 *
751 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
752 			 *  architecturally-defined reset value.
753 			 *
754 			 * MDCR_EL2.E2TB: Set to zero so that the trace Buffer
755 			 *  owning exception level is NS-EL1 and, tracing is
756 			 *  prohibited at NS-EL2. These bits are RES0 when
757 			 *  FEAT_TRBE is not implemented.
758 			 */
759 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
760 				     MDCR_EL2_HPMD) |
761 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
762 				   >> PMCR_EL0_N_SHIFT)) &
763 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
764 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
765 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
766 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
767 				     MDCR_EL2_TPMCR_BIT |
768 				     MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1));
769 
770 			write_mdcr_el2(mdcr_el2);
771 
772 			/*
773 			 * Initialise HSTR_EL2. All fields are architecturally
774 			 * UNKNOWN on reset.
775 			 *
776 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
777 			 *  Non-secure EL0 or EL1 accesses to System registers
778 			 *  do not trap to EL2.
779 			 */
780 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
781 			/*
782 			 * Initialise CNTHP_CTL_EL2. All fields are
783 			 * architecturally UNKNOWN on reset.
784 			 *
785 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
786 			 *  physical timer and prevent timer interrupts.
787 			 */
788 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
789 						~(CNTHP_CTL_ENABLE_BIT));
790 		}
791 		manage_extensions_nonsecure(el2_unused, ctx);
792 	}
793 
794 	cm_el1_sysregs_context_restore(security_state);
795 	cm_set_next_eret_context(security_state);
796 }
797 
798 #if CTX_INCLUDE_EL2_REGS
799 /*******************************************************************************
800  * Save EL2 sysreg context
801  ******************************************************************************/
802 void cm_el2_sysregs_context_save(uint32_t security_state)
803 {
804 	u_register_t scr_el3 = read_scr();
805 
806 	/*
807 	 * Always save the non-secure and realm EL2 context, only save the
808 	 * S-EL2 context if S-EL2 is enabled.
809 	 */
810 	if ((security_state != SECURE) ||
811 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
812 		cpu_context_t *ctx;
813 		el2_sysregs_t *el2_sysregs_ctx;
814 
815 		ctx = cm_get_context(security_state);
816 		assert(ctx != NULL);
817 
818 		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
819 
820 		el2_sysregs_context_save_common(el2_sysregs_ctx);
821 #if ENABLE_SPE_FOR_LOWER_ELS
822 		el2_sysregs_context_save_spe(el2_sysregs_ctx);
823 #endif
824 #if CTX_INCLUDE_MTE_REGS
825 		el2_sysregs_context_save_mte(el2_sysregs_ctx);
826 #endif
827 #if ENABLE_MPAM_FOR_LOWER_ELS
828 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
829 #endif
830 #if ENABLE_FEAT_FGT
831 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
832 #endif
833 #if ENABLE_FEAT_ECV
834 		el2_sysregs_context_save_ecv(el2_sysregs_ctx);
835 #endif
836 #if ENABLE_FEAT_VHE
837 		el2_sysregs_context_save_vhe(el2_sysregs_ctx);
838 #endif
839 #if RAS_EXTENSION
840 		el2_sysregs_context_save_ras(el2_sysregs_ctx);
841 #endif
842 #if CTX_INCLUDE_NEVE_REGS
843 		el2_sysregs_context_save_nv2(el2_sysregs_ctx);
844 #endif
845 #if ENABLE_TRF_FOR_NS
846 		el2_sysregs_context_save_trf(el2_sysregs_ctx);
847 #endif
848 #if ENABLE_FEAT_CSV2_2
849 		el2_sysregs_context_save_csv2(el2_sysregs_ctx);
850 #endif
851 #if ENABLE_FEAT_HCX
852 		el2_sysregs_context_save_hcx(el2_sysregs_ctx);
853 #endif
854 	}
855 }
856 
857 /*******************************************************************************
858  * Restore EL2 sysreg context
859  ******************************************************************************/
860 void cm_el2_sysregs_context_restore(uint32_t security_state)
861 {
862 	u_register_t scr_el3 = read_scr();
863 
864 	/*
865 	 * Always restore the non-secure and realm EL2 context, only restore the
866 	 * S-EL2 context if S-EL2 is enabled.
867 	 */
868 	if ((security_state != SECURE) ||
869 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
870 		cpu_context_t *ctx;
871 		el2_sysregs_t *el2_sysregs_ctx;
872 
873 		ctx = cm_get_context(security_state);
874 		assert(ctx != NULL);
875 
876 		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
877 
878 		el2_sysregs_context_restore_common(el2_sysregs_ctx);
879 #if ENABLE_SPE_FOR_LOWER_ELS
880 		el2_sysregs_context_restore_spe(el2_sysregs_ctx);
881 #endif
882 #if CTX_INCLUDE_MTE_REGS
883 		el2_sysregs_context_restore_mte(el2_sysregs_ctx);
884 #endif
885 #if ENABLE_MPAM_FOR_LOWER_ELS
886 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
887 #endif
888 #if ENABLE_FEAT_FGT
889 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
890 #endif
891 #if ENABLE_FEAT_ECV
892 		el2_sysregs_context_restore_ecv(el2_sysregs_ctx);
893 #endif
894 #if ENABLE_FEAT_VHE
895 		el2_sysregs_context_restore_vhe(el2_sysregs_ctx);
896 #endif
897 #if RAS_EXTENSION
898 		el2_sysregs_context_restore_ras(el2_sysregs_ctx);
899 #endif
900 #if CTX_INCLUDE_NEVE_REGS
901 		el2_sysregs_context_restore_nv2(el2_sysregs_ctx);
902 #endif
903 #if ENABLE_TRF_FOR_NS
904 		el2_sysregs_context_restore_trf(el2_sysregs_ctx);
905 #endif
906 #if ENABLE_FEAT_CSV2_2
907 		el2_sysregs_context_restore_csv2(el2_sysregs_ctx);
908 #endif
909 #if ENABLE_FEAT_HCX
910 		el2_sysregs_context_restore_hcx(el2_sysregs_ctx);
911 #endif
912 	}
913 }
914 #endif /* CTX_INCLUDE_EL2_REGS */
915 
916 /*******************************************************************************
917  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
918  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
919  * updating EL1 and EL2 registers. Otherwise, it calls the generic
920  * cm_prepare_el3_exit function.
921  ******************************************************************************/
922 void cm_prepare_el3_exit_ns(void)
923 {
924 #if CTX_INCLUDE_EL2_REGS
925 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
926 	assert(ctx != NULL);
927 
928 	/* Assert that EL2 is used. */
929 #if ENABLE_ASSERTIONS
930 	el3_state_t *state = get_el3state_ctx(ctx);
931 	u_register_t scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
932 #endif
933 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
934 			(el_implemented(2U) != EL_IMPL_NONE));
935 
936 	/*
937 	 * Currently some extensions are configured using
938 	 * direct register updates. Therefore, do this here
939 	 * instead of when setting up context.
940 	 */
941 	manage_extensions_nonsecure(0, ctx);
942 
943 	/*
944 	 * Set the NS bit to be able to access the ICC_SRE_EL2
945 	 * register when restoring context.
946 	 */
947 	write_scr_el3(read_scr_el3() | SCR_NS_BIT);
948 
949 	/*
950 	 * Ensure the NS bit change is committed before the EL2/EL1
951 	 * state restoration.
952 	 */
953 	isb();
954 
955 	/* Restore EL2 and EL1 sysreg contexts */
956 	cm_el2_sysregs_context_restore(NON_SECURE);
957 	cm_el1_sysregs_context_restore(NON_SECURE);
958 	cm_set_next_eret_context(NON_SECURE);
959 #else
960 	cm_prepare_el3_exit(NON_SECURE);
961 #endif /* CTX_INCLUDE_EL2_REGS */
962 }
963 
964 /*******************************************************************************
965  * The next four functions are used by runtime services to save and restore
966  * EL1 context on the 'cpu_context' structure for the specified security
967  * state.
968  ******************************************************************************/
969 void cm_el1_sysregs_context_save(uint32_t security_state)
970 {
971 	cpu_context_t *ctx;
972 
973 	ctx = cm_get_context(security_state);
974 	assert(ctx != NULL);
975 
976 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
977 
978 #if IMAGE_BL31
979 	if (security_state == SECURE)
980 		PUBLISH_EVENT(cm_exited_secure_world);
981 	else
982 		PUBLISH_EVENT(cm_exited_normal_world);
983 #endif
984 }
985 
986 void cm_el1_sysregs_context_restore(uint32_t security_state)
987 {
988 	cpu_context_t *ctx;
989 
990 	ctx = cm_get_context(security_state);
991 	assert(ctx != NULL);
992 
993 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
994 
995 #if IMAGE_BL31
996 	if (security_state == SECURE)
997 		PUBLISH_EVENT(cm_entering_secure_world);
998 	else
999 		PUBLISH_EVENT(cm_entering_normal_world);
1000 #endif
1001 }
1002 
1003 /*******************************************************************************
1004  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1005  * given security state with the given entrypoint
1006  ******************************************************************************/
1007 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1008 {
1009 	cpu_context_t *ctx;
1010 	el3_state_t *state;
1011 
1012 	ctx = cm_get_context(security_state);
1013 	assert(ctx != NULL);
1014 
1015 	/* Populate EL3 state so that ERET jumps to the correct entry */
1016 	state = get_el3state_ctx(ctx);
1017 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1018 }
1019 
1020 /*******************************************************************************
1021  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1022  * pertaining to the given security state
1023  ******************************************************************************/
1024 void cm_set_elr_spsr_el3(uint32_t security_state,
1025 			uintptr_t entrypoint, uint32_t spsr)
1026 {
1027 	cpu_context_t *ctx;
1028 	el3_state_t *state;
1029 
1030 	ctx = cm_get_context(security_state);
1031 	assert(ctx != NULL);
1032 
1033 	/* Populate EL3 state so that ERET jumps to the correct entry */
1034 	state = get_el3state_ctx(ctx);
1035 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1036 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1037 }
1038 
1039 /*******************************************************************************
1040  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1041  * pertaining to the given security state using the value and bit position
1042  * specified in the parameters. It preserves all other bits.
1043  ******************************************************************************/
1044 void cm_write_scr_el3_bit(uint32_t security_state,
1045 			  uint32_t bit_pos,
1046 			  uint32_t value)
1047 {
1048 	cpu_context_t *ctx;
1049 	el3_state_t *state;
1050 	u_register_t scr_el3;
1051 
1052 	ctx = cm_get_context(security_state);
1053 	assert(ctx != NULL);
1054 
1055 	/* Ensure that the bit position is a valid one */
1056 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1057 
1058 	/* Ensure that the 'value' is only a bit wide */
1059 	assert(value <= 1U);
1060 
1061 	/*
1062 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1063 	 * and set it to its new value.
1064 	 */
1065 	state = get_el3state_ctx(ctx);
1066 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1067 	scr_el3 &= ~(1UL << bit_pos);
1068 	scr_el3 |= (u_register_t)value << bit_pos;
1069 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1070 }
1071 
1072 /*******************************************************************************
1073  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1074  * given security state.
1075  ******************************************************************************/
1076 u_register_t cm_get_scr_el3(uint32_t security_state)
1077 {
1078 	cpu_context_t *ctx;
1079 	el3_state_t *state;
1080 
1081 	ctx = cm_get_context(security_state);
1082 	assert(ctx != NULL);
1083 
1084 	/* Populate EL3 state so that ERET jumps to the correct entry */
1085 	state = get_el3state_ctx(ctx);
1086 	return read_ctx_reg(state, CTX_SCR_EL3);
1087 }
1088 
1089 /*******************************************************************************
1090  * This function is used to program the context that's used for exception
1091  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1092  * the required security state
1093  ******************************************************************************/
1094 void cm_set_next_eret_context(uint32_t security_state)
1095 {
1096 	cpu_context_t *ctx;
1097 
1098 	ctx = cm_get_context(security_state);
1099 	assert(ctx != NULL);
1100 
1101 	cm_set_next_context(ctx);
1102 }
1103