xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 73308618fee8afc4518c592956b31864e57e48e7)
1 /*
2  * Copyright (c) 2013-2019, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_helpers.h>
15 #include <bl31/interrupt_mgmt.h>
16 #include <common/bl_common.h>
17 #include <context.h>
18 #include <lib/el3_runtime/context_mgmt.h>
19 #include <lib/el3_runtime/pubsub_events.h>
20 #include <lib/extensions/amu.h>
21 #include <lib/extensions/mpam.h>
22 #include <lib/extensions/spe.h>
23 #include <lib/extensions/sve.h>
24 #include <lib/utils.h>
25 #include <plat/common/platform.h>
26 #include <smccc_helpers.h>
27 
28 
29 /*******************************************************************************
30  * Context management library initialisation routine. This library is used by
31  * runtime services to share pointers to 'cpu_context' structures for the secure
32  * and non-secure states. Management of the structures and their associated
33  * memory is not done by the context management library e.g. the PSCI service
34  * manages the cpu context used for entry from and exit to the non-secure state.
35  * The Secure payload dispatcher service manages the context(s) corresponding to
36  * the secure state. It also uses this library to get access to the non-secure
37  * state cpu context pointers.
38  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
39  * which will used for programming an entry into a lower EL. The same context
40  * will used to save state upon exception entry from that EL.
41  ******************************************************************************/
42 void __init cm_init(void)
43 {
44 	/*
45 	 * The context management library has only global data to intialize, but
46 	 * that will be done when the BSS is zeroed out
47 	 */
48 }
49 
50 /*******************************************************************************
51  * The following function initializes the cpu_context 'ctx' for
52  * first use, and sets the initial entrypoint state as specified by the
53  * entry_point_info structure.
54  *
55  * The security state to initialize is determined by the SECURE attribute
56  * of the entry_point_info.
57  *
58  * The EE and ST attributes are used to configure the endianness and secure
59  * timer availability for the new execution context.
60  *
61  * To prepare the register state for entry call cm_prepare_el3_exit() and
62  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
63  * cm_e1_sysreg_context_restore().
64  ******************************************************************************/
65 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
66 {
67 	unsigned int security_state;
68 	uint32_t scr_el3, pmcr_el0;
69 	el3_state_t *state;
70 	gp_regs_t *gp_regs;
71 	unsigned long sctlr_elx, actlr_elx;
72 
73 	assert(ctx != NULL);
74 
75 	security_state = GET_SECURITY_STATE(ep->h.attr);
76 
77 	/* Clear any residual register values from the context */
78 	zeromem(ctx, sizeof(*ctx));
79 
80 	/*
81 	 * SCR_EL3 was initialised during reset sequence in macro
82 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
83 	 * affect the next EL.
84 	 *
85 	 * The following fields are initially set to zero and then updated to
86 	 * the required value depending on the state of the SPSR_EL3 and the
87 	 * Security state and entrypoint attributes of the next EL.
88 	 */
89 	scr_el3 = (uint32_t)read_scr();
90 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
91 			SCR_ST_BIT | SCR_HCE_BIT);
92 	/*
93 	 * SCR_NS: Set the security state of the next EL.
94 	 */
95 	if (security_state != SECURE)
96 		scr_el3 |= SCR_NS_BIT;
97 	/*
98 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
99 	 *  Exception level as specified by SPSR.
100 	 */
101 	if (GET_RW(ep->spsr) == MODE_RW_64)
102 		scr_el3 |= SCR_RW_BIT;
103 	/*
104 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
105 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
106 	 *  by the entrypoint attributes.
107 	 */
108 	if (EP_GET_ST(ep->h.attr) != 0U)
109 		scr_el3 |= SCR_ST_BIT;
110 
111 #if !HANDLE_EA_EL3_FIRST
112 	/*
113 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
114 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
115 	 *  Aborts are taken to EL3.
116 	 */
117 	scr_el3 &= ~SCR_EA_BIT;
118 #endif
119 
120 #if FAULT_INJECTION_SUPPORT
121 	/* Enable fault injection from lower ELs */
122 	scr_el3 |= SCR_FIEN_BIT;
123 #endif
124 
125 #if !CTX_INCLUDE_PAUTH_REGS
126 	/*
127 	 * If the pointer authentication registers aren't saved during world
128 	 * switches the value of the registers can be leaked from the Secure to
129 	 * the Non-secure world. To prevent this, rather than enabling pointer
130 	 * authentication everywhere, we only enable it in the Non-secure world.
131 	 *
132 	 * If the Secure world wants to use pointer authentication,
133 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
134 	 */
135 	if (security_state == NON_SECURE)
136 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
137 #endif /* !CTX_INCLUDE_PAUTH_REGS */
138 
139 #ifdef IMAGE_BL31
140 	/*
141 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
142 	 *  indicated by the interrupt routing model for BL31.
143 	 */
144 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
145 #endif
146 
147 	/*
148 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
149 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
150 	 * next mode is Hyp.
151 	 */
152 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
153 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
154 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
155 		scr_el3 |= SCR_HCE_BIT;
156 	}
157 
158 	/*
159 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
160 	 * execution state setting all fields rather than relying of the hw.
161 	 * Some fields have architecturally UNKNOWN reset values and these are
162 	 * set to zero.
163 	 *
164 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
165 	 *
166 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
167 	 *  required by PSCI specification)
168 	 */
169 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
170 	if (GET_RW(ep->spsr) == MODE_RW_64)
171 		sctlr_elx |= SCTLR_EL1_RES1;
172 	else {
173 		/*
174 		 * If the target execution state is AArch32 then the following
175 		 * fields need to be set.
176 		 *
177 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
178 		 *  instructions are not trapped to EL1.
179 		 *
180 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
181 		 *  instructions are not trapped to EL1.
182 		 *
183 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
184 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
185 		 */
186 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
187 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
188 	}
189 
190 	/*
191 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
192 	 * and other EL2 registers are set up by cm_prepare_ns_entry() as they
193 	 * are not part of the stored cpu_context.
194 	 */
195 	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
196 
197 	/*
198 	 * Base the context ACTLR_EL1 on the current value, as it is
199 	 * implementation defined. The context restore process will write
200 	 * the value from the context to the actual register and can cause
201 	 * problems for processor cores that don't expect certain bits to
202 	 * be zero.
203 	 */
204 	actlr_elx = read_actlr_el1();
205 	write_ctx_reg((get_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
206 
207 	if (security_state == SECURE) {
208 		/*
209 		 * Initialise PMCR_EL0 for secure context only, setting all
210 		 * fields rather than relying on hw. Some fields are
211 		 * architecturally UNKNOWN on reset.
212 		 *
213 		 * PMCR_EL0.LC: Set to one so that cycle counter overflow, that
214 		 *  is recorded in PMOVSCLR_EL0[31], occurs on the increment
215 		 *  that changes PMCCNTR_EL0[63] from 1 to 0.
216 		 *
217 		 * PMCR_EL0.DP: Set to one so that the cycle counter,
218 		 *  PMCCNTR_EL0 does not count when event counting is prohibited.
219 		 *
220 		 * PMCR_EL0.X: Set to zero to disable export of events.
221 		 *
222 		 * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0
223 		 *  counts on every clock cycle.
224 		 */
225 		pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT
226 				| PMCR_EL0_DP_BIT)
227 				& ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT));
228 		write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0);
229 	}
230 
231 	/* Populate EL3 state so that we've the right context before doing ERET */
232 	state = get_el3state_ctx(ctx);
233 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
234 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
235 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
236 
237 	/*
238 	 * Store the X0-X7 value from the entrypoint into the context
239 	 * Use memcpy as we are in control of the layout of the structures
240 	 */
241 	gp_regs = get_gpregs_ctx(ctx);
242 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
243 }
244 
245 /*******************************************************************************
246  * Enable architecture extensions on first entry to Non-secure world.
247  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
248  * it is zero.
249  ******************************************************************************/
250 static void enable_extensions_nonsecure(bool el2_unused)
251 {
252 #if IMAGE_BL31
253 #if ENABLE_SPE_FOR_LOWER_ELS
254 	spe_enable(el2_unused);
255 #endif
256 
257 #if ENABLE_AMU
258 	amu_enable(el2_unused);
259 #endif
260 
261 #if ENABLE_SVE_FOR_NS
262 	sve_enable(el2_unused);
263 #endif
264 
265 #if ENABLE_MPAM_FOR_LOWER_ELS
266 	mpam_enable(el2_unused);
267 #endif
268 #endif
269 }
270 
271 /*******************************************************************************
272  * The following function initializes the cpu_context for a CPU specified by
273  * its `cpu_idx` for first use, and sets the initial entrypoint state as
274  * specified by the entry_point_info structure.
275  ******************************************************************************/
276 void cm_init_context_by_index(unsigned int cpu_idx,
277 			      const entry_point_info_t *ep)
278 {
279 	cpu_context_t *ctx;
280 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
281 	cm_setup_context(ctx, ep);
282 }
283 
284 /*******************************************************************************
285  * The following function initializes the cpu_context for the current CPU
286  * for first use, and sets the initial entrypoint state as specified by the
287  * entry_point_info structure.
288  ******************************************************************************/
289 void cm_init_my_context(const entry_point_info_t *ep)
290 {
291 	cpu_context_t *ctx;
292 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
293 	cm_setup_context(ctx, ep);
294 }
295 
296 /*******************************************************************************
297  * Prepare the CPU system registers for first entry into secure or normal world
298  *
299  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
300  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
301  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
302  * For all entries, the EL1 registers are initialized from the cpu_context
303  ******************************************************************************/
304 void cm_prepare_el3_exit(uint32_t security_state)
305 {
306 	uint32_t sctlr_elx, scr_el3, mdcr_el2;
307 	cpu_context_t *ctx = cm_get_context(security_state);
308 	bool el2_unused = false;
309 	uint64_t hcr_el2 = 0U;
310 
311 	assert(ctx != NULL);
312 
313 	if (security_state == NON_SECURE) {
314 		scr_el3 = (uint32_t)read_ctx_reg(get_el3state_ctx(ctx),
315 						 CTX_SCR_EL3);
316 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
317 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
318 			sctlr_elx = (uint32_t)read_ctx_reg(get_sysregs_ctx(ctx),
319 							   CTX_SCTLR_EL1);
320 			sctlr_elx &= SCTLR_EE_BIT;
321 			sctlr_elx |= SCTLR_EL2_RES1;
322 			write_sctlr_el2(sctlr_elx);
323 		} else if (el_implemented(2) != EL_IMPL_NONE) {
324 			el2_unused = true;
325 
326 			/*
327 			 * EL2 present but unused, need to disable safely.
328 			 * SCTLR_EL2 can be ignored in this case.
329 			 *
330 			 * Set EL2 register width appropriately: Set HCR_EL2
331 			 * field to match SCR_EL3.RW.
332 			 */
333 			if ((scr_el3 & SCR_RW_BIT) != 0U)
334 				hcr_el2 |= HCR_RW_BIT;
335 
336 			/*
337 			 * For Armv8.3 pointer authentication feature, disable
338 			 * traps to EL2 when accessing key registers or using
339 			 * pointer authentication instructions from lower ELs.
340 			 */
341 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
342 
343 			write_hcr_el2(hcr_el2);
344 
345 			/*
346 			 * Initialise CPTR_EL2 setting all fields rather than
347 			 * relying on the hw. All fields have architecturally
348 			 * UNKNOWN reset values.
349 			 *
350 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
351 			 *  accesses to the CPACR_EL1 or CPACR from both
352 			 *  Execution states do not trap to EL2.
353 			 *
354 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
355 			 *  register accesses to the trace registers from both
356 			 *  Execution states do not trap to EL2.
357 			 *
358 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
359 			 *  to SIMD and floating-point functionality from both
360 			 *  Execution states do not trap to EL2.
361 			 */
362 			write_cptr_el2(CPTR_EL2_RESET_VAL &
363 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
364 					| CPTR_EL2_TFP_BIT));
365 
366 			/*
367 			 * Initialise CNTHCTL_EL2. All fields are
368 			 * architecturally UNKNOWN on reset and are set to zero
369 			 * except for field(s) listed below.
370 			 *
371 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
372 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
373 			 *  physical timer registers.
374 			 *
375 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
376 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
377 			 *  physical counter registers.
378 			 */
379 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
380 						EL1PCEN_BIT | EL1PCTEN_BIT);
381 
382 			/*
383 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
384 			 * architecturally UNKNOWN value.
385 			 */
386 			write_cntvoff_el2(0);
387 
388 			/*
389 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
390 			 * MPIDR_EL1 respectively.
391 			 */
392 			write_vpidr_el2(read_midr_el1());
393 			write_vmpidr_el2(read_mpidr_el1());
394 
395 			/*
396 			 * Initialise VTTBR_EL2. All fields are architecturally
397 			 * UNKNOWN on reset.
398 			 *
399 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
400 			 *  2 address translation is disabled, cache maintenance
401 			 *  operations depend on the VMID.
402 			 *
403 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
404 			 *  translation is disabled.
405 			 */
406 			write_vttbr_el2(VTTBR_RESET_VAL &
407 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
408 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
409 
410 			/*
411 			 * Initialise MDCR_EL2, setting all fields rather than
412 			 * relying on hw. Some fields are architecturally
413 			 * UNKNOWN on reset.
414 			 *
415 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
416 			 *  EL1 System register accesses to the Debug ROM
417 			 *  registers are not trapped to EL2.
418 			 *
419 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
420 			 *  System register accesses to the powerdown debug
421 			 *  registers are not trapped to EL2.
422 			 *
423 			 * MDCR_EL2.TDA: Set to zero so that System register
424 			 *  accesses to the debug registers do not trap to EL2.
425 			 *
426 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
427 			 *  are not routed to EL2.
428 			 *
429 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
430 			 *  Monitors.
431 			 *
432 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
433 			 *  EL1 accesses to all Performance Monitors registers
434 			 *  are not trapped to EL2.
435 			 *
436 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
437 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
438 			 *  trapped to EL2.
439 			 *
440 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
441 			 *  architecturally-defined reset value.
442 			 */
443 			mdcr_el2 = ((MDCR_EL2_RESET_VAL |
444 					((read_pmcr_el0() & PMCR_EL0_N_BITS)
445 					>> PMCR_EL0_N_SHIFT)) &
446 					~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT
447 					| MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT
448 					| MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT
449 					| MDCR_EL2_TPMCR_BIT));
450 
451 			write_mdcr_el2(mdcr_el2);
452 
453 			/*
454 			 * Initialise HSTR_EL2. All fields are architecturally
455 			 * UNKNOWN on reset.
456 			 *
457 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
458 			 *  Non-secure EL0 or EL1 accesses to System registers
459 			 *  do not trap to EL2.
460 			 */
461 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
462 			/*
463 			 * Initialise CNTHP_CTL_EL2. All fields are
464 			 * architecturally UNKNOWN on reset.
465 			 *
466 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
467 			 *  physical timer and prevent timer interrupts.
468 			 */
469 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
470 						~(CNTHP_CTL_ENABLE_BIT));
471 		}
472 		enable_extensions_nonsecure(el2_unused);
473 	}
474 
475 	cm_el1_sysregs_context_restore(security_state);
476 	cm_set_next_eret_context(security_state);
477 }
478 
479 /*******************************************************************************
480  * The next four functions are used by runtime services to save and restore
481  * EL1 context on the 'cpu_context' structure for the specified security
482  * state.
483  ******************************************************************************/
484 void cm_el1_sysregs_context_save(uint32_t security_state)
485 {
486 	cpu_context_t *ctx;
487 
488 	ctx = cm_get_context(security_state);
489 	assert(ctx != NULL);
490 
491 	el1_sysregs_context_save(get_sysregs_ctx(ctx));
492 
493 #if IMAGE_BL31
494 	if (security_state == SECURE)
495 		PUBLISH_EVENT(cm_exited_secure_world);
496 	else
497 		PUBLISH_EVENT(cm_exited_normal_world);
498 #endif
499 }
500 
501 void cm_el1_sysregs_context_restore(uint32_t security_state)
502 {
503 	cpu_context_t *ctx;
504 
505 	ctx = cm_get_context(security_state);
506 	assert(ctx != NULL);
507 
508 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
509 
510 #if IMAGE_BL31
511 	if (security_state == SECURE)
512 		PUBLISH_EVENT(cm_entering_secure_world);
513 	else
514 		PUBLISH_EVENT(cm_entering_normal_world);
515 #endif
516 }
517 
518 /*******************************************************************************
519  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
520  * given security state with the given entrypoint
521  ******************************************************************************/
522 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
523 {
524 	cpu_context_t *ctx;
525 	el3_state_t *state;
526 
527 	ctx = cm_get_context(security_state);
528 	assert(ctx != NULL);
529 
530 	/* Populate EL3 state so that ERET jumps to the correct entry */
531 	state = get_el3state_ctx(ctx);
532 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
533 }
534 
535 /*******************************************************************************
536  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
537  * pertaining to the given security state
538  ******************************************************************************/
539 void cm_set_elr_spsr_el3(uint32_t security_state,
540 			uintptr_t entrypoint, uint32_t spsr)
541 {
542 	cpu_context_t *ctx;
543 	el3_state_t *state;
544 
545 	ctx = cm_get_context(security_state);
546 	assert(ctx != NULL);
547 
548 	/* Populate EL3 state so that ERET jumps to the correct entry */
549 	state = get_el3state_ctx(ctx);
550 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
551 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
552 }
553 
554 /*******************************************************************************
555  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
556  * pertaining to the given security state using the value and bit position
557  * specified in the parameters. It preserves all other bits.
558  ******************************************************************************/
559 void cm_write_scr_el3_bit(uint32_t security_state,
560 			  uint32_t bit_pos,
561 			  uint32_t value)
562 {
563 	cpu_context_t *ctx;
564 	el3_state_t *state;
565 	uint32_t scr_el3;
566 
567 	ctx = cm_get_context(security_state);
568 	assert(ctx != NULL);
569 
570 	/* Ensure that the bit position is a valid one */
571 	assert(((1U << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
572 
573 	/* Ensure that the 'value' is only a bit wide */
574 	assert(value <= 1U);
575 
576 	/*
577 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
578 	 * and set it to its new value.
579 	 */
580 	state = get_el3state_ctx(ctx);
581 	scr_el3 = (uint32_t)read_ctx_reg(state, CTX_SCR_EL3);
582 	scr_el3 &= ~(1U << bit_pos);
583 	scr_el3 |= value << bit_pos;
584 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
585 }
586 
587 /*******************************************************************************
588  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
589  * given security state.
590  ******************************************************************************/
591 uint32_t cm_get_scr_el3(uint32_t security_state)
592 {
593 	cpu_context_t *ctx;
594 	el3_state_t *state;
595 
596 	ctx = cm_get_context(security_state);
597 	assert(ctx != NULL);
598 
599 	/* Populate EL3 state so that ERET jumps to the correct entry */
600 	state = get_el3state_ctx(ctx);
601 	return (uint32_t)read_ctx_reg(state, CTX_SCR_EL3);
602 }
603 
604 /*******************************************************************************
605  * This function is used to program the context that's used for exception
606  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
607  * the required security state
608  ******************************************************************************/
609 void cm_set_next_eret_context(uint32_t security_state)
610 {
611 	cpu_context_t *ctx;
612 
613 	ctx = cm_get_context(security_state);
614 	assert(ctx != NULL);
615 
616 	cm_set_next_context(ctx);
617 }
618