xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 7593252cee8745bbf1b05deb2f4a5f742d36c412)
1 /*
2  * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <amu.h>
8 #include <arch.h>
9 #include <arch_helpers.h>
10 #include <assert.h>
11 #include <bl_common.h>
12 #include <context.h>
13 #include <context_mgmt.h>
14 #include <interrupt_mgmt.h>
15 #include <platform.h>
16 #include <platform_def.h>
17 #include <pubsub_events.h>
18 #include <smcc_helpers.h>
19 #include <spe.h>
20 #include <string.h>
21 #include <sve.h>
22 #include <utils.h>
23 
24 
25 /*******************************************************************************
26  * Context management library initialisation routine. This library is used by
27  * runtime services to share pointers to 'cpu_context' structures for the secure
28  * and non-secure states. Management of the structures and their associated
29  * memory is not done by the context management library e.g. the PSCI service
30  * manages the cpu context used for entry from and exit to the non-secure state.
31  * The Secure payload dispatcher service manages the context(s) corresponding to
32  * the secure state. It also uses this library to get access to the non-secure
33  * state cpu context pointers.
34  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
35  * which will used for programming an entry into a lower EL. The same context
36  * will used to save state upon exception entry from that EL.
37  ******************************************************************************/
38 void cm_init(void)
39 {
40 	/*
41 	 * The context management library has only global data to intialize, but
42 	 * that will be done when the BSS is zeroed out
43 	 */
44 }
45 
46 /*******************************************************************************
47  * The following function initializes the cpu_context 'ctx' for
48  * first use, and sets the initial entrypoint state as specified by the
49  * entry_point_info structure.
50  *
51  * The security state to initialize is determined by the SECURE attribute
52  * of the entry_point_info. The function returns a pointer to the initialized
53  * context and sets this as the next context to return to.
54  *
55  * The EE and ST attributes are used to configure the endianess and secure
56  * timer availability for the new execution context.
57  *
58  * To prepare the register state for entry call cm_prepare_el3_exit() and
59  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
60  * cm_e1_sysreg_context_restore().
61  ******************************************************************************/
62 static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
63 {
64 	unsigned int security_state;
65 	uint32_t scr_el3, pmcr_el0;
66 	el3_state_t *state;
67 	gp_regs_t *gp_regs;
68 	unsigned long sctlr_elx;
69 
70 	assert(ctx);
71 
72 	security_state = GET_SECURITY_STATE(ep->h.attr);
73 
74 	/* Clear any residual register values from the context */
75 	zeromem(ctx, sizeof(*ctx));
76 
77 	/*
78 	 * SCR_EL3 was initialised during reset sequence in macro
79 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
80 	 * affect the next EL.
81 	 *
82 	 * The following fields are initially set to zero and then updated to
83 	 * the required value depending on the state of the SPSR_EL3 and the
84 	 * Security state and entrypoint attributes of the next EL.
85 	 */
86 	scr_el3 = read_scr();
87 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
88 			SCR_ST_BIT | SCR_HCE_BIT);
89 	/*
90 	 * SCR_NS: Set the security state of the next EL.
91 	 */
92 	if (security_state != SECURE)
93 		scr_el3 |= SCR_NS_BIT;
94 	/*
95 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
96 	 *  Exception level as specified by SPSR.
97 	 */
98 	if (GET_RW(ep->spsr) == MODE_RW_64)
99 		scr_el3 |= SCR_RW_BIT;
100 	/*
101 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
102 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
103 	 *  by the entrypoint attributes.
104 	 */
105 	if (EP_GET_ST(ep->h.attr))
106 		scr_el3 |= SCR_ST_BIT;
107 
108 #ifndef HANDLE_EA_EL3_FIRST
109 	/*
110 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
111 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
112 	 *  Aborts are taken to EL3.
113 	 */
114 	scr_el3 &= ~SCR_EA_BIT;
115 #endif
116 
117 #ifdef IMAGE_BL31
118 	/*
119 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as
120 	 *  indicated by the interrupt routing model for BL31.
121 	 */
122 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
123 #endif
124 
125 	/*
126 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
127 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
128 	 * next mode is Hyp.
129 	 */
130 	if ((GET_RW(ep->spsr) == MODE_RW_64
131 	     && GET_EL(ep->spsr) == MODE_EL2)
132 	    || (GET_RW(ep->spsr) != MODE_RW_64
133 		&& GET_M32(ep->spsr) == MODE32_hyp)) {
134 		scr_el3 |= SCR_HCE_BIT;
135 	}
136 
137 	/*
138 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
139 	 * execution state setting all fields rather than relying of the hw.
140 	 * Some fields have architecturally UNKNOWN reset values and these are
141 	 * set to zero.
142 	 *
143 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
144 	 *
145 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
146 	 *  required by PSCI specification)
147 	 */
148 	sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
149 	if (GET_RW(ep->spsr) == MODE_RW_64)
150 		sctlr_elx |= SCTLR_EL1_RES1;
151 	else {
152 		/*
153 		 * If the target execution state is AArch32 then the following
154 		 * fields need to be set.
155 		 *
156 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
157 		 *  instructions are not trapped to EL1.
158 		 *
159 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
160 		 *  instructions are not trapped to EL1.
161 		 *
162 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
163 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
164 		 */
165 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
166 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
167 	}
168 
169 	/*
170 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
171 	 * and other EL2 registers are set up by cm_preapre_ns_entry() as they
172 	 * are not part of the stored cpu_context.
173 	 */
174 	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
175 
176 	if (security_state == SECURE) {
177 		/*
178 		 * Initialise PMCR_EL0 for secure context only, setting all
179 		 * fields rather than relying on hw. Some fields are
180 		 * architecturally UNKNOWN on reset.
181 		 *
182 		 * PMCR_EL0.LC: Set to one so that cycle counter overflow, that
183 		 *  is recorded in PMOVSCLR_EL0[31], occurs on the increment
184 		 *  that changes PMCCNTR_EL0[63] from 1 to 0.
185 		 *
186 		 * PMCR_EL0.DP: Set to one so that the cycle counter,
187 		 *  PMCCNTR_EL0 does not count when event counting is prohibited.
188 		 *
189 		 * PMCR_EL0.X: Set to zero to disable export of events.
190 		 *
191 		 * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0
192 		 *  counts on every clock cycle.
193 		 */
194 		pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT
195 				| PMCR_EL0_DP_BIT)
196 				& ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT));
197 		write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0);
198 	}
199 
200 	/* Populate EL3 state so that we've the right context before doing ERET */
201 	state = get_el3state_ctx(ctx);
202 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
203 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
204 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
205 
206 	/*
207 	 * Store the X0-X7 value from the entrypoint into the context
208 	 * Use memcpy as we are in control of the layout of the structures
209 	 */
210 	gp_regs = get_gpregs_ctx(ctx);
211 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
212 }
213 
214 /*******************************************************************************
215  * Enable architecture extensions on first entry to Non-secure world.
216  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
217  * it is zero.
218  ******************************************************************************/
219 static void enable_extensions_nonsecure(int el2_unused)
220 {
221 #if IMAGE_BL31
222 #if ENABLE_SPE_FOR_LOWER_ELS
223 	spe_enable(el2_unused);
224 #endif
225 
226 #if ENABLE_AMU
227 	amu_enable(el2_unused);
228 #endif
229 
230 #if ENABLE_SVE_FOR_NS
231 	sve_enable(el2_unused);
232 #endif
233 #endif
234 }
235 
236 /*******************************************************************************
237  * The following function initializes the cpu_context for a CPU specified by
238  * its `cpu_idx` for first use, and sets the initial entrypoint state as
239  * specified by the entry_point_info structure.
240  ******************************************************************************/
241 void cm_init_context_by_index(unsigned int cpu_idx,
242 			      const entry_point_info_t *ep)
243 {
244 	cpu_context_t *ctx;
245 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
246 	cm_init_context_common(ctx, ep);
247 }
248 
249 /*******************************************************************************
250  * The following function initializes the cpu_context for the current CPU
251  * for first use, and sets the initial entrypoint state as specified by the
252  * entry_point_info structure.
253  ******************************************************************************/
254 void cm_init_my_context(const entry_point_info_t *ep)
255 {
256 	cpu_context_t *ctx;
257 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
258 	cm_init_context_common(ctx, ep);
259 }
260 
261 /*******************************************************************************
262  * Prepare the CPU system registers for first entry into secure or normal world
263  *
264  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
265  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
266  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
267  * For all entries, the EL1 registers are initialized from the cpu_context
268  ******************************************************************************/
269 void cm_prepare_el3_exit(uint32_t security_state)
270 {
271 	uint32_t sctlr_elx, scr_el3, mdcr_el2;
272 	cpu_context_t *ctx = cm_get_context(security_state);
273 	int el2_unused = 0;
274 
275 	assert(ctx);
276 
277 	if (security_state == NON_SECURE) {
278 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
279 		if (scr_el3 & SCR_HCE_BIT) {
280 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
281 			sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
282 						 CTX_SCTLR_EL1);
283 			sctlr_elx &= SCTLR_EE_BIT;
284 			sctlr_elx |= SCTLR_EL2_RES1;
285 			write_sctlr_el2(sctlr_elx);
286 		} else if (EL_IMPLEMENTED(2)) {
287 			el2_unused = 1;
288 
289 			/*
290 			 * EL2 present but unused, need to disable safely.
291 			 * SCTLR_EL2 can be ignored in this case.
292 			 *
293 			 * Initialise all fields in HCR_EL2, except HCR_EL2.RW,
294 			 * to zero so that Non-secure operations do not trap to
295 			 * EL2.
296 			 *
297 			 * HCR_EL2.RW: Set this field to match SCR_EL3.RW
298 			 */
299 			write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);
300 
301 			/*
302 			 * Initialise CPTR_EL2 setting all fields rather than
303 			 * relying on the hw. All fields have architecturally
304 			 * UNKNOWN reset values.
305 			 *
306 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
307 			 *  accesses to the CPACR_EL1 or CPACR from both
308 			 *  Execution states do not trap to EL2.
309 			 *
310 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
311 			 *  register accesses to the trace registers from both
312 			 *  Execution states do not trap to EL2.
313 			 *
314 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
315 			 *  to SIMD and floating-point functionality from both
316 			 *  Execution states do not trap to EL2.
317 			 */
318 			write_cptr_el2(CPTR_EL2_RESET_VAL &
319 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
320 					| CPTR_EL2_TFP_BIT));
321 
322 			/*
323 			 * Initiliase CNTHCTL_EL2. All fields are
324 			 * architecturally UNKNOWN on reset and are set to zero
325 			 * except for field(s) listed below.
326 			 *
327 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
328 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
329 			 *  physical timer registers.
330 			 *
331 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
332 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
333 			 *  physical counter registers.
334 			 */
335 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
336 						EL1PCEN_BIT | EL1PCTEN_BIT);
337 
338 			/*
339 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
340 			 * architecturally UNKNOWN value.
341 			 */
342 			write_cntvoff_el2(0);
343 
344 			/*
345 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
346 			 * MPIDR_EL1 respectively.
347 			 */
348 			write_vpidr_el2(read_midr_el1());
349 			write_vmpidr_el2(read_mpidr_el1());
350 
351 			/*
352 			 * Initialise VTTBR_EL2. All fields are architecturally
353 			 * UNKNOWN on reset.
354 			 *
355 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
356 			 *  2 address translation is disabled, cache maintenance
357 			 *  operations depend on the VMID.
358 			 *
359 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
360 			 *  translation is disabled.
361 			 */
362 			write_vttbr_el2(VTTBR_RESET_VAL &
363 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
364 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
365 
366 			/*
367 			 * Initialise MDCR_EL2, setting all fields rather than
368 			 * relying on hw. Some fields are architecturally
369 			 * UNKNOWN on reset.
370 			 *
371 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
372 			 *  EL1 System register accesses to the Debug ROM
373 			 *  registers are not trapped to EL2.
374 			 *
375 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
376 			 *  System register accesses to the powerdown debug
377 			 *  registers are not trapped to EL2.
378 			 *
379 			 * MDCR_EL2.TDA: Set to zero so that System register
380 			 *  accesses to the debug registers do not trap to EL2.
381 			 *
382 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
383 			 *  are not routed to EL2.
384 			 *
385 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
386 			 *  Monitors.
387 			 *
388 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
389 			 *  EL1 accesses to all Performance Monitors registers
390 			 *  are not trapped to EL2.
391 			 *
392 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
393 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
394 			 *  trapped to EL2.
395 			 *
396 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
397 			 *  architecturally-defined reset value.
398 			 */
399 			mdcr_el2 = ((MDCR_EL2_RESET_VAL |
400 					((read_pmcr_el0() & PMCR_EL0_N_BITS)
401 					>> PMCR_EL0_N_SHIFT)) &
402 					~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT
403 					| MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT
404 					| MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT
405 					| MDCR_EL2_TPMCR_BIT));
406 
407 			write_mdcr_el2(mdcr_el2);
408 
409 			/*
410 			 * Initialise HSTR_EL2. All fields are architecturally
411 			 * UNKNOWN on reset.
412 			 *
413 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
414 			 *  Non-secure EL0 or EL1 accesses to System registers
415 			 *  do not trap to EL2.
416 			 */
417 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
418 			/*
419 			 * Initialise CNTHP_CTL_EL2. All fields are
420 			 * architecturally UNKNOWN on reset.
421 			 *
422 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
423 			 *  physical timer and prevent timer interrupts.
424 			 */
425 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
426 						~(CNTHP_CTL_ENABLE_BIT));
427 		}
428 		enable_extensions_nonsecure(el2_unused);
429 	}
430 
431 	cm_el1_sysregs_context_restore(security_state);
432 	cm_set_next_eret_context(security_state);
433 }
434 
435 /*******************************************************************************
436  * The next four functions are used by runtime services to save and restore
437  * EL1 context on the 'cpu_context' structure for the specified security
438  * state.
439  ******************************************************************************/
440 void cm_el1_sysregs_context_save(uint32_t security_state)
441 {
442 	cpu_context_t *ctx;
443 
444 	ctx = cm_get_context(security_state);
445 	assert(ctx);
446 
447 	el1_sysregs_context_save(get_sysregs_ctx(ctx));
448 
449 #if IMAGE_BL31
450 	if (security_state == SECURE)
451 		PUBLISH_EVENT(cm_exited_secure_world);
452 	else
453 		PUBLISH_EVENT(cm_exited_normal_world);
454 #endif
455 }
456 
457 void cm_el1_sysregs_context_restore(uint32_t security_state)
458 {
459 	cpu_context_t *ctx;
460 
461 	ctx = cm_get_context(security_state);
462 	assert(ctx);
463 
464 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
465 
466 #if IMAGE_BL31
467 	if (security_state == SECURE)
468 		PUBLISH_EVENT(cm_entering_secure_world);
469 	else
470 		PUBLISH_EVENT(cm_entering_normal_world);
471 #endif
472 }
473 
474 /*******************************************************************************
475  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
476  * given security state with the given entrypoint
477  ******************************************************************************/
478 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
479 {
480 	cpu_context_t *ctx;
481 	el3_state_t *state;
482 
483 	ctx = cm_get_context(security_state);
484 	assert(ctx);
485 
486 	/* Populate EL3 state so that ERET jumps to the correct entry */
487 	state = get_el3state_ctx(ctx);
488 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
489 }
490 
491 /*******************************************************************************
492  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
493  * pertaining to the given security state
494  ******************************************************************************/
495 void cm_set_elr_spsr_el3(uint32_t security_state,
496 			uintptr_t entrypoint, uint32_t spsr)
497 {
498 	cpu_context_t *ctx;
499 	el3_state_t *state;
500 
501 	ctx = cm_get_context(security_state);
502 	assert(ctx);
503 
504 	/* Populate EL3 state so that ERET jumps to the correct entry */
505 	state = get_el3state_ctx(ctx);
506 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
507 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
508 }
509 
510 /*******************************************************************************
511  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
512  * pertaining to the given security state using the value and bit position
513  * specified in the parameters. It preserves all other bits.
514  ******************************************************************************/
515 void cm_write_scr_el3_bit(uint32_t security_state,
516 			  uint32_t bit_pos,
517 			  uint32_t value)
518 {
519 	cpu_context_t *ctx;
520 	el3_state_t *state;
521 	uint32_t scr_el3;
522 
523 	ctx = cm_get_context(security_state);
524 	assert(ctx);
525 
526 	/* Ensure that the bit position is a valid one */
527 	assert((1 << bit_pos) & SCR_VALID_BIT_MASK);
528 
529 	/* Ensure that the 'value' is only a bit wide */
530 	assert(value <= 1);
531 
532 	/*
533 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
534 	 * and set it to its new value.
535 	 */
536 	state = get_el3state_ctx(ctx);
537 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
538 	scr_el3 &= ~(1 << bit_pos);
539 	scr_el3 |= value << bit_pos;
540 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
541 }
542 
543 /*******************************************************************************
544  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
545  * given security state.
546  ******************************************************************************/
547 uint32_t cm_get_scr_el3(uint32_t security_state)
548 {
549 	cpu_context_t *ctx;
550 	el3_state_t *state;
551 
552 	ctx = cm_get_context(security_state);
553 	assert(ctx);
554 
555 	/* Populate EL3 state so that ERET jumps to the correct entry */
556 	state = get_el3state_ctx(ctx);
557 	return read_ctx_reg(state, CTX_SCR_EL3);
558 }
559 
560 /*******************************************************************************
561  * This function is used to program the context that's used for exception
562  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
563  * the required security state
564  ******************************************************************************/
565 void cm_set_next_eret_context(uint32_t security_state)
566 {
567 	cpu_context_t *ctx;
568 
569 	ctx = cm_get_context(security_state);
570 	assert(ctx);
571 
572 	cm_set_next_context(ctx);
573 }
574