xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 6d0433f04045f52856ecb837efc873a5504d9fa2)
1 /*
2  * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/cpus/cpu_ops.h>
23 #include <lib/cpus/errata.h>
24 #include <lib/el3_runtime/context_mgmt.h>
25 #include <lib/el3_runtime/cpu_data.h>
26 #include <lib/el3_runtime/pubsub_events.h>
27 #include <lib/extensions/amu.h>
28 #include <lib/extensions/brbe.h>
29 #include <lib/extensions/debug_v8p9.h>
30 #include <lib/extensions/fgt2.h>
31 #include <lib/extensions/mpam.h>
32 #include <lib/extensions/pmuv3.h>
33 #include <lib/extensions/sme.h>
34 #include <lib/extensions/spe.h>
35 #include <lib/extensions/sve.h>
36 #include <lib/extensions/sys_reg_trace.h>
37 #include <lib/extensions/tcr2.h>
38 #include <lib/extensions/trbe.h>
39 #include <lib/extensions/trf.h>
40 #include <lib/utils.h>
41 
42 #if ENABLE_FEAT_TWED
43 /* Make sure delay value fits within the range(0-15) */
44 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
45 #endif /* ENABLE_FEAT_TWED */
46 
47 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
48 static bool has_secure_perworld_init;
49 
50 static void manage_extensions_common(cpu_context_t *ctx);
51 static void manage_extensions_nonsecure(cpu_context_t *ctx);
52 static void manage_extensions_secure(cpu_context_t *ctx);
53 static void manage_extensions_secure_per_world(void);
54 
55 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
56 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
57 {
58 	u_register_t sctlr_elx, actlr_elx;
59 
60 	/*
61 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
62 	 * execution state setting all fields rather than relying on the hw.
63 	 * Some fields have architecturally UNKNOWN reset values and these are
64 	 * set to zero.
65 	 *
66 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
67 	 *
68 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
69 	 * required by PSCI specification)
70 	 */
71 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
72 	if (GET_RW(ep->spsr) == MODE_RW_64) {
73 		sctlr_elx |= SCTLR_EL1_RES1;
74 	} else {
75 		/*
76 		 * If the target execution state is AArch32 then the following
77 		 * fields need to be set.
78 		 *
79 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
80 		 *  instructions are not trapped to EL1.
81 		 *
82 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
83 		 *  instructions are not trapped to EL1.
84 		 *
85 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
86 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
87 		 */
88 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
89 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
90 	}
91 
92 	/*
93 	 * If workaround of errata 764081 for Cortex-A75 is used then set
94 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
95 	 */
96 	if (errata_a75_764081_applies()) {
97 		sctlr_elx |= SCTLR_IESB_BIT;
98 	}
99 
100 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
101 	write_ctx_sctlr_el1_reg_errata(ctx, sctlr_elx);
102 
103 	/*
104 	 * Base the context ACTLR_EL1 on the current value, as it is
105 	 * implementation defined. The context restore process will write
106 	 * the value from the context to the actual register and can cause
107 	 * problems for processor cores that don't expect certain bits to
108 	 * be zero.
109 	 */
110 	actlr_elx = read_actlr_el1();
111 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx);
112 }
113 #endif /* (IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)) */
114 
115 /******************************************************************************
116  * This function performs initializations that are specific to SECURE state
117  * and updates the cpu context specified by 'ctx'.
118  *****************************************************************************/
119 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
120 {
121 	u_register_t scr_el3;
122 	el3_state_t *state;
123 
124 	state = get_el3state_ctx(ctx);
125 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
126 
127 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
128 	/*
129 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
130 	 * indicated by the interrupt routing model for BL31.
131 	 */
132 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
133 #endif
134 
135 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
136 	if (is_feat_mte2_supported()) {
137 		scr_el3 |= SCR_ATA_BIT;
138 	}
139 
140 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
141 
142 	/*
143 	 * Initialize EL1 context registers unless SPMC is running
144 	 * at S-EL2.
145 	 */
146 #if (!SPMD_SPM_AT_SEL2)
147 	setup_el1_context(ctx, ep);
148 #endif
149 
150 	manage_extensions_secure(ctx);
151 
152 	/**
153 	 * manage_extensions_secure_per_world api has to be executed once,
154 	 * as the registers getting initialised, maintain constant value across
155 	 * all the cpus for the secure world.
156 	 * Henceforth, this check ensures that the registers are initialised once
157 	 * and avoids re-initialization from multiple cores.
158 	 */
159 	if (!has_secure_perworld_init) {
160 		manage_extensions_secure_per_world();
161 	}
162 }
163 
164 #if ENABLE_RME
165 /******************************************************************************
166  * This function performs initializations that are specific to REALM state
167  * and updates the cpu context specified by 'ctx'.
168  *****************************************************************************/
169 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
170 {
171 	u_register_t scr_el3;
172 	el3_state_t *state;
173 
174 	state = get_el3state_ctx(ctx);
175 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
176 
177 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
178 
179 	/* CSV2 version 2 and above */
180 	if (is_feat_csv2_2_supported()) {
181 		/* Enable access to the SCXTNUM_ELx registers. */
182 		scr_el3 |= SCR_EnSCXT_BIT;
183 	}
184 
185 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
186 }
187 #endif /* ENABLE_RME */
188 
189 /******************************************************************************
190  * This function performs initializations that are specific to NON-SECURE state
191  * and updates the cpu context specified by 'ctx'.
192  *****************************************************************************/
193 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
194 {
195 	u_register_t scr_el3;
196 	el3_state_t *state;
197 
198 	state = get_el3state_ctx(ctx);
199 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
200 
201 	/* SCR_NS: Set the NS bit */
202 	scr_el3 |= SCR_NS_BIT;
203 
204 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
205 	if (is_feat_mte2_supported()) {
206 		scr_el3 |= SCR_ATA_BIT;
207 	}
208 
209 #if !CTX_INCLUDE_PAUTH_REGS
210 	/*
211 	 * Pointer Authentication feature, if present, is always enabled by default
212 	 * for Non secure lower exception levels. We do not have an explicit
213 	 * flag to set it.
214 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
215 	 * exception levels of secure and realm worlds.
216 	 *
217 	 * To prevent the leakage between the worlds during world switch,
218 	 * we enable it only for the non-secure world.
219 	 *
220 	 * If the Secure/realm world wants to use pointer authentication,
221 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
222 	 * it will be enabled globally for all the contexts.
223 	 *
224 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
225 	 *  other than EL3
226 	 *
227 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
228 	 *  than EL3
229 	 */
230 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
231 
232 #endif /* CTX_INCLUDE_PAUTH_REGS */
233 
234 #if HANDLE_EA_EL3_FIRST_NS
235 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
236 	scr_el3 |= SCR_EA_BIT;
237 #endif
238 
239 #if RAS_TRAP_NS_ERR_REC_ACCESS
240 	/*
241 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
242 	 * and RAS ERX registers from EL1 and EL2(from any security state)
243 	 * are trapped to EL3.
244 	 * Set here to trap only for NS EL1/EL2
245 	 *
246 	 */
247 	scr_el3 |= SCR_TERR_BIT;
248 #endif
249 
250 	/* CSV2 version 2 and above */
251 	if (is_feat_csv2_2_supported()) {
252 		/* Enable access to the SCXTNUM_ELx registers. */
253 		scr_el3 |= SCR_EnSCXT_BIT;
254 	}
255 
256 #ifdef IMAGE_BL31
257 	/*
258 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
259 	 *  indicated by the interrupt routing model for BL31.
260 	 */
261 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
262 #endif
263 
264 	if (is_feat_the_supported()) {
265 		/* Set the RCWMASKEn bit in SCR_EL3 to enable access to
266 		 * RCWMASK_EL1 and RCWSMASK_EL1 registers.
267 		 */
268 		scr_el3 |= SCR_RCWMASKEn_BIT;
269 	}
270 
271 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
272 
273 	/* Initialize EL2 context registers */
274 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
275 
276 	/*
277 	 * Initialize SCTLR_EL2 context register with reset value.
278 	 */
279 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
280 
281 	if (is_feat_hcx_supported()) {
282 		/*
283 		 * Initialize register HCRX_EL2 with its init value.
284 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
285 		 * chance that this can lead to unexpected behavior in lower
286 		 * ELs that have not been updated since the introduction of
287 		 * this feature if not properly initialized, especially when
288 		 * it comes to those bits that enable/disable traps.
289 		 */
290 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
291 			HCRX_EL2_INIT_VAL);
292 	}
293 
294 	if (is_feat_fgt_supported()) {
295 		/*
296 		 * Initialize HFG*_EL2 registers with a default value so legacy
297 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
298 		 * of initialization for this feature.
299 		 */
300 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
301 			HFGITR_EL2_INIT_VAL);
302 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
303 			HFGRTR_EL2_INIT_VAL);
304 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
305 			HFGWTR_EL2_INIT_VAL);
306 	}
307 #else
308 	/* Initialize EL1 context registers */
309 	setup_el1_context(ctx, ep);
310 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
311 
312 	manage_extensions_nonsecure(ctx);
313 }
314 
315 /*******************************************************************************
316  * The following function performs initialization of the cpu_context 'ctx'
317  * for first use that is common to all security states, and sets the
318  * initial entrypoint state as specified by the entry_point_info structure.
319  *
320  * The EE and ST attributes are used to configure the endianness and secure
321  * timer availability for the new execution context.
322  ******************************************************************************/
323 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
324 {
325 	u_register_t scr_el3;
326 	u_register_t mdcr_el3;
327 	el3_state_t *state;
328 	gp_regs_t *gp_regs;
329 
330 	state = get_el3state_ctx(ctx);
331 
332 	/* Clear any residual register values from the context */
333 	zeromem(ctx, sizeof(*ctx));
334 
335 	/*
336 	 * The lower-EL context is zeroed so that no stale values leak to a world.
337 	 * It is assumed that an all-zero lower-EL context is good enough for it
338 	 * to boot correctly. However, there are very few registers where this
339 	 * is not true and some values need to be recreated.
340 	 */
341 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
342 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
343 
344 	/*
345 	 * These bits are set in the gicv3 driver. Losing them (especially the
346 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
347 	 */
348 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
349 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
350 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
351 
352 	/*
353 	 * The actlr_el2 register can be initialized in platform's reset handler
354 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
355 	 */
356 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
357 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
358 
359 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
360 	scr_el3 = SCR_RESET_VAL;
361 
362 	/*
363 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
364 	 *  EL2, EL1 and EL0 are not trapped to EL3.
365 	 *
366 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
367 	 *  EL2, EL1 and EL0 are not trapped to EL3.
368 	 *
369 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
370 	 *  both Security states and both Execution states.
371 	 *
372 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
373 	 *  Non-secure memory.
374 	 */
375 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
376 
377 	scr_el3 |= SCR_SIF_BIT;
378 
379 	/*
380 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
381 	 *  Exception level as specified by SPSR.
382 	 */
383 	if (GET_RW(ep->spsr) == MODE_RW_64) {
384 		scr_el3 |= SCR_RW_BIT;
385 	}
386 
387 	/*
388 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
389 	 * Secure timer registers to EL3, from AArch64 state only, if specified
390 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
391 	 * bit always behaves as 1 (i.e. secure physical timer register access
392 	 * is not trapped)
393 	 */
394 	if (EP_GET_ST(ep->h.attr) != 0U) {
395 		scr_el3 |= SCR_ST_BIT;
396 	}
397 
398 	/*
399 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
400 	 * SCR_EL3.HXEn.
401 	 */
402 	if (is_feat_hcx_supported()) {
403 		scr_el3 |= SCR_HXEn_BIT;
404 	}
405 
406 	/*
407 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
408 	 * registers are trapped to EL3.
409 	 */
410 #if ENABLE_FEAT_RNG_TRAP
411 	scr_el3 |= SCR_TRNDR_BIT;
412 #endif
413 
414 #if FAULT_INJECTION_SUPPORT
415 	/* Enable fault injection from lower ELs */
416 	scr_el3 |= SCR_FIEN_BIT;
417 #endif
418 
419 #if CTX_INCLUDE_PAUTH_REGS
420 	/*
421 	 * Enable Pointer Authentication globally for all the worlds.
422 	 *
423 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
424 	 *  other than EL3
425 	 *
426 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
427 	 *  than EL3
428 	 */
429 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
430 #endif /* CTX_INCLUDE_PAUTH_REGS */
431 
432 	/*
433 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
434 	 */
435 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
436 		scr_el3 |= SCR_TCR2EN_BIT;
437 	}
438 
439 	/*
440 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
441 	 * registers for AArch64 if present.
442 	 */
443 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
444 		scr_el3 |= SCR_PIEN_BIT;
445 	}
446 
447 	/*
448 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
449 	 */
450 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
451 		scr_el3 |= SCR_GCSEn_BIT;
452 	}
453 
454 	/*
455 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
456 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
457 	 * next mode is Hyp.
458 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
459 	 * same conditions as HVC instructions and when the processor supports
460 	 * ARMv8.6-FGT.
461 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
462 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
463 	 * and when the processor supports ECV.
464 	 */
465 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
466 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
467 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
468 		scr_el3 |= SCR_HCE_BIT;
469 
470 		if (is_feat_fgt_supported()) {
471 			scr_el3 |= SCR_FGTEN_BIT;
472 		}
473 
474 		if (is_feat_ecv_supported()) {
475 			scr_el3 |= SCR_ECVEN_BIT;
476 		}
477 	}
478 
479 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
480 	if (is_feat_twed_supported()) {
481 		/* Set delay in SCR_EL3 */
482 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
483 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
484 				<< SCR_TWEDEL_SHIFT);
485 
486 		/* Enable WFE delay */
487 		scr_el3 |= SCR_TWEDEn_BIT;
488 	}
489 
490 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
491 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
492 	if (is_feat_sel2_supported()) {
493 		scr_el3 |= SCR_EEL2_BIT;
494 	}
495 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
496 
497 	/*
498 	 * Populate EL3 state so that we've the right context
499 	 * before doing ERET
500 	 */
501 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
502 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
503 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
504 
505 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
506 	mdcr_el3 = MDCR_EL3_RESET_VAL;
507 
508 	/* ---------------------------------------------------------------------
509 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
510 	 * Some fields are architecturally UNKNOWN on reset.
511 	 *
512 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
513 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
514 	 *  disabled from all ELs in Secure state.
515 	 *
516 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
517 	 *  privileged debug from S-EL1.
518 	 *
519 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
520 	 *  access to the powerdown debug registers do not trap to EL3.
521 	 *
522 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
523 	 *  debug registers, other than those registers that are controlled by
524 	 *  MDCR_EL3.TDOSA.
525 	 */
526 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
527 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
528 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
529 
530 	/*
531 	 * Configure MDCR_EL3 register as applicable for each world
532 	 * (NS/Secure/Realm) context.
533 	 */
534 	manage_extensions_common(ctx);
535 
536 	/*
537 	 * Store the X0-X7 value from the entrypoint into the context
538 	 * Use memcpy as we are in control of the layout of the structures
539 	 */
540 	gp_regs = get_gpregs_ctx(ctx);
541 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
542 }
543 
544 /*******************************************************************************
545  * Context management library initialization routine. This library is used by
546  * runtime services to share pointers to 'cpu_context' structures for secure
547  * non-secure and realm states. Management of the structures and their associated
548  * memory is not done by the context management library e.g. the PSCI service
549  * manages the cpu context used for entry from and exit to the non-secure state.
550  * The Secure payload dispatcher service manages the context(s) corresponding to
551  * the secure state. It also uses this library to get access to the non-secure
552  * state cpu context pointers.
553  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
554  * which will be used for programming an entry into a lower EL. The same context
555  * will be used to save state upon exception entry from that EL.
556  ******************************************************************************/
557 void __init cm_init(void)
558 {
559 	/*
560 	 * The context management library has only global data to initialize, but
561 	 * that will be done when the BSS is zeroed out.
562 	 */
563 }
564 
565 /*******************************************************************************
566  * This is the high-level function used to initialize the cpu_context 'ctx' for
567  * first use. It performs initializations that are common to all security states
568  * and initializations specific to the security state specified in 'ep'
569  ******************************************************************************/
570 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
571 {
572 	unsigned int security_state;
573 
574 	assert(ctx != NULL);
575 
576 	/*
577 	 * Perform initializations that are common
578 	 * to all security states
579 	 */
580 	setup_context_common(ctx, ep);
581 
582 	security_state = GET_SECURITY_STATE(ep->h.attr);
583 
584 	/* Perform security state specific initializations */
585 	switch (security_state) {
586 	case SECURE:
587 		setup_secure_context(ctx, ep);
588 		break;
589 #if ENABLE_RME
590 	case REALM:
591 		setup_realm_context(ctx, ep);
592 		break;
593 #endif
594 	case NON_SECURE:
595 		setup_ns_context(ctx, ep);
596 		break;
597 	default:
598 		ERROR("Invalid security state\n");
599 		panic();
600 		break;
601 	}
602 }
603 
604 /*******************************************************************************
605  * Enable architecture extensions for EL3 execution. This function only updates
606  * registers in-place which are expected to either never change or be
607  * overwritten by el3_exit.
608  ******************************************************************************/
609 #if IMAGE_BL31
610 void cm_manage_extensions_el3(void)
611 {
612 	if (is_feat_amu_supported()) {
613 		amu_init_el3();
614 	}
615 
616 	if (is_feat_sme_supported()) {
617 		sme_init_el3();
618 	}
619 
620 	pmuv3_init_el3();
621 }
622 #endif /* IMAGE_BL31 */
623 
624 /******************************************************************************
625  * Function to initialise the registers with the RESET values in the context
626  * memory, which are maintained per world.
627  ******************************************************************************/
628 #if IMAGE_BL31
629 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
630 {
631 	/*
632 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
633 	 *
634 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
635 	 *  by Advanced SIMD, floating-point or SVE instructions (if
636 	 *  implemented) do not trap to EL3.
637 	 *
638 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
639 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
640 	 */
641 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
642 
643 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
644 
645 	/*
646 	 * Initialize MPAM3_EL3 to its default reset value
647 	 *
648 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
649 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
650 	 */
651 
652 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
653 }
654 #endif /* IMAGE_BL31 */
655 
656 /*******************************************************************************
657  * Initialise per_world_context for Non-Secure world.
658  * This function enables the architecture extensions, which have same value
659  * across the cores for the non-secure world.
660  ******************************************************************************/
661 #if IMAGE_BL31
662 void manage_extensions_nonsecure_per_world(void)
663 {
664 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
665 
666 	if (is_feat_sme_supported()) {
667 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
668 	}
669 
670 	if (is_feat_sve_supported()) {
671 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
672 	}
673 
674 	if (is_feat_amu_supported()) {
675 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
676 	}
677 
678 	if (is_feat_sys_reg_trace_supported()) {
679 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
680 	}
681 
682 	if (is_feat_mpam_supported()) {
683 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
684 	}
685 }
686 #endif /* IMAGE_BL31 */
687 
688 /*******************************************************************************
689  * Initialise per_world_context for Secure world.
690  * This function enables the architecture extensions, which have same value
691  * across the cores for the secure world.
692  ******************************************************************************/
693 static void manage_extensions_secure_per_world(void)
694 {
695 #if IMAGE_BL31
696 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
697 
698 	if (is_feat_sme_supported()) {
699 
700 		if (ENABLE_SME_FOR_SWD) {
701 		/*
702 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
703 		 * SME, SVE, and FPU/SIMD context properly managed.
704 		 */
705 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
706 		} else {
707 		/*
708 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
709 		 * world can safely use the associated registers.
710 		 */
711 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
712 		}
713 	}
714 	if (is_feat_sve_supported()) {
715 		if (ENABLE_SVE_FOR_SWD) {
716 		/*
717 		 * Enable SVE and FPU in secure context, SPM must ensure
718 		 * that the SVE and FPU register contexts are properly managed.
719 		 */
720 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
721 		} else {
722 		/*
723 		 * Disable SVE and FPU in secure context so non-secure world
724 		 * can safely use them.
725 		 */
726 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
727 		}
728 	}
729 
730 	/* NS can access this but Secure shouldn't */
731 	if (is_feat_sys_reg_trace_supported()) {
732 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
733 	}
734 
735 	has_secure_perworld_init = true;
736 #endif /* IMAGE_BL31 */
737 }
738 
739 /*******************************************************************************
740  * Enable architecture extensions on first entry to Non-secure world only
741  * and disable for secure world.
742  *
743  * NOTE: Arch features which have been provided with the capability of getting
744  * enabled only for non-secure world and being disabled for secure world are
745  * grouped here, as the MDCR_EL3 context value remains same across the worlds.
746  ******************************************************************************/
747 static void manage_extensions_common(cpu_context_t *ctx)
748 {
749 #if IMAGE_BL31
750 	if (is_feat_spe_supported()) {
751 		/*
752 		 * Enable FEAT_SPE for Non-Secure and prohibit for Secure state.
753 		 */
754 		spe_enable(ctx);
755 	}
756 
757 	if (is_feat_trbe_supported()) {
758 		/*
759 		 * Enable FEAT_TRBE for Non-Secure and prohibit for Secure and
760 		 * Realm state.
761 		 */
762 		trbe_enable(ctx);
763 	}
764 
765 	if (is_feat_trf_supported()) {
766 		/*
767 		 * Enable FEAT_TRF for Non-Secure and prohibit for Secure state.
768 		 */
769 		trf_enable(ctx);
770 	}
771 
772 	if (is_feat_brbe_supported()) {
773 		/*
774 		 * Enable FEAT_BRBE for Non-Secure and prohibit for Secure state.
775 		 */
776 		brbe_enable(ctx);
777 	}
778 #endif /* IMAGE_BL31 */
779 }
780 
781 /*******************************************************************************
782  * Enable architecture extensions on first entry to Non-secure world.
783  ******************************************************************************/
784 static void manage_extensions_nonsecure(cpu_context_t *ctx)
785 {
786 #if IMAGE_BL31
787 	if (is_feat_amu_supported()) {
788 		amu_enable(ctx);
789 	}
790 
791 	if (is_feat_sme_supported()) {
792 		sme_enable(ctx);
793 	}
794 
795 	if (is_feat_fgt2_supported()) {
796 		fgt2_enable(ctx);
797 	}
798 
799 	if (is_feat_debugv8p9_supported()) {
800 		debugv8p9_extended_bp_wp_enable(ctx);
801 	}
802 
803 	pmuv3_enable(ctx);
804 #endif /* IMAGE_BL31 */
805 }
806 
807 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
808 static __unused void enable_pauth_el2(void)
809 {
810 	u_register_t hcr_el2 = read_hcr_el2();
811 	/*
812 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
813 	 *  accessing key registers or using pointer authentication instructions
814 	 *  from lower ELs.
815 	 */
816 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
817 
818 	write_hcr_el2(hcr_el2);
819 }
820 
821 #if INIT_UNUSED_NS_EL2
822 /*******************************************************************************
823  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
824  * world when EL2 is empty and unused.
825  ******************************************************************************/
826 static void manage_extensions_nonsecure_el2_unused(void)
827 {
828 #if IMAGE_BL31
829 	if (is_feat_spe_supported()) {
830 		spe_init_el2_unused();
831 	}
832 
833 	if (is_feat_amu_supported()) {
834 		amu_init_el2_unused();
835 	}
836 
837 	if (is_feat_mpam_supported()) {
838 		mpam_init_el2_unused();
839 	}
840 
841 	if (is_feat_trbe_supported()) {
842 		trbe_init_el2_unused();
843 	}
844 
845 	if (is_feat_sys_reg_trace_supported()) {
846 		sys_reg_trace_init_el2_unused();
847 	}
848 
849 	if (is_feat_trf_supported()) {
850 		trf_init_el2_unused();
851 	}
852 
853 	pmuv3_init_el2_unused();
854 
855 	if (is_feat_sve_supported()) {
856 		sve_init_el2_unused();
857 	}
858 
859 	if (is_feat_sme_supported()) {
860 		sme_init_el2_unused();
861 	}
862 
863 #if ENABLE_PAUTH
864 	enable_pauth_el2();
865 #endif /* ENABLE_PAUTH */
866 #endif /* IMAGE_BL31 */
867 }
868 #endif /* INIT_UNUSED_NS_EL2 */
869 
870 /*******************************************************************************
871  * Enable architecture extensions on first entry to Secure world.
872  ******************************************************************************/
873 static void manage_extensions_secure(cpu_context_t *ctx)
874 {
875 #if IMAGE_BL31
876 	if (is_feat_sme_supported()) {
877 		if (ENABLE_SME_FOR_SWD) {
878 		/*
879 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
880 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
881 		 */
882 			sme_init_el3();
883 			sme_enable(ctx);
884 		} else {
885 		/*
886 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
887 		 * world can safely use the associated registers.
888 		 */
889 			sme_disable(ctx);
890 		}
891 	}
892 #endif /* IMAGE_BL31 */
893 }
894 
895 #if !IMAGE_BL1
896 /*******************************************************************************
897  * The following function initializes the cpu_context for a CPU specified by
898  * its `cpu_idx` for first use, and sets the initial entrypoint state as
899  * specified by the entry_point_info structure.
900  ******************************************************************************/
901 void cm_init_context_by_index(unsigned int cpu_idx,
902 			      const entry_point_info_t *ep)
903 {
904 	cpu_context_t *ctx;
905 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
906 	cm_setup_context(ctx, ep);
907 }
908 #endif /* !IMAGE_BL1 */
909 
910 /*******************************************************************************
911  * The following function initializes the cpu_context for the current CPU
912  * for first use, and sets the initial entrypoint state as specified by the
913  * entry_point_info structure.
914  ******************************************************************************/
915 void cm_init_my_context(const entry_point_info_t *ep)
916 {
917 	cpu_context_t *ctx;
918 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
919 	cm_setup_context(ctx, ep);
920 }
921 
922 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
923 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
924 {
925 #if INIT_UNUSED_NS_EL2
926 	u_register_t hcr_el2 = HCR_RESET_VAL;
927 	u_register_t mdcr_el2;
928 	u_register_t scr_el3;
929 
930 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
931 
932 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
933 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
934 		hcr_el2 |= HCR_RW_BIT;
935 	}
936 
937 	write_hcr_el2(hcr_el2);
938 
939 	/*
940 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
941 	 * All fields have architecturally UNKNOWN reset values.
942 	 */
943 	write_cptr_el2(CPTR_EL2_RESET_VAL);
944 
945 	/*
946 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
947 	 * reset and are set to zero except for field(s) listed below.
948 	 *
949 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
950 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
951 	 *
952 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
953 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
954 	 */
955 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
956 
957 	/*
958 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
959 	 * UNKNOWN value.
960 	 */
961 	write_cntvoff_el2(0);
962 
963 	/*
964 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
965 	 * respectively.
966 	 */
967 	write_vpidr_el2(read_midr_el1());
968 	write_vmpidr_el2(read_mpidr_el1());
969 
970 	/*
971 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
972 	 *
973 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
974 	 * translation is disabled, cache maintenance operations depend on the
975 	 * VMID.
976 	 *
977 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
978 	 * disabled.
979 	 */
980 	write_vttbr_el2(VTTBR_RESET_VAL &
981 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
982 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
983 
984 	/*
985 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
986 	 * Some fields are architecturally UNKNOWN on reset.
987 	 *
988 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
989 	 * register accesses to the Debug ROM registers are not trapped to EL2.
990 	 *
991 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
992 	 * accesses to the powerdown debug registers are not trapped to EL2.
993 	 *
994 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
995 	 * debug registers do not trap to EL2.
996 	 *
997 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
998 	 * EL2.
999 	 */
1000 	mdcr_el2 = MDCR_EL2_RESET_VAL &
1001 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
1002 		   MDCR_EL2_TDE_BIT);
1003 
1004 	write_mdcr_el2(mdcr_el2);
1005 
1006 	/*
1007 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
1008 	 *
1009 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
1010 	 * EL1 accesses to System registers do not trap to EL2.
1011 	 */
1012 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
1013 
1014 	/*
1015 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
1016 	 * reset.
1017 	 *
1018 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1019 	 * and prevent timer interrupts.
1020 	 */
1021 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1022 
1023 	manage_extensions_nonsecure_el2_unused();
1024 #endif /* INIT_UNUSED_NS_EL2 */
1025 }
1026 
1027 /*******************************************************************************
1028  * Prepare the CPU system registers for first entry into realm, secure, or
1029  * normal world.
1030  *
1031  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1032  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1033  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1034  * For all entries, the EL1 registers are initialized from the cpu_context
1035  ******************************************************************************/
1036 void cm_prepare_el3_exit(uint32_t security_state)
1037 {
1038 	u_register_t sctlr_el2, scr_el3;
1039 	cpu_context_t *ctx = cm_get_context(security_state);
1040 
1041 	assert(ctx != NULL);
1042 
1043 	if (security_state == NON_SECURE) {
1044 		uint64_t el2_implemented = el_implemented(2);
1045 
1046 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1047 						 CTX_SCR_EL3);
1048 
1049 		if (el2_implemented != EL_IMPL_NONE) {
1050 
1051 			/*
1052 			 * If context is not being used for EL2, initialize
1053 			 * HCRX_EL2 with its init value here.
1054 			 */
1055 			if (is_feat_hcx_supported()) {
1056 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1057 			}
1058 
1059 			/*
1060 			 * Initialize Fine-grained trap registers introduced
1061 			 * by FEAT_FGT so all traps are initially disabled when
1062 			 * switching to EL2 or a lower EL, preventing undesired
1063 			 * behavior.
1064 			 */
1065 			if (is_feat_fgt_supported()) {
1066 				/*
1067 				 * Initialize HFG*_EL2 registers with a default
1068 				 * value so legacy systems unaware of FEAT_FGT
1069 				 * do not get trapped due to their lack of
1070 				 * initialization for this feature.
1071 				 */
1072 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1073 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1074 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1075 			}
1076 
1077 			/* Condition to ensure EL2 is being used. */
1078 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1079 				/* Initialize SCTLR_EL2 register with reset value. */
1080 				sctlr_el2 = SCTLR_EL2_RES1;
1081 
1082 				/*
1083 				 * If workaround of errata 764081 for Cortex-A75
1084 				 * is used then set SCTLR_EL2.IESB to enable
1085 				 * Implicit Error Synchronization Barrier.
1086 				 */
1087 				if (errata_a75_764081_applies()) {
1088 					sctlr_el2 |= SCTLR_IESB_BIT;
1089 				}
1090 
1091 				write_sctlr_el2(sctlr_el2);
1092 			} else {
1093 				/*
1094 				 * (scr_el3 & SCR_HCE_BIT==0)
1095 				 * EL2 implemented but unused.
1096 				 */
1097 				init_nonsecure_el2_unused(ctx);
1098 			}
1099 		}
1100 	}
1101 #if (!CTX_INCLUDE_EL2_REGS)
1102 	/* Restore EL1 system registers, only when CTX_INCLUDE_EL2_REGS=0 */
1103 	cm_el1_sysregs_context_restore(security_state);
1104 #endif
1105 	cm_set_next_eret_context(security_state);
1106 }
1107 
1108 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1109 
1110 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1111 {
1112 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1113 	if (is_feat_amu_supported()) {
1114 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1115 	}
1116 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1117 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1118 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1119 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1120 }
1121 
1122 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1123 {
1124 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1125 	if (is_feat_amu_supported()) {
1126 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1127 	}
1128 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1129 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1130 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1131 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1132 }
1133 
1134 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1135 {
1136 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1137 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1138 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1139 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1140 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1141 }
1142 
1143 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1144 {
1145 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1146 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1147 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1148 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1149 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1150 }
1151 
1152 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1153 {
1154 	u_register_t mpam_idr = read_mpamidr_el1();
1155 
1156 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1157 
1158 	/*
1159 	 * The context registers that we intend to save would be part of the
1160 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1161 	 */
1162 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1163 		return;
1164 	}
1165 
1166 	/*
1167 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1168 	 * MPAMIDR_HAS_HCR_BIT == 1.
1169 	 */
1170 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1171 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1172 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1173 
1174 	/*
1175 	 * The number of MPAMVPM registers is implementation defined, their
1176 	 * number is stored in the MPAMIDR_EL1 register.
1177 	 */
1178 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1179 	case 7:
1180 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1181 		__fallthrough;
1182 	case 6:
1183 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1184 		__fallthrough;
1185 	case 5:
1186 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1187 		__fallthrough;
1188 	case 4:
1189 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1190 		__fallthrough;
1191 	case 3:
1192 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1193 		__fallthrough;
1194 	case 2:
1195 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1196 		__fallthrough;
1197 	case 1:
1198 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1199 		break;
1200 	}
1201 }
1202 
1203 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1204 {
1205 	u_register_t mpam_idr = read_mpamidr_el1();
1206 
1207 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1208 
1209 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1210 		return;
1211 	}
1212 
1213 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1214 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1215 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1216 
1217 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1218 	case 7:
1219 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1220 		__fallthrough;
1221 	case 6:
1222 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1223 		__fallthrough;
1224 	case 5:
1225 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1226 		__fallthrough;
1227 	case 4:
1228 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1229 		__fallthrough;
1230 	case 3:
1231 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1232 		__fallthrough;
1233 	case 2:
1234 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1235 		__fallthrough;
1236 	case 1:
1237 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1238 		break;
1239 	}
1240 }
1241 
1242 /* ---------------------------------------------------------------------------
1243  * The following registers are not added:
1244  * ICH_AP0R<n>_EL2
1245  * ICH_AP1R<n>_EL2
1246  * ICH_LR<n>_EL2
1247  *
1248  * NOTE: For a system with S-EL2 present but not enabled, accessing
1249  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1250  * SCR_EL3.NS = 1 before accessing this register.
1251  * ---------------------------------------------------------------------------
1252  */
1253 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx)
1254 {
1255 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1256 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1257 #else
1258 	u_register_t scr_el3 = read_scr_el3();
1259 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1260 	isb();
1261 
1262 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1263 
1264 	write_scr_el3(scr_el3);
1265 	isb();
1266 #endif
1267 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1268 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1269 }
1270 
1271 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx)
1272 {
1273 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1274 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1275 #else
1276 	u_register_t scr_el3 = read_scr_el3();
1277 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1278 	isb();
1279 
1280 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1281 
1282 	write_scr_el3(scr_el3);
1283 	isb();
1284 #endif
1285 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1286 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1287 }
1288 
1289 /* -----------------------------------------------------
1290  * The following registers are not added:
1291  * AMEVCNTVOFF0<n>_EL2
1292  * AMEVCNTVOFF1<n>_EL2
1293  * -----------------------------------------------------
1294  */
1295 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1296 {
1297 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1298 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1299 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1300 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1301 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1302 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1303 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1304 	if (CTX_INCLUDE_AARCH32_REGS) {
1305 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1306 	}
1307 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1308 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1309 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1310 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1311 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1312 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1313 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1314 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1315 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1316 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1317 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1318 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1319 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1320 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1321 	write_el2_ctx_common(ctx, ttbr0_el2, read_ttbr0_el2());
1322 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1323 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1324 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1325 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1326 	write_el2_ctx_common(ctx, vttbr_el2, read_vttbr_el2());
1327 }
1328 
1329 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1330 {
1331 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1332 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1333 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1334 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1335 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1336 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1337 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1338 	if (CTX_INCLUDE_AARCH32_REGS) {
1339 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1340 	}
1341 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1342 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1343 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1344 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1345 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1346 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1347 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1348 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1349 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1350 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1351 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1352 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1353 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1354 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1355 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1356 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1357 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1358 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1359 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1360 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1361 }
1362 
1363 /*******************************************************************************
1364  * Save EL2 sysreg context
1365  ******************************************************************************/
1366 void cm_el2_sysregs_context_save(uint32_t security_state)
1367 {
1368 	cpu_context_t *ctx;
1369 	el2_sysregs_t *el2_sysregs_ctx;
1370 
1371 	ctx = cm_get_context(security_state);
1372 	assert(ctx != NULL);
1373 
1374 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1375 
1376 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1377 	el2_sysregs_context_save_gic(el2_sysregs_ctx);
1378 
1379 	if (is_feat_mte2_supported()) {
1380 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1381 	}
1382 
1383 	if (is_feat_mpam_supported()) {
1384 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1385 	}
1386 
1387 	if (is_feat_fgt_supported()) {
1388 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1389 	}
1390 
1391 	if (is_feat_fgt2_supported()) {
1392 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1393 	}
1394 
1395 	if (is_feat_ecv_v2_supported()) {
1396 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1397 	}
1398 
1399 	if (is_feat_vhe_supported()) {
1400 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1401 					read_contextidr_el2());
1402 		write_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1403 	}
1404 
1405 	if (is_feat_ras_supported()) {
1406 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1407 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1408 	}
1409 
1410 	if (is_feat_nv2_supported()) {
1411 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1412 	}
1413 
1414 	if (is_feat_trf_supported()) {
1415 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1416 	}
1417 
1418 	if (is_feat_csv2_2_supported()) {
1419 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1420 					read_scxtnum_el2());
1421 	}
1422 
1423 	if (is_feat_hcx_supported()) {
1424 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1425 	}
1426 
1427 	if (is_feat_tcr2_supported()) {
1428 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1429 	}
1430 
1431 	if (is_feat_sxpie_supported()) {
1432 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1433 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1434 	}
1435 
1436 	if (is_feat_sxpoe_supported()) {
1437 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1438 	}
1439 
1440 	if (is_feat_s2pie_supported()) {
1441 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1442 	}
1443 
1444 	if (is_feat_gcs_supported()) {
1445 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1446 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1447 	}
1448 }
1449 
1450 /*******************************************************************************
1451  * Restore EL2 sysreg context
1452  ******************************************************************************/
1453 void cm_el2_sysregs_context_restore(uint32_t security_state)
1454 {
1455 	cpu_context_t *ctx;
1456 	el2_sysregs_t *el2_sysregs_ctx;
1457 
1458 	ctx = cm_get_context(security_state);
1459 	assert(ctx != NULL);
1460 
1461 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1462 
1463 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1464 	el2_sysregs_context_restore_gic(el2_sysregs_ctx);
1465 
1466 	if (is_feat_mte2_supported()) {
1467 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1468 	}
1469 
1470 	if (is_feat_mpam_supported()) {
1471 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1472 	}
1473 
1474 	if (is_feat_fgt_supported()) {
1475 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1476 	}
1477 
1478 	if (is_feat_fgt2_supported()) {
1479 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1480 	}
1481 
1482 	if (is_feat_ecv_v2_supported()) {
1483 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1484 	}
1485 
1486 	if (is_feat_vhe_supported()) {
1487 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1488 					contextidr_el2));
1489 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1490 	}
1491 
1492 	if (is_feat_ras_supported()) {
1493 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1494 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1495 	}
1496 
1497 	if (is_feat_nv2_supported()) {
1498 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1499 	}
1500 
1501 	if (is_feat_trf_supported()) {
1502 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1503 	}
1504 
1505 	if (is_feat_csv2_2_supported()) {
1506 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1507 					scxtnum_el2));
1508 	}
1509 
1510 	if (is_feat_hcx_supported()) {
1511 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1512 	}
1513 
1514 	if (is_feat_tcr2_supported()) {
1515 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1516 	}
1517 
1518 	if (is_feat_sxpie_supported()) {
1519 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1520 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1521 	}
1522 
1523 	if (is_feat_sxpoe_supported()) {
1524 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1525 	}
1526 
1527 	if (is_feat_s2pie_supported()) {
1528 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1529 	}
1530 
1531 	if (is_feat_gcs_supported()) {
1532 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1533 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1534 	}
1535 }
1536 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1537 
1538 #if IMAGE_BL31
1539 /*********************************************************************************
1540 * This function allows Architecture features asymmetry among cores.
1541 * TF-A assumes that all the cores in the platform has architecture feature parity
1542 * and hence the context is setup on different core (e.g. primary sets up the
1543 * context for secondary cores).This assumption may not be true for systems where
1544 * cores are not conforming to same Arch version or there is CPU Erratum which
1545 * requires certain feature to be be disabled only on a given core.
1546 *
1547 * This function is called on secondary cores to override any disparity in context
1548 * setup by primary, this would be called during warmboot path.
1549 *********************************************************************************/
1550 void cm_handle_asymmetric_features(void)
1551 {
1552 	cpu_context_t *ctx __maybe_unused = cm_get_context(NON_SECURE);
1553 
1554 	assert(ctx != NULL);
1555 
1556 #if ENABLE_SPE_FOR_NS == FEAT_STATE_CHECK_ASYMMETRIC
1557 	if (is_feat_spe_supported()) {
1558 		spe_enable(ctx);
1559 	} else {
1560 		spe_disable(ctx);
1561 	}
1562 #endif
1563 
1564 #if ERRATA_A520_2938996 || ERRATA_X4_2726228
1565 	if (check_if_affected_core() == ERRATA_APPLIES) {
1566 		if (is_feat_trbe_supported()) {
1567 			trbe_disable(ctx);
1568 		}
1569 	}
1570 #endif
1571 
1572 #if ENABLE_FEAT_TCR2 == FEAT_STATE_CHECK_ASYMMETRIC
1573 	el3_state_t *el3_state = get_el3state_ctx(ctx);
1574 	u_register_t spsr = read_ctx_reg(el3_state, CTX_SPSR_EL3);
1575 
1576 	if (is_feat_tcr2_supported() && (GET_RW(spsr) == MODE_RW_64)) {
1577 		tcr2_enable(ctx);
1578 	} else {
1579 		tcr2_disable(ctx);
1580 	}
1581 #endif
1582 
1583 }
1584 #endif
1585 
1586 /*******************************************************************************
1587  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1588  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1589  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1590  * cm_prepare_el3_exit function.
1591  ******************************************************************************/
1592 void cm_prepare_el3_exit_ns(void)
1593 {
1594 #if IMAGE_BL31
1595 	/*
1596 	 * Check and handle Architecture feature asymmetry among cores.
1597 	 *
1598 	 * In warmboot path secondary cores context is initialized on core which
1599 	 * did CPU_ON SMC call, if there is feature asymmetry in these cores handle
1600 	 * it in this function call.
1601 	 * For Symmetric cores this is an empty function.
1602 	 */
1603 	cm_handle_asymmetric_features();
1604 #endif
1605 
1606 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1607 #if ENABLE_ASSERTIONS
1608 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1609 	assert(ctx != NULL);
1610 
1611 	/* Assert that EL2 is used. */
1612 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1613 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1614 			(el_implemented(2U) != EL_IMPL_NONE));
1615 #endif /* ENABLE_ASSERTIONS */
1616 
1617 	/* Restore EL2 sysreg contexts */
1618 	cm_el2_sysregs_context_restore(NON_SECURE);
1619 	cm_set_next_eret_context(NON_SECURE);
1620 #else
1621 	cm_prepare_el3_exit(NON_SECURE);
1622 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1623 }
1624 
1625 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
1626 /*******************************************************************************
1627  * The next set of six functions are used by runtime services to save and restore
1628  * EL1 context on the 'cpu_context' structure for the specified security state.
1629  ******************************************************************************/
1630 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1631 {
1632 	write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1());
1633 	write_el1_ctx_common(ctx, elr_el1, read_elr_el1());
1634 
1635 #if (!ERRATA_SPECULATIVE_AT)
1636 	write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1());
1637 	write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1());
1638 #endif /* (!ERRATA_SPECULATIVE_AT) */
1639 
1640 	write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1());
1641 	write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1());
1642 	write_el1_ctx_common(ctx, sp_el1, read_sp_el1());
1643 	write_el1_ctx_common(ctx, esr_el1, read_esr_el1());
1644 	write_el1_ctx_common(ctx, ttbr0_el1, read_ttbr0_el1());
1645 	write_el1_ctx_common(ctx, ttbr1_el1, read_ttbr1_el1());
1646 	write_el1_ctx_common(ctx, mair_el1, read_mair_el1());
1647 	write_el1_ctx_common(ctx, amair_el1, read_amair_el1());
1648 	write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1());
1649 	write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1());
1650 	write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0());
1651 	write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0());
1652 	write_el1_ctx_common(ctx, par_el1, read_par_el1());
1653 	write_el1_ctx_common(ctx, far_el1, read_far_el1());
1654 	write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1());
1655 	write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1());
1656 	write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1());
1657 	write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1());
1658 	write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1());
1659 	write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1());
1660 
1661 	if (CTX_INCLUDE_AARCH32_REGS) {
1662 		/* Save Aarch32 registers */
1663 		write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt());
1664 		write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und());
1665 		write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq());
1666 		write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq());
1667 		write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2());
1668 		write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2());
1669 	}
1670 
1671 	if (NS_TIMER_SWITCH) {
1672 		/* Save NS Timer registers */
1673 		write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0());
1674 		write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0());
1675 		write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0());
1676 		write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0());
1677 		write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1());
1678 	}
1679 
1680 	if (is_feat_mte2_supported()) {
1681 		write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1());
1682 		write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1());
1683 		write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1());
1684 		write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1());
1685 	}
1686 
1687 	if (is_feat_ras_supported()) {
1688 		write_el1_ctx_ras(ctx, disr_el1, read_disr_el1());
1689 	}
1690 
1691 	if (is_feat_s1pie_supported()) {
1692 		write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1());
1693 		write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1());
1694 	}
1695 
1696 	if (is_feat_s1poe_supported()) {
1697 		write_el1_ctx_s1poe(ctx, por_el1, read_por_el1());
1698 	}
1699 
1700 	if (is_feat_s2poe_supported()) {
1701 		write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1());
1702 	}
1703 
1704 	if (is_feat_tcr2_supported()) {
1705 		write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1());
1706 	}
1707 
1708 	if (is_feat_trf_supported()) {
1709 		write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1());
1710 	}
1711 
1712 	if (is_feat_csv2_2_supported()) {
1713 		write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0());
1714 		write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1());
1715 	}
1716 
1717 	if (is_feat_gcs_supported()) {
1718 		write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1());
1719 		write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1());
1720 		write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1());
1721 		write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0());
1722 	}
1723 
1724 	if (is_feat_the_supported()) {
1725 		write_el1_ctx_the(ctx, rcwmask_el1, read_rcwmask_el1());
1726 		write_el1_ctx_the(ctx, rcwsmask_el1, read_rcwsmask_el1());
1727 	}
1728 
1729 }
1730 
1731 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1732 {
1733 	write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1));
1734 	write_elr_el1(read_el1_ctx_common(ctx, elr_el1));
1735 
1736 #if (!ERRATA_SPECULATIVE_AT)
1737 	write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1));
1738 	write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1));
1739 #endif /* (!ERRATA_SPECULATIVE_AT) */
1740 
1741 	write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1));
1742 	write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1));
1743 	write_sp_el1(read_el1_ctx_common(ctx, sp_el1));
1744 	write_esr_el1(read_el1_ctx_common(ctx, esr_el1));
1745 	write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1));
1746 	write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1));
1747 	write_mair_el1(read_el1_ctx_common(ctx, mair_el1));
1748 	write_amair_el1(read_el1_ctx_common(ctx, amair_el1));
1749 	write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1));
1750 	write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1));
1751 	write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0));
1752 	write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0));
1753 	write_par_el1(read_el1_ctx_common(ctx, par_el1));
1754 	write_far_el1(read_el1_ctx_common(ctx, far_el1));
1755 	write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1));
1756 	write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1));
1757 	write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1));
1758 	write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1));
1759 	write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1));
1760 	write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1));
1761 
1762 	if (CTX_INCLUDE_AARCH32_REGS) {
1763 		/* Restore Aarch32 registers */
1764 		write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt));
1765 		write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und));
1766 		write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq));
1767 		write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq));
1768 		write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2));
1769 		write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2));
1770 	}
1771 
1772 	if (NS_TIMER_SWITCH) {
1773 		/* Restore NS Timer registers */
1774 		write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0));
1775 		write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0));
1776 		write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0));
1777 		write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0));
1778 		write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1));
1779 	}
1780 
1781 	if (is_feat_mte2_supported()) {
1782 		write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1));
1783 		write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1));
1784 		write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1));
1785 		write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1));
1786 	}
1787 
1788 	if (is_feat_ras_supported()) {
1789 		write_disr_el1(read_el1_ctx_ras(ctx, disr_el1));
1790 	}
1791 
1792 	if (is_feat_s1pie_supported()) {
1793 		write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1));
1794 		write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1));
1795 	}
1796 
1797 	if (is_feat_s1poe_supported()) {
1798 		write_por_el1(read_el1_ctx_s1poe(ctx, por_el1));
1799 	}
1800 
1801 	if (is_feat_s2poe_supported()) {
1802 		write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1));
1803 	}
1804 
1805 	if (is_feat_tcr2_supported()) {
1806 		write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1));
1807 	}
1808 
1809 	if (is_feat_trf_supported()) {
1810 		write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1));
1811 	}
1812 
1813 	if (is_feat_csv2_2_supported()) {
1814 		write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0));
1815 		write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1));
1816 	}
1817 
1818 	if (is_feat_gcs_supported()) {
1819 		write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1));
1820 		write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1));
1821 		write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1));
1822 		write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0));
1823 	}
1824 
1825 	if (is_feat_the_supported()) {
1826 		write_rcwmask_el1(read_el1_ctx_the(ctx, rcwmask_el1));
1827 		write_rcwsmask_el1(read_el1_ctx_the(ctx, rcwsmask_el1));
1828 	}
1829 }
1830 
1831 /*******************************************************************************
1832  * The next couple of functions are used by runtime services to save and restore
1833  * EL1 context on the 'cpu_context' structure for the specified security state.
1834  ******************************************************************************/
1835 void cm_el1_sysregs_context_save(uint32_t security_state)
1836 {
1837 	cpu_context_t *ctx;
1838 
1839 	ctx = cm_get_context(security_state);
1840 	assert(ctx != NULL);
1841 
1842 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1843 
1844 #if IMAGE_BL31
1845 	if (security_state == SECURE)
1846 		PUBLISH_EVENT(cm_exited_secure_world);
1847 	else
1848 		PUBLISH_EVENT(cm_exited_normal_world);
1849 #endif
1850 }
1851 
1852 void cm_el1_sysregs_context_restore(uint32_t security_state)
1853 {
1854 	cpu_context_t *ctx;
1855 
1856 	ctx = cm_get_context(security_state);
1857 	assert(ctx != NULL);
1858 
1859 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1860 
1861 #if IMAGE_BL31
1862 	if (security_state == SECURE)
1863 		PUBLISH_EVENT(cm_entering_secure_world);
1864 	else
1865 		PUBLISH_EVENT(cm_entering_normal_world);
1866 #endif
1867 }
1868 
1869 #endif /* ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) */
1870 
1871 /*******************************************************************************
1872  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1873  * given security state with the given entrypoint
1874  ******************************************************************************/
1875 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1876 {
1877 	cpu_context_t *ctx;
1878 	el3_state_t *state;
1879 
1880 	ctx = cm_get_context(security_state);
1881 	assert(ctx != NULL);
1882 
1883 	/* Populate EL3 state so that ERET jumps to the correct entry */
1884 	state = get_el3state_ctx(ctx);
1885 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1886 }
1887 
1888 /*******************************************************************************
1889  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1890  * pertaining to the given security state
1891  ******************************************************************************/
1892 void cm_set_elr_spsr_el3(uint32_t security_state,
1893 			uintptr_t entrypoint, uint32_t spsr)
1894 {
1895 	cpu_context_t *ctx;
1896 	el3_state_t *state;
1897 
1898 	ctx = cm_get_context(security_state);
1899 	assert(ctx != NULL);
1900 
1901 	/* Populate EL3 state so that ERET jumps to the correct entry */
1902 	state = get_el3state_ctx(ctx);
1903 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1904 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1905 }
1906 
1907 /*******************************************************************************
1908  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1909  * pertaining to the given security state using the value and bit position
1910  * specified in the parameters. It preserves all other bits.
1911  ******************************************************************************/
1912 void cm_write_scr_el3_bit(uint32_t security_state,
1913 			  uint32_t bit_pos,
1914 			  uint32_t value)
1915 {
1916 	cpu_context_t *ctx;
1917 	el3_state_t *state;
1918 	u_register_t scr_el3;
1919 
1920 	ctx = cm_get_context(security_state);
1921 	assert(ctx != NULL);
1922 
1923 	/* Ensure that the bit position is a valid one */
1924 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1925 
1926 	/* Ensure that the 'value' is only a bit wide */
1927 	assert(value <= 1U);
1928 
1929 	/*
1930 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1931 	 * and set it to its new value.
1932 	 */
1933 	state = get_el3state_ctx(ctx);
1934 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1935 	scr_el3 &= ~(1UL << bit_pos);
1936 	scr_el3 |= (u_register_t)value << bit_pos;
1937 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1938 }
1939 
1940 /*******************************************************************************
1941  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1942  * given security state.
1943  ******************************************************************************/
1944 u_register_t cm_get_scr_el3(uint32_t security_state)
1945 {
1946 	cpu_context_t *ctx;
1947 	el3_state_t *state;
1948 
1949 	ctx = cm_get_context(security_state);
1950 	assert(ctx != NULL);
1951 
1952 	/* Populate EL3 state so that ERET jumps to the correct entry */
1953 	state = get_el3state_ctx(ctx);
1954 	return read_ctx_reg(state, CTX_SCR_EL3);
1955 }
1956 
1957 /*******************************************************************************
1958  * This function is used to program the context that's used for exception
1959  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1960  * the required security state
1961  ******************************************************************************/
1962 void cm_set_next_eret_context(uint32_t security_state)
1963 {
1964 	cpu_context_t *ctx;
1965 
1966 	ctx = cm_get_context(security_state);
1967 	assert(ctx != NULL);
1968 
1969 	cm_set_next_context(ctx);
1970 }
1971