xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 6db0c1d8652556d9b0d100f54ef6d56cf5c9f84f)
1 /*
2  * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/cpu_data.h>
24 #include <lib/el3_runtime/pubsub_events.h>
25 #include <lib/extensions/amu.h>
26 #include <lib/extensions/brbe.h>
27 #include <lib/extensions/mpam.h>
28 #include <lib/extensions/pmuv3.h>
29 #include <lib/extensions/sme.h>
30 #include <lib/extensions/spe.h>
31 #include <lib/extensions/sve.h>
32 #include <lib/extensions/sys_reg_trace.h>
33 #include <lib/extensions/trbe.h>
34 #include <lib/extensions/trf.h>
35 #include <lib/utils.h>
36 
37 #if ENABLE_FEAT_TWED
38 /* Make sure delay value fits within the range(0-15) */
39 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
40 #endif /* ENABLE_FEAT_TWED */
41 
42 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
43 static bool has_secure_perworld_init;
44 
45 static void manage_extensions_nonsecure(cpu_context_t *ctx);
46 static void manage_extensions_secure(cpu_context_t *ctx);
47 static void manage_extensions_secure_per_world(void);
48 
49 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
50 {
51 	u_register_t sctlr_elx, actlr_elx;
52 
53 	/*
54 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
55 	 * execution state setting all fields rather than relying on the hw.
56 	 * Some fields have architecturally UNKNOWN reset values and these are
57 	 * set to zero.
58 	 *
59 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
60 	 *
61 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
62 	 * required by PSCI specification)
63 	 */
64 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
65 	if (GET_RW(ep->spsr) == MODE_RW_64) {
66 		sctlr_elx |= SCTLR_EL1_RES1;
67 	} else {
68 		/*
69 		 * If the target execution state is AArch32 then the following
70 		 * fields need to be set.
71 		 *
72 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
73 		 *  instructions are not trapped to EL1.
74 		 *
75 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
76 		 *  instructions are not trapped to EL1.
77 		 *
78 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
79 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
80 		 */
81 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
82 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
83 	}
84 
85 #if ERRATA_A75_764081
86 	/*
87 	 * If workaround of errata 764081 for Cortex-A75 is used then set
88 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
89 	 */
90 	sctlr_elx |= SCTLR_IESB_BIT;
91 #endif
92 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
93 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
94 
95 	/*
96 	 * Base the context ACTLR_EL1 on the current value, as it is
97 	 * implementation defined. The context restore process will write
98 	 * the value from the context to the actual register and can cause
99 	 * problems for processor cores that don't expect certain bits to
100 	 * be zero.
101 	 */
102 	actlr_elx = read_actlr_el1();
103 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
104 }
105 
106 /******************************************************************************
107  * This function performs initializations that are specific to SECURE state
108  * and updates the cpu context specified by 'ctx'.
109  *****************************************************************************/
110 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
111 {
112 	u_register_t scr_el3;
113 	el3_state_t *state;
114 
115 	state = get_el3state_ctx(ctx);
116 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
117 
118 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
119 	/*
120 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
121 	 * indicated by the interrupt routing model for BL31.
122 	 */
123 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
124 #endif
125 
126 	/* Allow access to Allocation Tags when mte is set*/
127 	if (is_feat_mte_supported()) {
128 		scr_el3 |= SCR_ATA_BIT;
129 	}
130 
131 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
132 
133 	/*
134 	 * Initialize EL1 context registers unless SPMC is running
135 	 * at S-EL2.
136 	 */
137 #if !SPMD_SPM_AT_SEL2
138 	setup_el1_context(ctx, ep);
139 #endif
140 
141 	manage_extensions_secure(ctx);
142 
143 	/**
144 	 * manage_extensions_secure_per_world api has to be executed once,
145 	 * as the registers getting initialised, maintain constant value across
146 	 * all the cpus for the secure world.
147 	 * Henceforth, this check ensures that the registers are initialised once
148 	 * and avoids re-initialization from multiple cores.
149 	 */
150 	if (!has_secure_perworld_init) {
151 		manage_extensions_secure_per_world();
152 	}
153 
154 }
155 
156 #if ENABLE_RME
157 /******************************************************************************
158  * This function performs initializations that are specific to REALM state
159  * and updates the cpu context specified by 'ctx'.
160  *****************************************************************************/
161 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
162 {
163 	u_register_t scr_el3;
164 	el3_state_t *state;
165 
166 	state = get_el3state_ctx(ctx);
167 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
168 
169 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
170 
171 	/* CSV2 version 2 and above */
172 	if (is_feat_csv2_2_supported()) {
173 		/* Enable access to the SCXTNUM_ELx registers. */
174 		scr_el3 |= SCR_EnSCXT_BIT;
175 	}
176 
177 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
178 }
179 #endif /* ENABLE_RME */
180 
181 /******************************************************************************
182  * This function performs initializations that are specific to NON-SECURE state
183  * and updates the cpu context specified by 'ctx'.
184  *****************************************************************************/
185 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
186 {
187 	u_register_t scr_el3;
188 	el3_state_t *state;
189 
190 	state = get_el3state_ctx(ctx);
191 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
192 
193 	/* SCR_NS: Set the NS bit */
194 	scr_el3 |= SCR_NS_BIT;
195 
196 	/* Allow access to Allocation Tags when MTE is implemented. */
197 	scr_el3 |= SCR_ATA_BIT;
198 
199 #if !CTX_INCLUDE_PAUTH_REGS
200 	/*
201 	 * Pointer Authentication feature, if present, is always enabled by default
202 	 * for Non secure lower exception levels. We do not have an explicit
203 	 * flag to set it.
204 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
205 	 * exception levels of secure and realm worlds.
206 	 *
207 	 * To prevent the leakage between the worlds during world switch,
208 	 * we enable it only for the non-secure world.
209 	 *
210 	 * If the Secure/realm world wants to use pointer authentication,
211 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
212 	 * it will be enabled globally for all the contexts.
213 	 *
214 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
215 	 *  other than EL3
216 	 *
217 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
218 	 *  than EL3
219 	 */
220 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
221 
222 #endif /* CTX_INCLUDE_PAUTH_REGS */
223 
224 #if HANDLE_EA_EL3_FIRST_NS
225 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
226 	scr_el3 |= SCR_EA_BIT;
227 #endif
228 
229 #if RAS_TRAP_NS_ERR_REC_ACCESS
230 	/*
231 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
232 	 * and RAS ERX registers from EL1 and EL2(from any security state)
233 	 * are trapped to EL3.
234 	 * Set here to trap only for NS EL1/EL2
235 	 *
236 	 */
237 	scr_el3 |= SCR_TERR_BIT;
238 #endif
239 
240 	/* CSV2 version 2 and above */
241 	if (is_feat_csv2_2_supported()) {
242 		/* Enable access to the SCXTNUM_ELx registers. */
243 		scr_el3 |= SCR_EnSCXT_BIT;
244 	}
245 
246 #ifdef IMAGE_BL31
247 	/*
248 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
249 	 *  indicated by the interrupt routing model for BL31.
250 	 */
251 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
252 #endif
253 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
254 
255 	/* Initialize EL1 context registers */
256 	setup_el1_context(ctx, ep);
257 
258 	/* Initialize EL2 context registers */
259 #if CTX_INCLUDE_EL2_REGS
260 
261 	/*
262 	 * Initialize SCTLR_EL2 context register using Endianness value
263 	 * taken from the entrypoint attribute.
264 	 */
265 	u_register_t sctlr_el2_val = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
266 	sctlr_el2_val |= SCTLR_EL2_RES1;
267 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, sctlr_el2_val);
268 
269 
270 	if (is_feat_hcx_supported()) {
271 		/*
272 		 * Initialize register HCRX_EL2 with its init value.
273 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
274 		 * chance that this can lead to unexpected behavior in lower
275 		 * ELs that have not been updated since the introduction of
276 		 * this feature if not properly initialized, especially when
277 		 * it comes to those bits that enable/disable traps.
278 		 */
279 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
280 			HCRX_EL2_INIT_VAL);
281 	}
282 
283 	if (is_feat_fgt_supported()) {
284 		/*
285 		 * Initialize HFG*_EL2 registers with a default value so legacy
286 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
287 		 * of initialization for this feature.
288 		 */
289 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
290 			HFGITR_EL2_INIT_VAL);
291 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
292 			HFGRTR_EL2_INIT_VAL);
293 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
294 			HFGWTR_EL2_INIT_VAL);
295 	}
296 
297 #endif /* CTX_INCLUDE_EL2_REGS */
298 
299 	manage_extensions_nonsecure(ctx);
300 }
301 
302 /*******************************************************************************
303  * The following function performs initialization of the cpu_context 'ctx'
304  * for first use that is common to all security states, and sets the
305  * initial entrypoint state as specified by the entry_point_info structure.
306  *
307  * The EE and ST attributes are used to configure the endianness and secure
308  * timer availability for the new execution context.
309  ******************************************************************************/
310 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
311 {
312 	u_register_t scr_el3;
313 	el3_state_t *state;
314 	gp_regs_t *gp_regs;
315 
316 	state = get_el3state_ctx(ctx);
317 
318 	/* Clear any residual register values from the context */
319 	zeromem(ctx, sizeof(*ctx));
320 
321 	/*
322 	 * The lower-EL context is zeroed so that no stale values leak to a world.
323 	 * It is assumed that an all-zero lower-EL context is good enough for it
324 	 * to boot correctly. However, there are very few registers where this
325 	 * is not true and some values need to be recreated.
326 	 */
327 #if CTX_INCLUDE_EL2_REGS
328 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
329 
330 	/*
331 	 * These bits are set in the gicv3 driver. Losing them (especially the
332 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
333 	 */
334 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
335 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
336 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
337 #endif /* CTX_INCLUDE_EL2_REGS */
338 
339 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
340 	scr_el3 = SCR_RESET_VAL;
341 
342 	/*
343 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
344 	 *  EL2, EL1 and EL0 are not trapped to EL3.
345 	 *
346 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
347 	 *  EL2, EL1 and EL0 are not trapped to EL3.
348 	 *
349 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
350 	 *  both Security states and both Execution states.
351 	 *
352 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
353 	 *  Non-secure memory.
354 	 */
355 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
356 
357 	scr_el3 |= SCR_SIF_BIT;
358 
359 	/*
360 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
361 	 *  Exception level as specified by SPSR.
362 	 */
363 	if (GET_RW(ep->spsr) == MODE_RW_64) {
364 		scr_el3 |= SCR_RW_BIT;
365 	}
366 
367 	/*
368 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
369 	 * Secure timer registers to EL3, from AArch64 state only, if specified
370 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
371 	 * bit always behaves as 1 (i.e. secure physical timer register access
372 	 * is not trapped)
373 	 */
374 	if (EP_GET_ST(ep->h.attr) != 0U) {
375 		scr_el3 |= SCR_ST_BIT;
376 	}
377 
378 	/*
379 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
380 	 * SCR_EL3.HXEn.
381 	 */
382 	if (is_feat_hcx_supported()) {
383 		scr_el3 |= SCR_HXEn_BIT;
384 	}
385 
386 	/*
387 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
388 	 * registers are trapped to EL3.
389 	 */
390 #if ENABLE_FEAT_RNG_TRAP
391 	scr_el3 |= SCR_TRNDR_BIT;
392 #endif
393 
394 #if FAULT_INJECTION_SUPPORT
395 	/* Enable fault injection from lower ELs */
396 	scr_el3 |= SCR_FIEN_BIT;
397 #endif
398 
399 #if CTX_INCLUDE_PAUTH_REGS
400 	/*
401 	 * Enable Pointer Authentication globally for all the worlds.
402 	 *
403 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
404 	 *  other than EL3
405 	 *
406 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
407 	 *  than EL3
408 	 */
409 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
410 #endif /* CTX_INCLUDE_PAUTH_REGS */
411 
412 	/*
413 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
414 	 */
415 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
416 		scr_el3 |= SCR_TCR2EN_BIT;
417 	}
418 
419 	/*
420 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
421 	 * registers for AArch64 if present.
422 	 */
423 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
424 		scr_el3 |= SCR_PIEN_BIT;
425 	}
426 
427 	/*
428 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
429 	 */
430 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
431 		scr_el3 |= SCR_GCSEn_BIT;
432 	}
433 
434 	/*
435 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
436 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
437 	 * next mode is Hyp.
438 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
439 	 * same conditions as HVC instructions and when the processor supports
440 	 * ARMv8.6-FGT.
441 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
442 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
443 	 * and when the processor supports ECV.
444 	 */
445 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
446 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
447 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
448 		scr_el3 |= SCR_HCE_BIT;
449 
450 		if (is_feat_fgt_supported()) {
451 			scr_el3 |= SCR_FGTEN_BIT;
452 		}
453 
454 		if (is_feat_ecv_supported()) {
455 			scr_el3 |= SCR_ECVEN_BIT;
456 		}
457 	}
458 
459 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
460 	if (is_feat_twed_supported()) {
461 		/* Set delay in SCR_EL3 */
462 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
463 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
464 				<< SCR_TWEDEL_SHIFT);
465 
466 		/* Enable WFE delay */
467 		scr_el3 |= SCR_TWEDEn_BIT;
468 	}
469 
470 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
471 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
472 	if (is_feat_sel2_supported()) {
473 		scr_el3 |= SCR_EEL2_BIT;
474 	}
475 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
476 
477 	/*
478 	 * Populate EL3 state so that we've the right context
479 	 * before doing ERET
480 	 */
481 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
482 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
483 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
484 
485 	/*
486 	 * Store the X0-X7 value from the entrypoint into the context
487 	 * Use memcpy as we are in control of the layout of the structures
488 	 */
489 	gp_regs = get_gpregs_ctx(ctx);
490 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
491 }
492 
493 /*******************************************************************************
494  * Context management library initialization routine. This library is used by
495  * runtime services to share pointers to 'cpu_context' structures for secure
496  * non-secure and realm states. Management of the structures and their associated
497  * memory is not done by the context management library e.g. the PSCI service
498  * manages the cpu context used for entry from and exit to the non-secure state.
499  * The Secure payload dispatcher service manages the context(s) corresponding to
500  * the secure state. It also uses this library to get access to the non-secure
501  * state cpu context pointers.
502  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
503  * which will be used for programming an entry into a lower EL. The same context
504  * will be used to save state upon exception entry from that EL.
505  ******************************************************************************/
506 void __init cm_init(void)
507 {
508 	/*
509 	 * The context management library has only global data to initialize, but
510 	 * that will be done when the BSS is zeroed out.
511 	 */
512 }
513 
514 /*******************************************************************************
515  * This is the high-level function used to initialize the cpu_context 'ctx' for
516  * first use. It performs initializations that are common to all security states
517  * and initializations specific to the security state specified in 'ep'
518  ******************************************************************************/
519 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
520 {
521 	unsigned int security_state;
522 
523 	assert(ctx != NULL);
524 
525 	/*
526 	 * Perform initializations that are common
527 	 * to all security states
528 	 */
529 	setup_context_common(ctx, ep);
530 
531 	security_state = GET_SECURITY_STATE(ep->h.attr);
532 
533 	/* Perform security state specific initializations */
534 	switch (security_state) {
535 	case SECURE:
536 		setup_secure_context(ctx, ep);
537 		break;
538 #if ENABLE_RME
539 	case REALM:
540 		setup_realm_context(ctx, ep);
541 		break;
542 #endif
543 	case NON_SECURE:
544 		setup_ns_context(ctx, ep);
545 		break;
546 	default:
547 		ERROR("Invalid security state\n");
548 		panic();
549 		break;
550 	}
551 }
552 
553 /*******************************************************************************
554  * Enable architecture extensions for EL3 execution. This function only updates
555  * registers in-place which are expected to either never change or be
556  * overwritten by el3_exit.
557  ******************************************************************************/
558 #if IMAGE_BL31
559 void cm_manage_extensions_el3(void)
560 {
561 	if (is_feat_spe_supported()) {
562 		spe_init_el3();
563 	}
564 
565 	if (is_feat_amu_supported()) {
566 		amu_init_el3();
567 	}
568 
569 	if (is_feat_sme_supported()) {
570 		sme_init_el3();
571 	}
572 
573 	if (is_feat_trbe_supported()) {
574 		trbe_init_el3();
575 	}
576 
577 	if (is_feat_brbe_supported()) {
578 		brbe_init_el3();
579 	}
580 
581 	if (is_feat_trf_supported()) {
582 		trf_init_el3();
583 	}
584 
585 	pmuv3_init_el3();
586 }
587 #endif /* IMAGE_BL31 */
588 
589 /******************************************************************************
590  * Function to initialise the registers with the RESET values in the context
591  * memory, which are maintained per world.
592  ******************************************************************************/
593 #if IMAGE_BL31
594 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
595 {
596 	/*
597 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
598 	 *
599 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
600 	 *  by Advanced SIMD, floating-point or SVE instructions (if
601 	 *  implemented) do not trap to EL3.
602 	 *
603 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
604 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
605 	 */
606 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
607 
608 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
609 
610 	/*
611 	 * Initialize MPAM3_EL3 to its default reset value
612 	 *
613 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
614 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
615 	 */
616 
617 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
618 }
619 #endif /* IMAGE_BL31 */
620 
621 /*******************************************************************************
622  * Initialise per_world_context for Non-Secure world.
623  * This function enables the architecture extensions, which have same value
624  * across the cores for the non-secure world.
625  ******************************************************************************/
626 #if IMAGE_BL31
627 void manage_extensions_nonsecure_per_world(void)
628 {
629 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
630 
631 	if (is_feat_sme_supported()) {
632 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
633 	}
634 
635 	if (is_feat_sve_supported()) {
636 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
637 	}
638 
639 	if (is_feat_amu_supported()) {
640 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
641 	}
642 
643 	if (is_feat_sys_reg_trace_supported()) {
644 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
645 	}
646 
647 	if (is_feat_mpam_supported()) {
648 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
649 	}
650 }
651 #endif /* IMAGE_BL31 */
652 
653 /*******************************************************************************
654  * Initialise per_world_context for Secure world.
655  * This function enables the architecture extensions, which have same value
656  * across the cores for the secure world.
657  ******************************************************************************/
658 static void manage_extensions_secure_per_world(void)
659 {
660 #if IMAGE_BL31
661 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
662 
663 	if (is_feat_sme_supported()) {
664 
665 		if (ENABLE_SME_FOR_SWD) {
666 		/*
667 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
668 		 * SME, SVE, and FPU/SIMD context properly managed.
669 		 */
670 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
671 		} else {
672 		/*
673 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
674 		 * world can safely use the associated registers.
675 		 */
676 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
677 		}
678 	}
679 	if (is_feat_sve_supported()) {
680 		if (ENABLE_SVE_FOR_SWD) {
681 		/*
682 		 * Enable SVE and FPU in secure context, SPM must ensure
683 		 * that the SVE and FPU register contexts are properly managed.
684 		 */
685 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
686 		} else {
687 		/*
688 		 * Disable SVE and FPU in secure context so non-secure world
689 		 * can safely use them.
690 		 */
691 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
692 		}
693 	}
694 
695 	/* NS can access this but Secure shouldn't */
696 	if (is_feat_sys_reg_trace_supported()) {
697 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
698 	}
699 
700 	has_secure_perworld_init = true;
701 #endif /* IMAGE_BL31 */
702 }
703 
704 /*******************************************************************************
705  * Enable architecture extensions on first entry to Non-secure world.
706  ******************************************************************************/
707 static void manage_extensions_nonsecure(cpu_context_t *ctx)
708 {
709 #if IMAGE_BL31
710 	if (is_feat_amu_supported()) {
711 		amu_enable(ctx);
712 	}
713 
714 	if (is_feat_sme_supported()) {
715 		sme_enable(ctx);
716 	}
717 
718 	pmuv3_enable(ctx);
719 #endif /* IMAGE_BL31 */
720 }
721 
722 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
723 static __unused void enable_pauth_el2(void)
724 {
725 	u_register_t hcr_el2 = read_hcr_el2();
726 	/*
727 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
728 	 *  accessing key registers or using pointer authentication instructions
729 	 *  from lower ELs.
730 	 */
731 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
732 
733 	write_hcr_el2(hcr_el2);
734 }
735 
736 #if INIT_UNUSED_NS_EL2
737 /*******************************************************************************
738  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
739  * world when EL2 is empty and unused.
740  ******************************************************************************/
741 static void manage_extensions_nonsecure_el2_unused(void)
742 {
743 #if IMAGE_BL31
744 	if (is_feat_spe_supported()) {
745 		spe_init_el2_unused();
746 	}
747 
748 	if (is_feat_amu_supported()) {
749 		amu_init_el2_unused();
750 	}
751 
752 	if (is_feat_mpam_supported()) {
753 		mpam_init_el2_unused();
754 	}
755 
756 	if (is_feat_trbe_supported()) {
757 		trbe_init_el2_unused();
758 	}
759 
760 	if (is_feat_sys_reg_trace_supported()) {
761 		sys_reg_trace_init_el2_unused();
762 	}
763 
764 	if (is_feat_trf_supported()) {
765 		trf_init_el2_unused();
766 	}
767 
768 	pmuv3_init_el2_unused();
769 
770 	if (is_feat_sve_supported()) {
771 		sve_init_el2_unused();
772 	}
773 
774 	if (is_feat_sme_supported()) {
775 		sme_init_el2_unused();
776 	}
777 
778 #if ENABLE_PAUTH
779 	enable_pauth_el2();
780 #endif /* ENABLE_PAUTH */
781 #endif /* IMAGE_BL31 */
782 }
783 #endif /* INIT_UNUSED_NS_EL2 */
784 
785 /*******************************************************************************
786  * Enable architecture extensions on first entry to Secure world.
787  ******************************************************************************/
788 static void manage_extensions_secure(cpu_context_t *ctx)
789 {
790 #if IMAGE_BL31
791 	if (is_feat_sme_supported()) {
792 		if (ENABLE_SME_FOR_SWD) {
793 		/*
794 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
795 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
796 		 */
797 			sme_init_el3();
798 			sme_enable(ctx);
799 		} else {
800 		/*
801 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
802 		 * world can safely use the associated registers.
803 		 */
804 			sme_disable(ctx);
805 		}
806 	}
807 #endif /* IMAGE_BL31 */
808 }
809 
810 /*******************************************************************************
811  * The following function initializes the cpu_context for a CPU specified by
812  * its `cpu_idx` for first use, and sets the initial entrypoint state as
813  * specified by the entry_point_info structure.
814  ******************************************************************************/
815 void cm_init_context_by_index(unsigned int cpu_idx,
816 			      const entry_point_info_t *ep)
817 {
818 	cpu_context_t *ctx;
819 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
820 	cm_setup_context(ctx, ep);
821 }
822 
823 /*******************************************************************************
824  * The following function initializes the cpu_context for the current CPU
825  * for first use, and sets the initial entrypoint state as specified by the
826  * entry_point_info structure.
827  ******************************************************************************/
828 void cm_init_my_context(const entry_point_info_t *ep)
829 {
830 	cpu_context_t *ctx;
831 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
832 	cm_setup_context(ctx, ep);
833 }
834 
835 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
836 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
837 {
838 #if INIT_UNUSED_NS_EL2
839 	u_register_t hcr_el2 = HCR_RESET_VAL;
840 	u_register_t mdcr_el2;
841 	u_register_t scr_el3;
842 
843 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
844 
845 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
846 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
847 		hcr_el2 |= HCR_RW_BIT;
848 	}
849 
850 	write_hcr_el2(hcr_el2);
851 
852 	/*
853 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
854 	 * All fields have architecturally UNKNOWN reset values.
855 	 */
856 	write_cptr_el2(CPTR_EL2_RESET_VAL);
857 
858 	/*
859 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
860 	 * reset and are set to zero except for field(s) listed below.
861 	 *
862 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
863 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
864 	 *
865 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
866 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
867 	 */
868 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
869 
870 	/*
871 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
872 	 * UNKNOWN value.
873 	 */
874 	write_cntvoff_el2(0);
875 
876 	/*
877 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
878 	 * respectively.
879 	 */
880 	write_vpidr_el2(read_midr_el1());
881 	write_vmpidr_el2(read_mpidr_el1());
882 
883 	/*
884 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
885 	 *
886 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
887 	 * translation is disabled, cache maintenance operations depend on the
888 	 * VMID.
889 	 *
890 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
891 	 * disabled.
892 	 */
893 	write_vttbr_el2(VTTBR_RESET_VAL &
894 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
895 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
896 
897 	/*
898 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
899 	 * Some fields are architecturally UNKNOWN on reset.
900 	 *
901 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
902 	 * register accesses to the Debug ROM registers are not trapped to EL2.
903 	 *
904 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
905 	 * accesses to the powerdown debug registers are not trapped to EL2.
906 	 *
907 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
908 	 * debug registers do not trap to EL2.
909 	 *
910 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
911 	 * EL2.
912 	 */
913 	mdcr_el2 = MDCR_EL2_RESET_VAL &
914 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
915 		   MDCR_EL2_TDE_BIT);
916 
917 	write_mdcr_el2(mdcr_el2);
918 
919 	/*
920 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
921 	 *
922 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
923 	 * EL1 accesses to System registers do not trap to EL2.
924 	 */
925 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
926 
927 	/*
928 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
929 	 * reset.
930 	 *
931 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
932 	 * and prevent timer interrupts.
933 	 */
934 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
935 
936 	manage_extensions_nonsecure_el2_unused();
937 #endif /* INIT_UNUSED_NS_EL2 */
938 }
939 
940 /*******************************************************************************
941  * Prepare the CPU system registers for first entry into realm, secure, or
942  * normal world.
943  *
944  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
945  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
946  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
947  * For all entries, the EL1 registers are initialized from the cpu_context
948  ******************************************************************************/
949 void cm_prepare_el3_exit(uint32_t security_state)
950 {
951 	u_register_t sctlr_elx, scr_el3;
952 	cpu_context_t *ctx = cm_get_context(security_state);
953 
954 	assert(ctx != NULL);
955 
956 	if (security_state == NON_SECURE) {
957 		uint64_t el2_implemented = el_implemented(2);
958 
959 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
960 						 CTX_SCR_EL3);
961 
962 		if (((scr_el3 & SCR_HCE_BIT) != 0U)
963 			|| (el2_implemented != EL_IMPL_NONE)) {
964 			/*
965 			 * If context is not being used for EL2, initialize
966 			 * HCRX_EL2 with its init value here.
967 			 */
968 			if (is_feat_hcx_supported()) {
969 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
970 			}
971 
972 			/*
973 			 * Initialize Fine-grained trap registers introduced
974 			 * by FEAT_FGT so all traps are initially disabled when
975 			 * switching to EL2 or a lower EL, preventing undesired
976 			 * behavior.
977 			 */
978 			if (is_feat_fgt_supported()) {
979 				/*
980 				 * Initialize HFG*_EL2 registers with a default
981 				 * value so legacy systems unaware of FEAT_FGT
982 				 * do not get trapped due to their lack of
983 				 * initialization for this feature.
984 				 */
985 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
986 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
987 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
988 			}
989 		}
990 
991 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
992 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
993 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
994 							   CTX_SCTLR_EL1);
995 			sctlr_elx &= SCTLR_EE_BIT;
996 			sctlr_elx |= SCTLR_EL2_RES1;
997 #if ERRATA_A75_764081
998 			/*
999 			 * If workaround of errata 764081 for Cortex-A75 is used
1000 			 * then set SCTLR_EL2.IESB to enable Implicit Error
1001 			 * Synchronization Barrier.
1002 			 */
1003 			sctlr_elx |= SCTLR_IESB_BIT;
1004 #endif
1005 			write_sctlr_el2(sctlr_elx);
1006 		} else if (el2_implemented != EL_IMPL_NONE) {
1007 			init_nonsecure_el2_unused(ctx);
1008 		}
1009 	}
1010 
1011 	cm_el1_sysregs_context_restore(security_state);
1012 	cm_set_next_eret_context(security_state);
1013 }
1014 
1015 #if CTX_INCLUDE_EL2_REGS
1016 
1017 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1018 {
1019 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1020 	if (is_feat_amu_supported()) {
1021 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1022 	}
1023 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1024 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1025 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1026 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1027 }
1028 
1029 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1030 {
1031 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1032 	if (is_feat_amu_supported()) {
1033 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1034 	}
1035 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1036 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1037 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1038 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1039 }
1040 
1041 #if CTX_INCLUDE_MPAM_REGS
1042 
1043 static void el2_sysregs_context_save_mpam(mpam_t *ctx)
1044 {
1045 	u_register_t mpam_idr = read_mpamidr_el1();
1046 
1047 	write_ctx_reg(ctx, CTX_MPAM2_EL2, read_mpam2_el2());
1048 
1049 	/*
1050 	 * The context registers that we intend to save would be part of the
1051 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1052 	 */
1053 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1054 		return;
1055 	}
1056 
1057 	/*
1058 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1059 	 * MPAMIDR_HAS_HCR_BIT == 1.
1060 	 */
1061 	write_ctx_reg(ctx, CTX_MPAMHCR_EL2, read_mpamhcr_el2());
1062 	write_ctx_reg(ctx, CTX_MPAMVPM0_EL2, read_mpamvpm0_el2());
1063 	write_ctx_reg(ctx, CTX_MPAMVPMV_EL2, read_mpamvpmv_el2());
1064 
1065 	/*
1066 	 * The number of MPAMVPM registers is implementation defined, their
1067 	 * number is stored in the MPAMIDR_EL1 register.
1068 	 */
1069 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1070 	case 7:
1071 		write_ctx_reg(ctx, CTX_MPAMVPM7_EL2, read_mpamvpm7_el2());
1072 		__fallthrough;
1073 	case 6:
1074 		write_ctx_reg(ctx, CTX_MPAMVPM6_EL2, read_mpamvpm6_el2());
1075 		__fallthrough;
1076 	case 5:
1077 		write_ctx_reg(ctx, CTX_MPAMVPM5_EL2, read_mpamvpm5_el2());
1078 		__fallthrough;
1079 	case 4:
1080 		write_ctx_reg(ctx, CTX_MPAMVPM4_EL2, read_mpamvpm4_el2());
1081 		__fallthrough;
1082 	case 3:
1083 		write_ctx_reg(ctx, CTX_MPAMVPM3_EL2, read_mpamvpm3_el2());
1084 		__fallthrough;
1085 	case 2:
1086 		write_ctx_reg(ctx, CTX_MPAMVPM2_EL2, read_mpamvpm2_el2());
1087 		__fallthrough;
1088 	case 1:
1089 		write_ctx_reg(ctx, CTX_MPAMVPM1_EL2, read_mpamvpm1_el2());
1090 		break;
1091 	}
1092 }
1093 
1094 #endif /* CTX_INCLUDE_MPAM_REGS */
1095 
1096 #if CTX_INCLUDE_MPAM_REGS
1097 static void el2_sysregs_context_restore_mpam(mpam_t *ctx)
1098 {
1099 	u_register_t mpam_idr = read_mpamidr_el1();
1100 
1101 	write_mpam2_el2(read_ctx_reg(ctx, CTX_MPAM2_EL2));
1102 
1103 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1104 		return;
1105 	}
1106 
1107 	write_mpamhcr_el2(read_ctx_reg(ctx, CTX_MPAMHCR_EL2));
1108 	write_mpamvpm0_el2(read_ctx_reg(ctx, CTX_MPAMVPM0_EL2));
1109 	write_mpamvpmv_el2(read_ctx_reg(ctx, CTX_MPAMVPMV_EL2));
1110 
1111 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1112 	case 7:
1113 		write_mpamvpm7_el2(read_ctx_reg(ctx, CTX_MPAMVPM7_EL2));
1114 		__fallthrough;
1115 	case 6:
1116 		write_mpamvpm6_el2(read_ctx_reg(ctx, CTX_MPAMVPM6_EL2));
1117 		__fallthrough;
1118 	case 5:
1119 		write_mpamvpm5_el2(read_ctx_reg(ctx, CTX_MPAMVPM5_EL2));
1120 		__fallthrough;
1121 	case 4:
1122 		write_mpamvpm4_el2(read_ctx_reg(ctx, CTX_MPAMVPM4_EL2));
1123 		__fallthrough;
1124 	case 3:
1125 		write_mpamvpm3_el2(read_ctx_reg(ctx, CTX_MPAMVPM3_EL2));
1126 		__fallthrough;
1127 	case 2:
1128 		write_mpamvpm2_el2(read_ctx_reg(ctx, CTX_MPAMVPM2_EL2));
1129 		__fallthrough;
1130 	case 1:
1131 		write_mpamvpm1_el2(read_ctx_reg(ctx, CTX_MPAMVPM1_EL2));
1132 		break;
1133 	}
1134 }
1135 #endif /* CTX_INCLUDE_MPAM_REGS */
1136 
1137 /* ---------------------------------------------------------------------------
1138  * The following registers are not added:
1139  * ICH_AP0R<n>_EL2
1140  * ICH_AP1R<n>_EL2
1141  * ICH_LR<n>_EL2
1142  *
1143  * NOTE: For a system with S-EL2 present but not enabled, accessing
1144  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1145  * SCR_EL3.NS = 1 before accessing this register.
1146  * ---------------------------------------------------------------------------
1147  */
1148 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx)
1149 {
1150 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1151 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1152 #else
1153 	u_register_t scr_el3 = read_scr_el3();
1154 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1155 	isb();
1156 
1157 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1158 
1159 	write_scr_el3(scr_el3);
1160 	isb();
1161 #endif
1162 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1163 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1164 }
1165 
1166 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx)
1167 {
1168 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1169 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1170 #else
1171 	u_register_t scr_el3 = read_scr_el3();
1172 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1173 	isb();
1174 
1175 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1176 
1177 	write_scr_el3(scr_el3);
1178 	isb();
1179 #endif
1180 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1181 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1182 }
1183 
1184 /* -----------------------------------------------------
1185  * The following registers are not added:
1186  * AMEVCNTVOFF0<n>_EL2
1187  * AMEVCNTVOFF1<n>_EL2
1188  * -----------------------------------------------------
1189  */
1190 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1191 {
1192 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1193 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1194 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1195 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1196 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1197 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1198 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1199 	if (CTX_INCLUDE_AARCH32_REGS) {
1200 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1201 	}
1202 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1203 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1204 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1205 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1206 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1207 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1208 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1209 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1210 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1211 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1212 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1213 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1214 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1215 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1216 	write_el2_ctx_common(ctx, ttbr0_el2, read_ttbr0_el2());
1217 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1218 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1219 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1220 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1221 	write_el2_ctx_common(ctx, vttbr_el2, read_vttbr_el2());
1222 }
1223 
1224 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1225 {
1226 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1227 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1228 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1229 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1230 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1231 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1232 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1233 	if (CTX_INCLUDE_AARCH32_REGS) {
1234 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1235 	}
1236 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1237 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1238 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1239 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1240 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1241 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1242 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1243 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1244 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1245 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1246 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1247 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1248 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1249 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1250 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1251 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1252 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1253 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1254 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1255 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1256 }
1257 
1258 /*******************************************************************************
1259  * Save EL2 sysreg context
1260  ******************************************************************************/
1261 void cm_el2_sysregs_context_save(uint32_t security_state)
1262 {
1263 	cpu_context_t *ctx;
1264 	el2_sysregs_t *el2_sysregs_ctx;
1265 
1266 	ctx = cm_get_context(security_state);
1267 	assert(ctx != NULL);
1268 
1269 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1270 
1271 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1272 	el2_sysregs_context_save_gic(el2_sysregs_ctx);
1273 
1274 	if (is_feat_mte_supported()) {
1275 		write_el2_ctx_mte(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1276 	}
1277 
1278 #if CTX_INCLUDE_MPAM_REGS
1279 	if (is_feat_mpam_supported()) {
1280 		mpam_t *mpam_ctx = get_mpam_ctx(ctx);
1281 		el2_sysregs_context_save_mpam(mpam_ctx);
1282 	}
1283 #endif
1284 
1285 	if (is_feat_fgt_supported()) {
1286 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1287 	}
1288 
1289 	if (is_feat_ecv_v2_supported()) {
1290 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1291 	}
1292 
1293 	if (is_feat_vhe_supported()) {
1294 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1295 					read_contextidr_el2());
1296 		write_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1297 	}
1298 
1299 	if (is_feat_ras_supported()) {
1300 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1301 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1302 	}
1303 
1304 	if (is_feat_nv2_supported()) {
1305 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1306 	}
1307 
1308 	if (is_feat_trf_supported()) {
1309 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1310 	}
1311 
1312 	if (is_feat_csv2_2_supported()) {
1313 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1314 					read_scxtnum_el2());
1315 	}
1316 
1317 	if (is_feat_hcx_supported()) {
1318 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1319 	}
1320 
1321 	if (is_feat_tcr2_supported()) {
1322 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1323 	}
1324 
1325 	if (is_feat_sxpie_supported()) {
1326 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1327 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1328 	}
1329 
1330 	if (is_feat_sxpoe_supported()) {
1331 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1332 	}
1333 
1334 	if (is_feat_s2pie_supported()) {
1335 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1336 	}
1337 
1338 	if (is_feat_gcs_supported()) {
1339 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcspr_el2());
1340 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcscr_el2());
1341 	}
1342 }
1343 
1344 /*******************************************************************************
1345  * Restore EL2 sysreg context
1346  ******************************************************************************/
1347 void cm_el2_sysregs_context_restore(uint32_t security_state)
1348 {
1349 	cpu_context_t *ctx;
1350 	el2_sysregs_t *el2_sysregs_ctx;
1351 
1352 	ctx = cm_get_context(security_state);
1353 	assert(ctx != NULL);
1354 
1355 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1356 
1357 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1358 	el2_sysregs_context_restore_gic(el2_sysregs_ctx);
1359 
1360 	if (is_feat_mte_supported()) {
1361 		write_tfsr_el2(read_el2_ctx_mte(el2_sysregs_ctx, tfsr_el2));
1362 	}
1363 
1364 #if CTX_INCLUDE_MPAM_REGS
1365 	if (is_feat_mpam_supported()) {
1366 		mpam_t *mpam_ctx = get_mpam_ctx(ctx);
1367 		el2_sysregs_context_restore_mpam(mpam_ctx);
1368 	}
1369 #endif
1370 
1371 	if (is_feat_fgt_supported()) {
1372 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1373 	}
1374 
1375 	if (is_feat_ecv_v2_supported()) {
1376 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1377 	}
1378 
1379 	if (is_feat_vhe_supported()) {
1380 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1381 					contextidr_el2));
1382 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1383 	}
1384 
1385 	if (is_feat_ras_supported()) {
1386 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1387 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1388 	}
1389 
1390 	if (is_feat_nv2_supported()) {
1391 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1392 	}
1393 
1394 	if (is_feat_trf_supported()) {
1395 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1396 	}
1397 
1398 	if (is_feat_csv2_2_supported()) {
1399 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1400 					scxtnum_el2));
1401 	}
1402 
1403 	if (is_feat_hcx_supported()) {
1404 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1405 	}
1406 
1407 	if (is_feat_tcr2_supported()) {
1408 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1409 	}
1410 
1411 	if (is_feat_sxpie_supported()) {
1412 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1413 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1414 	}
1415 
1416 	if (is_feat_sxpoe_supported()) {
1417 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1418 	}
1419 
1420 	if (is_feat_s2pie_supported()) {
1421 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1422 	}
1423 
1424 	if (is_feat_gcs_supported()) {
1425 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1426 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1427 	}
1428 }
1429 #endif /* CTX_INCLUDE_EL2_REGS */
1430 
1431 /*******************************************************************************
1432  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1433  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1434  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1435  * cm_prepare_el3_exit function.
1436  ******************************************************************************/
1437 void cm_prepare_el3_exit_ns(void)
1438 {
1439 #if CTX_INCLUDE_EL2_REGS
1440 #if ENABLE_ASSERTIONS
1441 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1442 	assert(ctx != NULL);
1443 
1444 	/* Assert that EL2 is used. */
1445 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1446 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1447 			(el_implemented(2U) != EL_IMPL_NONE));
1448 #endif /* ENABLE_ASSERTIONS */
1449 
1450 	/* Restore EL2 and EL1 sysreg contexts */
1451 	cm_el2_sysregs_context_restore(NON_SECURE);
1452 	cm_el1_sysregs_context_restore(NON_SECURE);
1453 	cm_set_next_eret_context(NON_SECURE);
1454 #else
1455 	cm_prepare_el3_exit(NON_SECURE);
1456 #endif /* CTX_INCLUDE_EL2_REGS */
1457 }
1458 
1459 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1460 {
1461 	write_ctx_reg(ctx, CTX_SPSR_EL1, read_spsr_el1());
1462 	write_ctx_reg(ctx, CTX_ELR_EL1, read_elr_el1());
1463 
1464 #if !ERRATA_SPECULATIVE_AT
1465 	write_ctx_reg(ctx, CTX_SCTLR_EL1, read_sctlr_el1());
1466 	write_ctx_reg(ctx, CTX_TCR_EL1, read_tcr_el1());
1467 #endif /* (!ERRATA_SPECULATIVE_AT) */
1468 
1469 	write_ctx_reg(ctx, CTX_CPACR_EL1, read_cpacr_el1());
1470 	write_ctx_reg(ctx, CTX_CSSELR_EL1, read_csselr_el1());
1471 	write_ctx_reg(ctx, CTX_SP_EL1, read_sp_el1());
1472 	write_ctx_reg(ctx, CTX_ESR_EL1, read_esr_el1());
1473 	write_ctx_reg(ctx, CTX_TTBR0_EL1, read_ttbr0_el1());
1474 	write_ctx_reg(ctx, CTX_TTBR1_EL1, read_ttbr1_el1());
1475 	write_ctx_reg(ctx, CTX_MAIR_EL1, read_mair_el1());
1476 	write_ctx_reg(ctx, CTX_AMAIR_EL1, read_amair_el1());
1477 	write_ctx_reg(ctx, CTX_ACTLR_EL1, read_actlr_el1());
1478 	write_ctx_reg(ctx, CTX_TPIDR_EL1, read_tpidr_el1());
1479 	write_ctx_reg(ctx, CTX_TPIDR_EL0, read_tpidr_el0());
1480 	write_ctx_reg(ctx, CTX_TPIDRRO_EL0, read_tpidrro_el0());
1481 	write_ctx_reg(ctx, CTX_PAR_EL1, read_par_el1());
1482 	write_ctx_reg(ctx, CTX_FAR_EL1, read_far_el1());
1483 	write_ctx_reg(ctx, CTX_AFSR0_EL1, read_afsr0_el1());
1484 	write_ctx_reg(ctx, CTX_AFSR1_EL1, read_afsr1_el1());
1485 	write_ctx_reg(ctx, CTX_CONTEXTIDR_EL1, read_contextidr_el1());
1486 	write_ctx_reg(ctx, CTX_VBAR_EL1, read_vbar_el1());
1487 
1488 #if CTX_INCLUDE_AARCH32_REGS
1489 	write_ctx_reg(ctx, CTX_SPSR_ABT, read_spsr_abt());
1490 	write_ctx_reg(ctx, CTX_SPSR_UND, read_spsr_und());
1491 	write_ctx_reg(ctx, CTX_SPSR_IRQ, read_spsr_irq());
1492 	write_ctx_reg(ctx, CTX_SPSR_FIQ, read_spsr_fiq());
1493 	write_ctx_reg(ctx, CTX_DACR32_EL2, read_dacr32_el2());
1494 	write_ctx_reg(ctx, CTX_IFSR32_EL2, read_ifsr32_el2());
1495 #endif /* CTX_INCLUDE_AARCH32_REGS */
1496 
1497 #if NS_TIMER_SWITCH
1498 	write_ctx_reg(ctx, CTX_CNTP_CTL_EL0, read_cntp_ctl_el0());
1499 	write_ctx_reg(ctx, CTX_CNTP_CVAL_EL0, read_cntp_cval_el0());
1500 	write_ctx_reg(ctx, CTX_CNTV_CTL_EL0, read_cntv_ctl_el0());
1501 	write_ctx_reg(ctx, CTX_CNTV_CVAL_EL0, read_cntv_cval_el0());
1502 	write_ctx_reg(ctx, CTX_CNTKCTL_EL1, read_cntkctl_el1());
1503 #endif /* NS_TIMER_SWITCH */
1504 
1505 #if ENABLE_FEAT_MTE
1506 	write_ctx_reg(ctx, CTX_TFSRE0_EL1, read_tfsre0_el1());
1507 	write_ctx_reg(ctx, CTX_TFSR_EL1, read_tfsr_el1());
1508 	write_ctx_reg(ctx, CTX_RGSR_EL1, read_rgsr_el1());
1509 	write_ctx_reg(ctx, CTX_GCR_EL1, read_gcr_el1());
1510 #endif /* ENABLE_FEAT_MTE */
1511 
1512 }
1513 
1514 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1515 {
1516 	write_spsr_el1(read_ctx_reg(ctx, CTX_SPSR_EL1));
1517 	write_elr_el1(read_ctx_reg(ctx, CTX_ELR_EL1));
1518 
1519 #if !ERRATA_SPECULATIVE_AT
1520 	write_sctlr_el1(read_ctx_reg(ctx, CTX_SCTLR_EL1));
1521 	write_tcr_el1(read_ctx_reg(ctx, CTX_TCR_EL1));
1522 #endif /* (!ERRATA_SPECULATIVE_AT) */
1523 
1524 	write_cpacr_el1(read_ctx_reg(ctx, CTX_CPACR_EL1));
1525 	write_csselr_el1(read_ctx_reg(ctx, CTX_CSSELR_EL1));
1526 	write_sp_el1(read_ctx_reg(ctx, CTX_SP_EL1));
1527 	write_esr_el1(read_ctx_reg(ctx, CTX_ESR_EL1));
1528 	write_ttbr0_el1(read_ctx_reg(ctx, CTX_TTBR0_EL1));
1529 	write_ttbr1_el1(read_ctx_reg(ctx, CTX_TTBR1_EL1));
1530 	write_mair_el1(read_ctx_reg(ctx, CTX_MAIR_EL1));
1531 	write_amair_el1(read_ctx_reg(ctx, CTX_AMAIR_EL1));
1532 	write_actlr_el1(read_ctx_reg(ctx, CTX_ACTLR_EL1));
1533 	write_tpidr_el1(read_ctx_reg(ctx, CTX_TPIDR_EL1));
1534 	write_tpidr_el0(read_ctx_reg(ctx, CTX_TPIDR_EL0));
1535 	write_tpidrro_el0(read_ctx_reg(ctx, CTX_TPIDRRO_EL0));
1536 	write_par_el1(read_ctx_reg(ctx, CTX_PAR_EL1));
1537 	write_far_el1(read_ctx_reg(ctx, CTX_FAR_EL1));
1538 	write_afsr0_el1(read_ctx_reg(ctx, CTX_AFSR0_EL1));
1539 	write_afsr1_el1(read_ctx_reg(ctx, CTX_AFSR1_EL1));
1540 	write_contextidr_el1(read_ctx_reg(ctx, CTX_CONTEXTIDR_EL1));
1541 	write_vbar_el1(read_ctx_reg(ctx, CTX_VBAR_EL1));
1542 
1543 #if CTX_INCLUDE_AARCH32_REGS
1544 	write_spsr_abt(read_ctx_reg(ctx, CTX_SPSR_ABT));
1545 	write_spsr_und(read_ctx_reg(ctx, CTX_SPSR_UND));
1546 	write_spsr_irq(read_ctx_reg(ctx, CTX_SPSR_IRQ));
1547 	write_spsr_fiq(read_ctx_reg(ctx, CTX_SPSR_FIQ));
1548 	write_dacr32_el2(read_ctx_reg(ctx, CTX_DACR32_EL2));
1549 	write_ifsr32_el2(read_ctx_reg(ctx, CTX_IFSR32_EL2));
1550 #endif /* CTX_INCLUDE_AARCH32_REGS */
1551 
1552 #if NS_TIMER_SWITCH
1553 	write_cntp_ctl_el0(read_ctx_reg(ctx, CTX_CNTP_CTL_EL0));
1554 	write_cntp_cval_el0(read_ctx_reg(ctx, CTX_CNTP_CVAL_EL0));
1555 	write_cntv_ctl_el0(read_ctx_reg(ctx, CTX_CNTV_CTL_EL0));
1556 	write_cntv_cval_el0(read_ctx_reg(ctx, CTX_CNTV_CVAL_EL0));
1557 	write_cntkctl_el1(read_ctx_reg(ctx, CTX_CNTKCTL_EL1));
1558 #endif /* NS_TIMER_SWITCH */
1559 
1560 #if ENABLE_FEAT_MTE
1561 	write_tfsre0_el1(read_ctx_reg(ctx, CTX_TFSRE0_EL1));
1562 	write_tfsr_el1(read_ctx_reg(ctx, CTX_TFSR_EL1));
1563 	write_rgsr_el1(read_ctx_reg(ctx, CTX_RGSR_EL1));
1564 	write_gcr_el1(read_ctx_reg(ctx, CTX_GCR_EL1));
1565 #endif /* ENABLE_FEAT_MTE */
1566 
1567 }
1568 
1569 /*******************************************************************************
1570  * The next four functions are used by runtime services to save and restore
1571  * EL1 context on the 'cpu_context' structure for the specified security
1572  * state.
1573  ******************************************************************************/
1574 void cm_el1_sysregs_context_save(uint32_t security_state)
1575 {
1576 	cpu_context_t *ctx;
1577 
1578 	ctx = cm_get_context(security_state);
1579 	assert(ctx != NULL);
1580 
1581 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1582 
1583 #if IMAGE_BL31
1584 	if (security_state == SECURE)
1585 		PUBLISH_EVENT(cm_exited_secure_world);
1586 	else
1587 		PUBLISH_EVENT(cm_exited_normal_world);
1588 #endif
1589 }
1590 
1591 void cm_el1_sysregs_context_restore(uint32_t security_state)
1592 {
1593 	cpu_context_t *ctx;
1594 
1595 	ctx = cm_get_context(security_state);
1596 	assert(ctx != NULL);
1597 
1598 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1599 
1600 #if IMAGE_BL31
1601 	if (security_state == SECURE)
1602 		PUBLISH_EVENT(cm_entering_secure_world);
1603 	else
1604 		PUBLISH_EVENT(cm_entering_normal_world);
1605 #endif
1606 }
1607 
1608 /*******************************************************************************
1609  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1610  * given security state with the given entrypoint
1611  ******************************************************************************/
1612 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1613 {
1614 	cpu_context_t *ctx;
1615 	el3_state_t *state;
1616 
1617 	ctx = cm_get_context(security_state);
1618 	assert(ctx != NULL);
1619 
1620 	/* Populate EL3 state so that ERET jumps to the correct entry */
1621 	state = get_el3state_ctx(ctx);
1622 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1623 }
1624 
1625 /*******************************************************************************
1626  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1627  * pertaining to the given security state
1628  ******************************************************************************/
1629 void cm_set_elr_spsr_el3(uint32_t security_state,
1630 			uintptr_t entrypoint, uint32_t spsr)
1631 {
1632 	cpu_context_t *ctx;
1633 	el3_state_t *state;
1634 
1635 	ctx = cm_get_context(security_state);
1636 	assert(ctx != NULL);
1637 
1638 	/* Populate EL3 state so that ERET jumps to the correct entry */
1639 	state = get_el3state_ctx(ctx);
1640 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1641 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1642 }
1643 
1644 /*******************************************************************************
1645  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1646  * pertaining to the given security state using the value and bit position
1647  * specified in the parameters. It preserves all other bits.
1648  ******************************************************************************/
1649 void cm_write_scr_el3_bit(uint32_t security_state,
1650 			  uint32_t bit_pos,
1651 			  uint32_t value)
1652 {
1653 	cpu_context_t *ctx;
1654 	el3_state_t *state;
1655 	u_register_t scr_el3;
1656 
1657 	ctx = cm_get_context(security_state);
1658 	assert(ctx != NULL);
1659 
1660 	/* Ensure that the bit position is a valid one */
1661 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1662 
1663 	/* Ensure that the 'value' is only a bit wide */
1664 	assert(value <= 1U);
1665 
1666 	/*
1667 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1668 	 * and set it to its new value.
1669 	 */
1670 	state = get_el3state_ctx(ctx);
1671 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1672 	scr_el3 &= ~(1UL << bit_pos);
1673 	scr_el3 |= (u_register_t)value << bit_pos;
1674 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1675 }
1676 
1677 /*******************************************************************************
1678  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1679  * given security state.
1680  ******************************************************************************/
1681 u_register_t cm_get_scr_el3(uint32_t security_state)
1682 {
1683 	cpu_context_t *ctx;
1684 	el3_state_t *state;
1685 
1686 	ctx = cm_get_context(security_state);
1687 	assert(ctx != NULL);
1688 
1689 	/* Populate EL3 state so that ERET jumps to the correct entry */
1690 	state = get_el3state_ctx(ctx);
1691 	return read_ctx_reg(state, CTX_SCR_EL3);
1692 }
1693 
1694 /*******************************************************************************
1695  * This function is used to program the context that's used for exception
1696  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1697  * the required security state
1698  ******************************************************************************/
1699 void cm_set_next_eret_context(uint32_t security_state)
1700 {
1701 	cpu_context_t *ctx;
1702 
1703 	ctx = cm_get_context(security_state);
1704 	assert(ctx != NULL);
1705 
1706 	cm_set_next_context(ctx);
1707 }
1708