xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 6dc5979a6cb2121e4c16e7bd62e24030e0f42755)
1 /*
2  * Copyright (c) 2013-2022, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/pubsub_events.h>
24 #include <lib/extensions/amu.h>
25 #include <lib/extensions/brbe.h>
26 #include <lib/extensions/mpam.h>
27 #include <lib/extensions/sme.h>
28 #include <lib/extensions/spe.h>
29 #include <lib/extensions/sve.h>
30 #include <lib/extensions/sys_reg_trace.h>
31 #include <lib/extensions/trbe.h>
32 #include <lib/extensions/trf.h>
33 #include <lib/utils.h>
34 
35 #if ENABLE_FEAT_TWED
36 /* Make sure delay value fits within the range(0-15) */
37 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
38 #endif /* ENABLE_FEAT_TWED */
39 
40 static void manage_extensions_secure(cpu_context_t *ctx);
41 
42 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
43 {
44 	u_register_t sctlr_elx, actlr_elx;
45 
46 	/*
47 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
48 	 * execution state setting all fields rather than relying on the hw.
49 	 * Some fields have architecturally UNKNOWN reset values and these are
50 	 * set to zero.
51 	 *
52 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
53 	 *
54 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
55 	 * required by PSCI specification)
56 	 */
57 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
58 	if (GET_RW(ep->spsr) == MODE_RW_64) {
59 		sctlr_elx |= SCTLR_EL1_RES1;
60 	} else {
61 		/*
62 		 * If the target execution state is AArch32 then the following
63 		 * fields need to be set.
64 		 *
65 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
66 		 *  instructions are not trapped to EL1.
67 		 *
68 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
69 		 *  instructions are not trapped to EL1.
70 		 *
71 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
72 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
73 		 */
74 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
75 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
76 	}
77 
78 #if ERRATA_A75_764081
79 	/*
80 	 * If workaround of errata 764081 for Cortex-A75 is used then set
81 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
82 	 */
83 	sctlr_elx |= SCTLR_IESB_BIT;
84 #endif
85 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
86 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
87 
88 	/*
89 	 * Base the context ACTLR_EL1 on the current value, as it is
90 	 * implementation defined. The context restore process will write
91 	 * the value from the context to the actual register and can cause
92 	 * problems for processor cores that don't expect certain bits to
93 	 * be zero.
94 	 */
95 	actlr_elx = read_actlr_el1();
96 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
97 }
98 
99 /******************************************************************************
100  * This function performs initializations that are specific to SECURE state
101  * and updates the cpu context specified by 'ctx'.
102  *****************************************************************************/
103 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
104 {
105 	u_register_t scr_el3;
106 	el3_state_t *state;
107 
108 	state = get_el3state_ctx(ctx);
109 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
110 
111 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
112 	/*
113 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
114 	 * indicated by the interrupt routing model for BL31.
115 	 */
116 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
117 #endif
118 
119 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
120 	/* Get Memory Tagging Extension support level */
121 	unsigned int mte = get_armv8_5_mte_support();
122 #endif
123 	/*
124 	 * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS
125 	 * is set, or when MTE is only implemented at EL0.
126 	 */
127 #if CTX_INCLUDE_MTE_REGS
128 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
129 	scr_el3 |= SCR_ATA_BIT;
130 #else
131 	if (mte == MTE_IMPLEMENTED_EL0) {
132 		scr_el3 |= SCR_ATA_BIT;
133 	}
134 #endif /* CTX_INCLUDE_MTE_REGS */
135 
136 	/* Enable S-EL2 if the next EL is EL2 and S-EL2 is present */
137 	if ((GET_EL(ep->spsr) == MODE_EL2) && is_armv8_4_sel2_present()) {
138 		if (GET_RW(ep->spsr) != MODE_RW_64) {
139 			ERROR("S-EL2 can not be used in AArch32\n.");
140 			panic();
141 		}
142 
143 		scr_el3 |= SCR_EEL2_BIT;
144 	}
145 
146 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
147 
148 	/*
149 	 * Initialize EL1 context registers unless SPMC is running
150 	 * at S-EL2.
151 	 */
152 #if !SPMD_SPM_AT_SEL2
153 	setup_el1_context(ctx, ep);
154 #endif
155 
156 	manage_extensions_secure(ctx);
157 }
158 
159 #if ENABLE_RME
160 /******************************************************************************
161  * This function performs initializations that are specific to REALM state
162  * and updates the cpu context specified by 'ctx'.
163  *****************************************************************************/
164 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
165 {
166 	u_register_t scr_el3;
167 	el3_state_t *state;
168 
169 	state = get_el3state_ctx(ctx);
170 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
171 
172 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT | SCR_EnSCXT_BIT;
173 
174 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
175 }
176 #endif /* ENABLE_RME */
177 
178 /******************************************************************************
179  * This function performs initializations that are specific to NON-SECURE state
180  * and updates the cpu context specified by 'ctx'.
181  *****************************************************************************/
182 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
183 {
184 	u_register_t scr_el3;
185 	el3_state_t *state;
186 
187 	state = get_el3state_ctx(ctx);
188 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
189 
190 	/* SCR_NS: Set the NS bit */
191 	scr_el3 |= SCR_NS_BIT;
192 
193 #if !CTX_INCLUDE_PAUTH_REGS
194 	/*
195 	 * If the pointer authentication registers aren't saved during world
196 	 * switches the value of the registers can be leaked from the Secure to
197 	 * the Non-secure world. To prevent this, rather than enabling pointer
198 	 * authentication everywhere, we only enable it in the Non-secure world.
199 	 *
200 	 * If the Secure world wants to use pointer authentication,
201 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
202 	 */
203 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
204 #endif /* !CTX_INCLUDE_PAUTH_REGS */
205 
206 	/* Allow access to Allocation Tags when MTE is implemented. */
207 	scr_el3 |= SCR_ATA_BIT;
208 
209 #if RAS_TRAP_NS_ERR_REC_ACCESS
210 	/*
211 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
212 	 * and RAS ERX registers from EL1 and EL2(from any security state)
213 	 * are trapped to EL3.
214 	 * Set here to trap only for NS EL1/EL2
215 	 *
216 	 */
217 	scr_el3 |= SCR_TERR_BIT;
218 #endif
219 
220 #ifdef IMAGE_BL31
221 	/*
222 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
223 	 *  indicated by the interrupt routing model for BL31.
224 	 */
225 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
226 #endif
227 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
228 
229 	/* Initialize EL1 context registers */
230 	setup_el1_context(ctx, ep);
231 
232 	/* Initialize EL2 context registers */
233 #if CTX_INCLUDE_EL2_REGS
234 
235 	/*
236 	 * Initialize SCTLR_EL2 context register using Endianness value
237 	 * taken from the entrypoint attribute.
238 	 */
239 	u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
240 	sctlr_el2 |= SCTLR_EL2_RES1;
241 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2,
242 			sctlr_el2);
243 
244 	/*
245 	 * Program the ICC_SRE_EL2 to make sure the correct bits are set
246 	 * when restoring NS context.
247 	 */
248 	u_register_t icc_sre_el2 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
249 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
250 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_ICC_SRE_EL2,
251 			icc_sre_el2);
252 #endif /* CTX_INCLUDE_EL2_REGS */
253 }
254 
255 /*******************************************************************************
256  * The following function performs initialization of the cpu_context 'ctx'
257  * for first use that is common to all security states, and sets the
258  * initial entrypoint state as specified by the entry_point_info structure.
259  *
260  * The EE and ST attributes are used to configure the endianness and secure
261  * timer availability for the new execution context.
262  ******************************************************************************/
263 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
264 {
265 	u_register_t scr_el3;
266 	el3_state_t *state;
267 	gp_regs_t *gp_regs;
268 
269 	/* Clear any residual register values from the context */
270 	zeromem(ctx, sizeof(*ctx));
271 
272 	/*
273 	 * SCR_EL3 was initialised during reset sequence in macro
274 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
275 	 * affect the next EL.
276 	 *
277 	 * The following fields are initially set to zero and then updated to
278 	 * the required value depending on the state of the SPSR_EL3 and the
279 	 * Security state and entrypoint attributes of the next EL.
280 	 */
281 	scr_el3 = read_scr();
282 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
283 			SCR_ST_BIT | SCR_HCE_BIT | SCR_NSE_BIT);
284 
285 	/*
286 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
287 	 *  Exception level as specified by SPSR.
288 	 */
289 	if (GET_RW(ep->spsr) == MODE_RW_64) {
290 		scr_el3 |= SCR_RW_BIT;
291 	}
292 
293 	/*
294 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
295 	 * Secure timer registers to EL3, from AArch64 state only, if specified
296 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
297 	 * bit always behaves as 1 (i.e. secure physical timer register access
298 	 * is not trapped)
299 	 */
300 	if (EP_GET_ST(ep->h.attr) != 0U) {
301 		scr_el3 |= SCR_ST_BIT;
302 	}
303 
304 	/*
305 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
306 	 * SCR_EL3.HXEn.
307 	 */
308 #if ENABLE_FEAT_HCX
309 	scr_el3 |= SCR_HXEn_BIT;
310 #endif
311 
312 	/*
313 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
314 	 * registers are trapped to EL3.
315 	 */
316 #if ENABLE_FEAT_RNG_TRAP
317 	scr_el3 |= SCR_TRNDR_BIT;
318 #endif
319 
320 #if !HANDLE_EA_EL3_FIRST
321 	/*
322 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
323 	 * to EL3 when executing at a lower EL. When executing at EL3, External
324 	 * Aborts are taken to EL3.
325 	 */
326 	scr_el3 &= ~SCR_EA_BIT;
327 #endif
328 
329 #if FAULT_INJECTION_SUPPORT
330 	/* Enable fault injection from lower ELs */
331 	scr_el3 |= SCR_FIEN_BIT;
332 #endif
333 
334 	/*
335 	 * CPTR_EL3 was initialized out of reset, copy that value to the
336 	 * context register.
337 	 */
338 	write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3());
339 
340 	/*
341 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
342 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
343 	 * next mode is Hyp.
344 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
345 	 * same conditions as HVC instructions and when the processor supports
346 	 * ARMv8.6-FGT.
347 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
348 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
349 	 * and when the processor supports ECV.
350 	 */
351 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
352 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
353 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
354 		scr_el3 |= SCR_HCE_BIT;
355 
356 		if (is_armv8_6_fgt_present()) {
357 			scr_el3 |= SCR_FGTEN_BIT;
358 		}
359 
360 		if (get_armv8_6_ecv_support()
361 		    == ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) {
362 			scr_el3 |= SCR_ECVEN_BIT;
363 		}
364 	}
365 
366 #if ENABLE_FEAT_TWED
367 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
368 	/* Set delay in SCR_EL3 */
369 	scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
370 	scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
371 			<< SCR_TWEDEL_SHIFT);
372 
373 	/* Enable WFE delay */
374 	scr_el3 |= SCR_TWEDEn_BIT;
375 #endif /* ENABLE_FEAT_TWED */
376 
377 	/*
378 	 * Populate EL3 state so that we've the right context
379 	 * before doing ERET
380 	 */
381 	state = get_el3state_ctx(ctx);
382 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
383 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
384 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
385 
386 	/*
387 	 * Store the X0-X7 value from the entrypoint into the context
388 	 * Use memcpy as we are in control of the layout of the structures
389 	 */
390 	gp_regs = get_gpregs_ctx(ctx);
391 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
392 }
393 
394 /*******************************************************************************
395  * Context management library initialization routine. This library is used by
396  * runtime services to share pointers to 'cpu_context' structures for secure
397  * non-secure and realm states. Management of the structures and their associated
398  * memory is not done by the context management library e.g. the PSCI service
399  * manages the cpu context used for entry from and exit to the non-secure state.
400  * The Secure payload dispatcher service manages the context(s) corresponding to
401  * the secure state. It also uses this library to get access to the non-secure
402  * state cpu context pointers.
403  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
404  * which will be used for programming an entry into a lower EL. The same context
405  * will be used to save state upon exception entry from that EL.
406  ******************************************************************************/
407 void __init cm_init(void)
408 {
409 	/*
410 	 * The context management library has only global data to intialize, but
411 	 * that will be done when the BSS is zeroed out.
412 	 */
413 }
414 
415 /*******************************************************************************
416  * This is the high-level function used to initialize the cpu_context 'ctx' for
417  * first use. It performs initializations that are common to all security states
418  * and initializations specific to the security state specified in 'ep'
419  ******************************************************************************/
420 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
421 {
422 	unsigned int security_state;
423 
424 	assert(ctx != NULL);
425 
426 	/*
427 	 * Perform initializations that are common
428 	 * to all security states
429 	 */
430 	setup_context_common(ctx, ep);
431 
432 	security_state = GET_SECURITY_STATE(ep->h.attr);
433 
434 	/* Perform security state specific initializations */
435 	switch (security_state) {
436 	case SECURE:
437 		setup_secure_context(ctx, ep);
438 		break;
439 #if ENABLE_RME
440 	case REALM:
441 		setup_realm_context(ctx, ep);
442 		break;
443 #endif
444 	case NON_SECURE:
445 		setup_ns_context(ctx, ep);
446 		break;
447 	default:
448 		ERROR("Invalid security state\n");
449 		panic();
450 		break;
451 	}
452 }
453 
454 /*******************************************************************************
455  * Enable architecture extensions on first entry to Non-secure world.
456  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
457  * it is zero.
458  ******************************************************************************/
459 static void manage_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx)
460 {
461 #if IMAGE_BL31
462 #if ENABLE_SPE_FOR_LOWER_ELS
463 	spe_enable(el2_unused);
464 #endif
465 
466 #if ENABLE_AMU
467 	amu_enable(el2_unused, ctx);
468 #endif
469 
470 #if ENABLE_SME_FOR_NS
471 	/* Enable SME, SVE, and FPU/SIMD for non-secure world. */
472 	sme_enable(ctx);
473 #elif ENABLE_SVE_FOR_NS
474 	/* Enable SVE and FPU/SIMD for non-secure world. */
475 	sve_enable(ctx);
476 #endif
477 
478 #if ENABLE_MPAM_FOR_LOWER_ELS
479 	mpam_enable(el2_unused);
480 #endif
481 
482 #if ENABLE_TRBE_FOR_NS
483 	trbe_enable();
484 #endif /* ENABLE_TRBE_FOR_NS */
485 
486 #if ENABLE_BRBE_FOR_NS
487 	brbe_enable();
488 #endif /* ENABLE_BRBE_FOR_NS */
489 
490 #if ENABLE_SYS_REG_TRACE_FOR_NS
491 	sys_reg_trace_enable(ctx);
492 #endif /* ENABLE_SYS_REG_TRACE_FOR_NS */
493 
494 #if ENABLE_TRF_FOR_NS
495 	trf_enable();
496 #endif /* ENABLE_TRF_FOR_NS */
497 #endif
498 }
499 
500 /*******************************************************************************
501  * Enable architecture extensions on first entry to Secure world.
502  ******************************************************************************/
503 static void manage_extensions_secure(cpu_context_t *ctx)
504 {
505 #if IMAGE_BL31
506  #if ENABLE_SME_FOR_NS
507   #if ENABLE_SME_FOR_SWD
508 	/*
509 	 * Enable SME, SVE, FPU/SIMD in secure context, secure manager must
510 	 * ensure SME, SVE, and FPU/SIMD context properly managed.
511 	 */
512 	sme_enable(ctx);
513   #else /* ENABLE_SME_FOR_SWD */
514 	/*
515 	 * Disable SME, SVE, FPU/SIMD in secure context so non-secure world can
516 	 * safely use the associated registers.
517 	 */
518 	sme_disable(ctx);
519   #endif /* ENABLE_SME_FOR_SWD */
520  #elif ENABLE_SVE_FOR_NS
521   #if ENABLE_SVE_FOR_SWD
522 	/*
523 	 * Enable SVE and FPU in secure context, secure manager must ensure that
524 	 * the SVE and FPU register contexts are properly managed.
525 	 */
526 	sve_enable(ctx);
527  #else /* ENABLE_SVE_FOR_SWD */
528 	/*
529 	 * Disable SVE and FPU in secure context so non-secure world can safely
530 	 * use them.
531 	 */
532 	sve_disable(ctx);
533   #endif /* ENABLE_SVE_FOR_SWD */
534  #endif /* ENABLE_SVE_FOR_NS */
535 #endif /* IMAGE_BL31 */
536 }
537 
538 /*******************************************************************************
539  * The following function initializes the cpu_context for a CPU specified by
540  * its `cpu_idx` for first use, and sets the initial entrypoint state as
541  * specified by the entry_point_info structure.
542  ******************************************************************************/
543 void cm_init_context_by_index(unsigned int cpu_idx,
544 			      const entry_point_info_t *ep)
545 {
546 	cpu_context_t *ctx;
547 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
548 	cm_setup_context(ctx, ep);
549 }
550 
551 /*******************************************************************************
552  * The following function initializes the cpu_context for the current CPU
553  * for first use, and sets the initial entrypoint state as specified by the
554  * entry_point_info structure.
555  ******************************************************************************/
556 void cm_init_my_context(const entry_point_info_t *ep)
557 {
558 	cpu_context_t *ctx;
559 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
560 	cm_setup_context(ctx, ep);
561 }
562 
563 /*******************************************************************************
564  * Prepare the CPU system registers for first entry into realm, secure, or
565  * normal world.
566  *
567  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
568  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
569  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
570  * For all entries, the EL1 registers are initialized from the cpu_context
571  ******************************************************************************/
572 void cm_prepare_el3_exit(uint32_t security_state)
573 {
574 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
575 	cpu_context_t *ctx = cm_get_context(security_state);
576 	bool el2_unused = false;
577 	uint64_t hcr_el2 = 0U;
578 
579 	assert(ctx != NULL);
580 
581 	if (security_state == NON_SECURE) {
582 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
583 						 CTX_SCR_EL3);
584 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
585 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
586 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
587 							   CTX_SCTLR_EL1);
588 			sctlr_elx &= SCTLR_EE_BIT;
589 			sctlr_elx |= SCTLR_EL2_RES1;
590 #if ERRATA_A75_764081
591 			/*
592 			 * If workaround of errata 764081 for Cortex-A75 is used
593 			 * then set SCTLR_EL2.IESB to enable Implicit Error
594 			 * Synchronization Barrier.
595 			 */
596 			sctlr_elx |= SCTLR_IESB_BIT;
597 #endif
598 			write_sctlr_el2(sctlr_elx);
599 		} else if (el_implemented(2) != EL_IMPL_NONE) {
600 			el2_unused = true;
601 
602 			/*
603 			 * EL2 present but unused, need to disable safely.
604 			 * SCTLR_EL2 can be ignored in this case.
605 			 *
606 			 * Set EL2 register width appropriately: Set HCR_EL2
607 			 * field to match SCR_EL3.RW.
608 			 */
609 			if ((scr_el3 & SCR_RW_BIT) != 0U)
610 				hcr_el2 |= HCR_RW_BIT;
611 
612 			/*
613 			 * For Armv8.3 pointer authentication feature, disable
614 			 * traps to EL2 when accessing key registers or using
615 			 * pointer authentication instructions from lower ELs.
616 			 */
617 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
618 
619 			write_hcr_el2(hcr_el2);
620 
621 			/*
622 			 * Initialise CPTR_EL2 setting all fields rather than
623 			 * relying on the hw. All fields have architecturally
624 			 * UNKNOWN reset values.
625 			 *
626 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
627 			 *  accesses to the CPACR_EL1 or CPACR from both
628 			 *  Execution states do not trap to EL2.
629 			 *
630 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
631 			 *  register accesses to the trace registers from both
632 			 *  Execution states do not trap to EL2.
633 			 *  If PE trace unit System registers are not implemented
634 			 *  then this bit is reserved, and must be set to zero.
635 			 *
636 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
637 			 *  to SIMD and floating-point functionality from both
638 			 *  Execution states do not trap to EL2.
639 			 */
640 			write_cptr_el2(CPTR_EL2_RESET_VAL &
641 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
642 					| CPTR_EL2_TFP_BIT));
643 
644 			/*
645 			 * Initialise CNTHCTL_EL2. All fields are
646 			 * architecturally UNKNOWN on reset and are set to zero
647 			 * except for field(s) listed below.
648 			 *
649 			 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to
650 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
651 			 *  physical timer registers.
652 			 *
653 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
654 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
655 			 *  physical counter registers.
656 			 */
657 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
658 						EL1PCEN_BIT | EL1PCTEN_BIT);
659 
660 			/*
661 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
662 			 * architecturally UNKNOWN value.
663 			 */
664 			write_cntvoff_el2(0);
665 
666 			/*
667 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
668 			 * MPIDR_EL1 respectively.
669 			 */
670 			write_vpidr_el2(read_midr_el1());
671 			write_vmpidr_el2(read_mpidr_el1());
672 
673 			/*
674 			 * Initialise VTTBR_EL2. All fields are architecturally
675 			 * UNKNOWN on reset.
676 			 *
677 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
678 			 *  2 address translation is disabled, cache maintenance
679 			 *  operations depend on the VMID.
680 			 *
681 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
682 			 *  translation is disabled.
683 			 */
684 			write_vttbr_el2(VTTBR_RESET_VAL &
685 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
686 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
687 
688 			/*
689 			 * Initialise MDCR_EL2, setting all fields rather than
690 			 * relying on hw. Some fields are architecturally
691 			 * UNKNOWN on reset.
692 			 *
693 			 * MDCR_EL2.HLP: Set to one so that event counter
694 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
695 			 *  occurs on the increment that changes
696 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
697 			 *  implemented. This bit is RES0 in versions of the
698 			 *  architecture earlier than ARMv8.5, setting it to 1
699 			 *  doesn't have any effect on them.
700 			 *
701 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
702 			 *  Filter Control register TRFCR_EL1 at EL1 is not
703 			 *  trapped to EL2. This bit is RES0 in versions of
704 			 *  the architecture earlier than ARMv8.4.
705 			 *
706 			 * MDCR_EL2.HPMD: Set to one so that event counting is
707 			 *  prohibited at EL2. This bit is RES0 in versions of
708 			 *  the architecture earlier than ARMv8.1, setting it
709 			 *  to 1 doesn't have any effect on them.
710 			 *
711 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
712 			 *  Statistical Profiling control registers from EL1
713 			 *  do not trap to EL2. This bit is RES0 when SPE is
714 			 *  not implemented.
715 			 *
716 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
717 			 *  EL1 System register accesses to the Debug ROM
718 			 *  registers are not trapped to EL2.
719 			 *
720 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
721 			 *  System register accesses to the powerdown debug
722 			 *  registers are not trapped to EL2.
723 			 *
724 			 * MDCR_EL2.TDA: Set to zero so that System register
725 			 *  accesses to the debug registers do not trap to EL2.
726 			 *
727 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
728 			 *  are not routed to EL2.
729 			 *
730 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
731 			 *  Monitors.
732 			 *
733 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
734 			 *  EL1 accesses to all Performance Monitors registers
735 			 *  are not trapped to EL2.
736 			 *
737 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
738 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
739 			 *  trapped to EL2.
740 			 *
741 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
742 			 *  architecturally-defined reset value.
743 			 *
744 			 * MDCR_EL2.E2TB: Set to zero so that the trace Buffer
745 			 *  owning exception level is NS-EL1 and, tracing is
746 			 *  prohibited at NS-EL2. These bits are RES0 when
747 			 *  FEAT_TRBE is not implemented.
748 			 */
749 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
750 				     MDCR_EL2_HPMD) |
751 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
752 				   >> PMCR_EL0_N_SHIFT)) &
753 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
754 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
755 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
756 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
757 				     MDCR_EL2_TPMCR_BIT |
758 				     MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1));
759 
760 			write_mdcr_el2(mdcr_el2);
761 
762 			/*
763 			 * Initialise HSTR_EL2. All fields are architecturally
764 			 * UNKNOWN on reset.
765 			 *
766 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
767 			 *  Non-secure EL0 or EL1 accesses to System registers
768 			 *  do not trap to EL2.
769 			 */
770 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
771 			/*
772 			 * Initialise CNTHP_CTL_EL2. All fields are
773 			 * architecturally UNKNOWN on reset.
774 			 *
775 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
776 			 *  physical timer and prevent timer interrupts.
777 			 */
778 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
779 						~(CNTHP_CTL_ENABLE_BIT));
780 		}
781 		manage_extensions_nonsecure(el2_unused, ctx);
782 	}
783 
784 	cm_el1_sysregs_context_restore(security_state);
785 	cm_set_next_eret_context(security_state);
786 }
787 
788 #if CTX_INCLUDE_EL2_REGS
789 /*******************************************************************************
790  * Save EL2 sysreg context
791  ******************************************************************************/
792 void cm_el2_sysregs_context_save(uint32_t security_state)
793 {
794 	u_register_t scr_el3 = read_scr();
795 
796 	/*
797 	 * Always save the non-secure and realm EL2 context, only save the
798 	 * S-EL2 context if S-EL2 is enabled.
799 	 */
800 	if ((security_state != SECURE) ||
801 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
802 		cpu_context_t *ctx;
803 		el2_sysregs_t *el2_sysregs_ctx;
804 
805 		ctx = cm_get_context(security_state);
806 		assert(ctx != NULL);
807 
808 		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
809 
810 		el2_sysregs_context_save_common(el2_sysregs_ctx);
811 #if ENABLE_SPE_FOR_LOWER_ELS
812 		el2_sysregs_context_save_spe(el2_sysregs_ctx);
813 #endif
814 #if CTX_INCLUDE_MTE_REGS
815 		el2_sysregs_context_save_mte(el2_sysregs_ctx);
816 #endif
817 #if ENABLE_MPAM_FOR_LOWER_ELS
818 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
819 #endif
820 #if ENABLE_FEAT_FGT
821 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
822 #endif
823 #if ENABLE_FEAT_ECV
824 		el2_sysregs_context_save_ecv(el2_sysregs_ctx);
825 #endif
826 #if ENABLE_FEAT_VHE
827 		el2_sysregs_context_save_vhe(el2_sysregs_ctx);
828 #endif
829 #if RAS_EXTENSION
830 		el2_sysregs_context_save_ras(el2_sysregs_ctx);
831 #endif
832 #if CTX_INCLUDE_NEVE_REGS
833 		el2_sysregs_context_save_nv2(el2_sysregs_ctx);
834 #endif
835 #if ENABLE_TRF_FOR_NS
836 		el2_sysregs_context_save_trf(el2_sysregs_ctx);
837 #endif
838 #if ENABLE_FEAT_CSV2_2
839 		el2_sysregs_context_save_csv2(el2_sysregs_ctx);
840 #endif
841 #if ENABLE_FEAT_HCX
842 		el2_sysregs_context_save_hcx(el2_sysregs_ctx);
843 #endif
844 	}
845 }
846 
847 /*******************************************************************************
848  * Restore EL2 sysreg context
849  ******************************************************************************/
850 void cm_el2_sysregs_context_restore(uint32_t security_state)
851 {
852 	u_register_t scr_el3 = read_scr();
853 
854 	/*
855 	 * Always restore the non-secure and realm EL2 context, only restore the
856 	 * S-EL2 context if S-EL2 is enabled.
857 	 */
858 	if ((security_state != SECURE) ||
859 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
860 		cpu_context_t *ctx;
861 		el2_sysregs_t *el2_sysregs_ctx;
862 
863 		ctx = cm_get_context(security_state);
864 		assert(ctx != NULL);
865 
866 		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
867 
868 		el2_sysregs_context_restore_common(el2_sysregs_ctx);
869 #if ENABLE_SPE_FOR_LOWER_ELS
870 		el2_sysregs_context_restore_spe(el2_sysregs_ctx);
871 #endif
872 #if CTX_INCLUDE_MTE_REGS
873 		el2_sysregs_context_restore_mte(el2_sysregs_ctx);
874 #endif
875 #if ENABLE_MPAM_FOR_LOWER_ELS
876 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
877 #endif
878 #if ENABLE_FEAT_FGT
879 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
880 #endif
881 #if ENABLE_FEAT_ECV
882 		el2_sysregs_context_restore_ecv(el2_sysregs_ctx);
883 #endif
884 #if ENABLE_FEAT_VHE
885 		el2_sysregs_context_restore_vhe(el2_sysregs_ctx);
886 #endif
887 #if RAS_EXTENSION
888 		el2_sysregs_context_restore_ras(el2_sysregs_ctx);
889 #endif
890 #if CTX_INCLUDE_NEVE_REGS
891 		el2_sysregs_context_restore_nv2(el2_sysregs_ctx);
892 #endif
893 #if ENABLE_TRF_FOR_NS
894 		el2_sysregs_context_restore_trf(el2_sysregs_ctx);
895 #endif
896 #if ENABLE_FEAT_CSV2_2
897 		el2_sysregs_context_restore_csv2(el2_sysregs_ctx);
898 #endif
899 #if ENABLE_FEAT_HCX
900 		el2_sysregs_context_restore_hcx(el2_sysregs_ctx);
901 #endif
902 	}
903 }
904 #endif /* CTX_INCLUDE_EL2_REGS */
905 
906 /*******************************************************************************
907  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
908  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
909  * updating EL1 and EL2 registers. Otherwise, it calls the generic
910  * cm_prepare_el3_exit function.
911  ******************************************************************************/
912 void cm_prepare_el3_exit_ns(void)
913 {
914 #if CTX_INCLUDE_EL2_REGS
915 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
916 	assert(ctx != NULL);
917 
918 	/* Assert that EL2 is used. */
919 #if ENABLE_ASSERTIONS
920 	el3_state_t *state = get_el3state_ctx(ctx);
921 	u_register_t scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
922 #endif
923 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
924 			(el_implemented(2U) != EL_IMPL_NONE));
925 
926 	/*
927 	 * Currently some extensions are configured using
928 	 * direct register updates. Therefore, do this here
929 	 * instead of when setting up context.
930 	 */
931 	manage_extensions_nonsecure(0, ctx);
932 
933 	/*
934 	 * Set the NS bit to be able to access the ICC_SRE_EL2
935 	 * register when restoring context.
936 	 */
937 	write_scr_el3(read_scr_el3() | SCR_NS_BIT);
938 
939 	/*
940 	 * Ensure the NS bit change is committed before the EL2/EL1
941 	 * state restoration.
942 	 */
943 	isb();
944 
945 	/* Restore EL2 and EL1 sysreg contexts */
946 	cm_el2_sysregs_context_restore(NON_SECURE);
947 	cm_el1_sysregs_context_restore(NON_SECURE);
948 	cm_set_next_eret_context(NON_SECURE);
949 #else
950 	cm_prepare_el3_exit(NON_SECURE);
951 #endif /* CTX_INCLUDE_EL2_REGS */
952 }
953 
954 /*******************************************************************************
955  * The next four functions are used by runtime services to save and restore
956  * EL1 context on the 'cpu_context' structure for the specified security
957  * state.
958  ******************************************************************************/
959 void cm_el1_sysregs_context_save(uint32_t security_state)
960 {
961 	cpu_context_t *ctx;
962 
963 	ctx = cm_get_context(security_state);
964 	assert(ctx != NULL);
965 
966 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
967 
968 #if IMAGE_BL31
969 	if (security_state == SECURE)
970 		PUBLISH_EVENT(cm_exited_secure_world);
971 	else
972 		PUBLISH_EVENT(cm_exited_normal_world);
973 #endif
974 }
975 
976 void cm_el1_sysregs_context_restore(uint32_t security_state)
977 {
978 	cpu_context_t *ctx;
979 
980 	ctx = cm_get_context(security_state);
981 	assert(ctx != NULL);
982 
983 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
984 
985 #if IMAGE_BL31
986 	if (security_state == SECURE)
987 		PUBLISH_EVENT(cm_entering_secure_world);
988 	else
989 		PUBLISH_EVENT(cm_entering_normal_world);
990 #endif
991 }
992 
993 /*******************************************************************************
994  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
995  * given security state with the given entrypoint
996  ******************************************************************************/
997 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
998 {
999 	cpu_context_t *ctx;
1000 	el3_state_t *state;
1001 
1002 	ctx = cm_get_context(security_state);
1003 	assert(ctx != NULL);
1004 
1005 	/* Populate EL3 state so that ERET jumps to the correct entry */
1006 	state = get_el3state_ctx(ctx);
1007 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1008 }
1009 
1010 /*******************************************************************************
1011  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1012  * pertaining to the given security state
1013  ******************************************************************************/
1014 void cm_set_elr_spsr_el3(uint32_t security_state,
1015 			uintptr_t entrypoint, uint32_t spsr)
1016 {
1017 	cpu_context_t *ctx;
1018 	el3_state_t *state;
1019 
1020 	ctx = cm_get_context(security_state);
1021 	assert(ctx != NULL);
1022 
1023 	/* Populate EL3 state so that ERET jumps to the correct entry */
1024 	state = get_el3state_ctx(ctx);
1025 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1026 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1027 }
1028 
1029 /*******************************************************************************
1030  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1031  * pertaining to the given security state using the value and bit position
1032  * specified in the parameters. It preserves all other bits.
1033  ******************************************************************************/
1034 void cm_write_scr_el3_bit(uint32_t security_state,
1035 			  uint32_t bit_pos,
1036 			  uint32_t value)
1037 {
1038 	cpu_context_t *ctx;
1039 	el3_state_t *state;
1040 	u_register_t scr_el3;
1041 
1042 	ctx = cm_get_context(security_state);
1043 	assert(ctx != NULL);
1044 
1045 	/* Ensure that the bit position is a valid one */
1046 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1047 
1048 	/* Ensure that the 'value' is only a bit wide */
1049 	assert(value <= 1U);
1050 
1051 	/*
1052 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1053 	 * and set it to its new value.
1054 	 */
1055 	state = get_el3state_ctx(ctx);
1056 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1057 	scr_el3 &= ~(1UL << bit_pos);
1058 	scr_el3 |= (u_register_t)value << bit_pos;
1059 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1060 }
1061 
1062 /*******************************************************************************
1063  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1064  * given security state.
1065  ******************************************************************************/
1066 u_register_t cm_get_scr_el3(uint32_t security_state)
1067 {
1068 	cpu_context_t *ctx;
1069 	el3_state_t *state;
1070 
1071 	ctx = cm_get_context(security_state);
1072 	assert(ctx != NULL);
1073 
1074 	/* Populate EL3 state so that ERET jumps to the correct entry */
1075 	state = get_el3state_ctx(ctx);
1076 	return read_ctx_reg(state, CTX_SCR_EL3);
1077 }
1078 
1079 /*******************************************************************************
1080  * This function is used to program the context that's used for exception
1081  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1082  * the required security state
1083  ******************************************************************************/
1084 void cm_set_next_eret_context(uint32_t security_state)
1085 {
1086 	cpu_context_t *ctx;
1087 
1088 	ctx = cm_get_context(security_state);
1089 	assert(ctx != NULL);
1090 
1091 	cm_set_next_context(ctx);
1092 }
1093