xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 6c33e8712ec5a02befcb99109430b73620083df0)
1 /*
2  * Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/pubsub_events.h>
24 #include <lib/extensions/amu.h>
25 #include <lib/extensions/brbe.h>
26 #include <lib/extensions/mpam.h>
27 #include <lib/extensions/pmuv3.h>
28 #include <lib/extensions/sme.h>
29 #include <lib/extensions/spe.h>
30 #include <lib/extensions/sve.h>
31 #include <lib/extensions/sys_reg_trace.h>
32 #include <lib/extensions/trbe.h>
33 #include <lib/extensions/trf.h>
34 #include <lib/utils.h>
35 
36 #if ENABLE_FEAT_TWED
37 /* Make sure delay value fits within the range(0-15) */
38 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
39 #endif /* ENABLE_FEAT_TWED */
40 
41 static void manage_extensions_nonsecure(cpu_context_t *ctx);
42 static void manage_extensions_secure(cpu_context_t *ctx);
43 
44 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
45 {
46 	u_register_t sctlr_elx, actlr_elx;
47 
48 	/*
49 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
50 	 * execution state setting all fields rather than relying on the hw.
51 	 * Some fields have architecturally UNKNOWN reset values and these are
52 	 * set to zero.
53 	 *
54 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
55 	 *
56 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
57 	 * required by PSCI specification)
58 	 */
59 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
60 	if (GET_RW(ep->spsr) == MODE_RW_64) {
61 		sctlr_elx |= SCTLR_EL1_RES1;
62 	} else {
63 		/*
64 		 * If the target execution state is AArch32 then the following
65 		 * fields need to be set.
66 		 *
67 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
68 		 *  instructions are not trapped to EL1.
69 		 *
70 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
71 		 *  instructions are not trapped to EL1.
72 		 *
73 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
74 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
75 		 */
76 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
77 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
78 	}
79 
80 #if ERRATA_A75_764081
81 	/*
82 	 * If workaround of errata 764081 for Cortex-A75 is used then set
83 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
84 	 */
85 	sctlr_elx |= SCTLR_IESB_BIT;
86 #endif
87 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
88 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
89 
90 	/*
91 	 * Base the context ACTLR_EL1 on the current value, as it is
92 	 * implementation defined. The context restore process will write
93 	 * the value from the context to the actual register and can cause
94 	 * problems for processor cores that don't expect certain bits to
95 	 * be zero.
96 	 */
97 	actlr_elx = read_actlr_el1();
98 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
99 }
100 
101 /******************************************************************************
102  * This function performs initializations that are specific to SECURE state
103  * and updates the cpu context specified by 'ctx'.
104  *****************************************************************************/
105 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
106 {
107 	u_register_t scr_el3;
108 	el3_state_t *state;
109 
110 	state = get_el3state_ctx(ctx);
111 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
112 
113 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
114 	/*
115 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
116 	 * indicated by the interrupt routing model for BL31.
117 	 */
118 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
119 #endif
120 
121 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
122 	/* Get Memory Tagging Extension support level */
123 	unsigned int mte = get_armv8_5_mte_support();
124 #endif
125 	/*
126 	 * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS
127 	 * is set, or when MTE is only implemented at EL0.
128 	 */
129 #if CTX_INCLUDE_MTE_REGS
130 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
131 	scr_el3 |= SCR_ATA_BIT;
132 #else
133 	if (mte == MTE_IMPLEMENTED_EL0) {
134 		scr_el3 |= SCR_ATA_BIT;
135 	}
136 #endif /* CTX_INCLUDE_MTE_REGS */
137 
138 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
139 
140 	/*
141 	 * Initialize EL1 context registers unless SPMC is running
142 	 * at S-EL2.
143 	 */
144 #if !SPMD_SPM_AT_SEL2
145 	setup_el1_context(ctx, ep);
146 #endif
147 
148 	manage_extensions_secure(ctx);
149 }
150 
151 #if ENABLE_RME
152 /******************************************************************************
153  * This function performs initializations that are specific to REALM state
154  * and updates the cpu context specified by 'ctx'.
155  *****************************************************************************/
156 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
157 {
158 	u_register_t scr_el3;
159 	el3_state_t *state;
160 
161 	state = get_el3state_ctx(ctx);
162 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
163 
164 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
165 
166 	if (is_feat_csv2_2_supported()) {
167 		/* Enable access to the SCXTNUM_ELx registers. */
168 		scr_el3 |= SCR_EnSCXT_BIT;
169 	}
170 
171 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
172 }
173 #endif /* ENABLE_RME */
174 
175 /******************************************************************************
176  * This function performs initializations that are specific to NON-SECURE state
177  * and updates the cpu context specified by 'ctx'.
178  *****************************************************************************/
179 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
180 {
181 	u_register_t scr_el3;
182 	el3_state_t *state;
183 
184 	state = get_el3state_ctx(ctx);
185 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
186 
187 	/* SCR_NS: Set the NS bit */
188 	scr_el3 |= SCR_NS_BIT;
189 
190 	/* Allow access to Allocation Tags when MTE is implemented. */
191 	scr_el3 |= SCR_ATA_BIT;
192 
193 #if !CTX_INCLUDE_PAUTH_REGS
194 	/*
195 	 * Pointer Authentication feature, if present, is always enabled by default
196 	 * for Non secure lower exception levels. We do not have an explicit
197 	 * flag to set it.
198 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
199 	 * exception levels of secure and realm worlds.
200 	 *
201 	 * To prevent the leakage between the worlds during world switch,
202 	 * we enable it only for the non-secure world.
203 	 *
204 	 * If the Secure/realm world wants to use pointer authentication,
205 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
206 	 * it will be enabled globally for all the contexts.
207 	 *
208 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
209 	 *  other than EL3
210 	 *
211 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
212 	 *  than EL3
213 	 */
214 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
215 
216 #endif /* CTX_INCLUDE_PAUTH_REGS */
217 
218 #if HANDLE_EA_EL3_FIRST_NS
219 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
220 	scr_el3 |= SCR_EA_BIT;
221 #endif
222 
223 #if RAS_TRAP_NS_ERR_REC_ACCESS
224 	/*
225 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
226 	 * and RAS ERX registers from EL1 and EL2(from any security state)
227 	 * are trapped to EL3.
228 	 * Set here to trap only for NS EL1/EL2
229 	 *
230 	 */
231 	scr_el3 |= SCR_TERR_BIT;
232 #endif
233 
234 	if (is_feat_csv2_2_supported()) {
235 		/* Enable access to the SCXTNUM_ELx registers. */
236 		scr_el3 |= SCR_EnSCXT_BIT;
237 	}
238 
239 #ifdef IMAGE_BL31
240 	/*
241 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
242 	 *  indicated by the interrupt routing model for BL31.
243 	 */
244 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
245 #endif
246 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
247 
248 	/* Initialize EL1 context registers */
249 	setup_el1_context(ctx, ep);
250 
251 	/* Initialize EL2 context registers */
252 #if CTX_INCLUDE_EL2_REGS
253 
254 	/*
255 	 * Initialize SCTLR_EL2 context register using Endianness value
256 	 * taken from the entrypoint attribute.
257 	 */
258 	u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
259 	sctlr_el2 |= SCTLR_EL2_RES1;
260 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2,
261 			sctlr_el2);
262 
263 	if (is_feat_hcx_supported()) {
264 		/*
265 		 * Initialize register HCRX_EL2 with its init value.
266 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
267 		 * chance that this can lead to unexpected behavior in lower
268 		 * ELs that have not been updated since the introduction of
269 		 * this feature if not properly initialized, especially when
270 		 * it comes to those bits that enable/disable traps.
271 		 */
272 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HCRX_EL2,
273 			HCRX_EL2_INIT_VAL);
274 	}
275 
276 	if (is_feat_fgt_supported()) {
277 		/*
278 		 * Initialize HFG*_EL2 registers with a default value so legacy
279 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
280 		 * of initialization for this feature.
281 		 */
282 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGITR_EL2,
283 			HFGITR_EL2_INIT_VAL);
284 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGRTR_EL2,
285 			HFGRTR_EL2_INIT_VAL);
286 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGWTR_EL2,
287 			HFGWTR_EL2_INIT_VAL);
288 	}
289 #endif /* CTX_INCLUDE_EL2_REGS */
290 
291 	manage_extensions_nonsecure(ctx);
292 }
293 
294 /*******************************************************************************
295  * The following function performs initialization of the cpu_context 'ctx'
296  * for first use that is common to all security states, and sets the
297  * initial entrypoint state as specified by the entry_point_info structure.
298  *
299  * The EE and ST attributes are used to configure the endianness and secure
300  * timer availability for the new execution context.
301  ******************************************************************************/
302 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
303 {
304 	u_register_t cptr_el3;
305 	u_register_t scr_el3;
306 	el3_state_t *state;
307 	gp_regs_t *gp_regs;
308 
309 	state = get_el3state_ctx(ctx);
310 
311 	/* Clear any residual register values from the context */
312 	zeromem(ctx, sizeof(*ctx));
313 
314 	/*
315 	 * The lower-EL context is zeroed so that no stale values leak to a world.
316 	 * It is assumed that an all-zero lower-EL context is good enough for it
317 	 * to boot correctly. However, there are very few registers where this
318 	 * is not true and some values need to be recreated.
319 	 */
320 #if CTX_INCLUDE_EL2_REGS
321 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
322 
323 	/*
324 	 * These bits are set in the gicv3 driver. Losing them (especially the
325 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
326 	 */
327 	u_register_t icc_sre_el2 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
328 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
329 	write_ctx_reg(el2_ctx, CTX_ICC_SRE_EL2, icc_sre_el2);
330 #endif /* CTX_INCLUDE_EL2_REGS */
331 
332 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
333 	scr_el3 = SCR_RESET_VAL;
334 
335 	/*
336 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
337 	 *  EL2, EL1 and EL0 are not trapped to EL3.
338 	 *
339 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
340 	 *  EL2, EL1 and EL0 are not trapped to EL3.
341 	 *
342 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
343 	 *  both Security states and both Execution states.
344 	 *
345 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
346 	 *  Non-secure memory.
347 	 */
348 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
349 
350 	scr_el3 |= SCR_SIF_BIT;
351 
352 	/*
353 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
354 	 *  Exception level as specified by SPSR.
355 	 */
356 	if (GET_RW(ep->spsr) == MODE_RW_64) {
357 		scr_el3 |= SCR_RW_BIT;
358 	}
359 
360 	/*
361 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
362 	 * Secure timer registers to EL3, from AArch64 state only, if specified
363 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
364 	 * bit always behaves as 1 (i.e. secure physical timer register access
365 	 * is not trapped)
366 	 */
367 	if (EP_GET_ST(ep->h.attr) != 0U) {
368 		scr_el3 |= SCR_ST_BIT;
369 	}
370 
371 	/*
372 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
373 	 * SCR_EL3.HXEn.
374 	 */
375 	if (is_feat_hcx_supported()) {
376 		scr_el3 |= SCR_HXEn_BIT;
377 	}
378 
379 	/*
380 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
381 	 * registers are trapped to EL3.
382 	 */
383 #if ENABLE_FEAT_RNG_TRAP
384 	scr_el3 |= SCR_TRNDR_BIT;
385 #endif
386 
387 #if FAULT_INJECTION_SUPPORT
388 	/* Enable fault injection from lower ELs */
389 	scr_el3 |= SCR_FIEN_BIT;
390 #endif
391 
392 #if CTX_INCLUDE_PAUTH_REGS
393 	/*
394 	 * Enable Pointer Authentication globally for all the worlds.
395 	 *
396 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
397 	 *  other than EL3
398 	 *
399 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
400 	 *  than EL3
401 	 */
402 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
403 #endif /* CTX_INCLUDE_PAUTH_REGS */
404 
405 	/*
406 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
407 	 */
408 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
409 		scr_el3 |= SCR_TCR2EN_BIT;
410 	}
411 
412 	/*
413 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
414 	 * registers for AArch64 if present.
415 	 */
416 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
417 		scr_el3 |= SCR_PIEN_BIT;
418 	}
419 
420 	/*
421 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
422 	 */
423 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
424 		scr_el3 |= SCR_GCSEn_BIT;
425 	}
426 
427 	/*
428 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
429 	 * All fields are architecturally UNKNOWN on reset.
430 	 *
431 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
432 	 *  by Advanced SIMD, floating-point or SVE instructions (if
433 	 *  implemented) do not trap to EL3.
434 	 *
435 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
436 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
437 	 */
438 	cptr_el3 = CPTR_EL3_RESET_VAL & ~(TFP_BIT | TCPAC_BIT);
439 
440 	write_ctx_reg(state, CTX_CPTR_EL3, cptr_el3);
441 
442 	/*
443 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
444 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
445 	 * next mode is Hyp.
446 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
447 	 * same conditions as HVC instructions and when the processor supports
448 	 * ARMv8.6-FGT.
449 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
450 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
451 	 * and when the processor supports ECV.
452 	 */
453 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
454 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
455 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
456 		scr_el3 |= SCR_HCE_BIT;
457 
458 		if (is_feat_fgt_supported()) {
459 			scr_el3 |= SCR_FGTEN_BIT;
460 		}
461 
462 		if (is_feat_ecv_supported()) {
463 			scr_el3 |= SCR_ECVEN_BIT;
464 		}
465 	}
466 
467 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
468 	if (is_feat_twed_supported()) {
469 		/* Set delay in SCR_EL3 */
470 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
471 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
472 				<< SCR_TWEDEL_SHIFT);
473 
474 		/* Enable WFE delay */
475 		scr_el3 |= SCR_TWEDEn_BIT;
476 	}
477 
478 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
479 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
480 	if (is_feat_sel2_supported()) {
481 		scr_el3 |= SCR_EEL2_BIT;
482 	}
483 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
484 
485 	if (is_feat_mpam_supported()) {
486 		write_ctx_reg(get_el3state_ctx(ctx), CTX_MPAM3_EL3, \
487 				MPAM3_EL3_RESET_VAL);
488 	}
489 
490 	/*
491 	 * Populate EL3 state so that we've the right context
492 	 * before doing ERET
493 	 */
494 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
495 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
496 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
497 
498 	/*
499 	 * Store the X0-X7 value from the entrypoint into the context
500 	 * Use memcpy as we are in control of the layout of the structures
501 	 */
502 	gp_regs = get_gpregs_ctx(ctx);
503 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
504 }
505 
506 /*******************************************************************************
507  * Context management library initialization routine. This library is used by
508  * runtime services to share pointers to 'cpu_context' structures for secure
509  * non-secure and realm states. Management of the structures and their associated
510  * memory is not done by the context management library e.g. the PSCI service
511  * manages the cpu context used for entry from and exit to the non-secure state.
512  * The Secure payload dispatcher service manages the context(s) corresponding to
513  * the secure state. It also uses this library to get access to the non-secure
514  * state cpu context pointers.
515  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
516  * which will be used for programming an entry into a lower EL. The same context
517  * will be used to save state upon exception entry from that EL.
518  ******************************************************************************/
519 void __init cm_init(void)
520 {
521 	/*
522 	 * The context management library has only global data to initialize, but
523 	 * that will be done when the BSS is zeroed out.
524 	 */
525 }
526 
527 /*******************************************************************************
528  * This is the high-level function used to initialize the cpu_context 'ctx' for
529  * first use. It performs initializations that are common to all security states
530  * and initializations specific to the security state specified in 'ep'
531  ******************************************************************************/
532 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
533 {
534 	unsigned int security_state;
535 
536 	assert(ctx != NULL);
537 
538 	/*
539 	 * Perform initializations that are common
540 	 * to all security states
541 	 */
542 	setup_context_common(ctx, ep);
543 
544 	security_state = GET_SECURITY_STATE(ep->h.attr);
545 
546 	/* Perform security state specific initializations */
547 	switch (security_state) {
548 	case SECURE:
549 		setup_secure_context(ctx, ep);
550 		break;
551 #if ENABLE_RME
552 	case REALM:
553 		setup_realm_context(ctx, ep);
554 		break;
555 #endif
556 	case NON_SECURE:
557 		setup_ns_context(ctx, ep);
558 		break;
559 	default:
560 		ERROR("Invalid security state\n");
561 		panic();
562 		break;
563 	}
564 }
565 
566 /*******************************************************************************
567  * Enable architecture extensions for EL3 execution. This function only updates
568  * registers in-place which are expected to either never change or be
569  * overwritten by el3_exit.
570  ******************************************************************************/
571 #if IMAGE_BL31
572 void cm_manage_extensions_el3(void)
573 {
574 	if (is_feat_spe_supported()) {
575 		spe_init_el3();
576 	}
577 
578 	if (is_feat_amu_supported()) {
579 		amu_init_el3();
580 	}
581 
582 	if (is_feat_sme_supported()) {
583 		sme_init_el3();
584 	}
585 
586 	if (is_feat_trbe_supported()) {
587 		trbe_init_el3();
588 	}
589 
590 	if (is_feat_brbe_supported()) {
591 		brbe_init_el3();
592 	}
593 
594 	if (is_feat_trf_supported()) {
595 		trf_init_el3();
596 	}
597 
598 	pmuv3_init_el3();
599 }
600 #endif /* IMAGE_BL31 */
601 
602 /*******************************************************************************
603  * Enable architecture extensions on first entry to Non-secure world.
604  ******************************************************************************/
605 static void manage_extensions_nonsecure(cpu_context_t *ctx)
606 {
607 #if IMAGE_BL31
608 	if (is_feat_amu_supported()) {
609 		amu_enable(ctx);
610 	}
611 
612 	/* Enable SVE and FPU/SIMD */
613 	if (is_feat_sve_supported()) {
614 		sve_enable(ctx);
615 	}
616 
617 	if (is_feat_sme_supported()) {
618 		sme_enable(ctx);
619 	}
620 
621 	if (is_feat_sys_reg_trace_supported()) {
622 		sys_reg_trace_enable(ctx);
623 	}
624 
625 	if (is_feat_mpam_supported()) {
626 		mpam_enable(ctx);
627 	}
628 	pmuv3_enable(ctx);
629 #endif /* IMAGE_BL31 */
630 }
631 
632 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
633 static __unused void enable_pauth_el2(void)
634 {
635 	u_register_t hcr_el2 = read_hcr_el2();
636 	/*
637 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
638 	 *  accessing key registers or using pointer authentication instructions
639 	 *  from lower ELs.
640 	 */
641 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
642 
643 	write_hcr_el2(hcr_el2);
644 }
645 
646 /*******************************************************************************
647  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
648  * world when EL2 is empty and unused.
649  ******************************************************************************/
650 static void manage_extensions_nonsecure_el2_unused(void)
651 {
652 #if IMAGE_BL31
653 	if (is_feat_spe_supported()) {
654 		spe_init_el2_unused();
655 	}
656 
657 	if (is_feat_amu_supported()) {
658 		amu_init_el2_unused();
659 	}
660 
661 	if (is_feat_mpam_supported()) {
662 		mpam_init_el2_unused();
663 	}
664 
665 	if (is_feat_trbe_supported()) {
666 		trbe_init_el2_unused();
667 	}
668 
669 	if (is_feat_sys_reg_trace_supported()) {
670 		sys_reg_trace_init_el2_unused();
671 	}
672 
673 	if (is_feat_trf_supported()) {
674 		trf_init_el2_unused();
675 	}
676 
677 	pmuv3_init_el2_unused();
678 
679 	if (is_feat_sve_supported()) {
680 		sve_init_el2_unused();
681 	}
682 
683 	if (is_feat_sme_supported()) {
684 		sme_init_el2_unused();
685 	}
686 
687 #if ENABLE_PAUTH
688 	enable_pauth_el2();
689 #endif /* ENABLE_PAUTH */
690 #endif /* IMAGE_BL31 */
691 }
692 
693 /*******************************************************************************
694  * Enable architecture extensions on first entry to Secure world.
695  ******************************************************************************/
696 static void manage_extensions_secure(cpu_context_t *ctx)
697 {
698 #if IMAGE_BL31
699 	if (is_feat_sve_supported()) {
700 		if (ENABLE_SVE_FOR_SWD) {
701 		/*
702 		 * Enable SVE and FPU in secure context, secure manager must
703 		 * ensure that the SVE and FPU register contexts are properly
704 		 * managed.
705 		 */
706 			sve_enable(ctx);
707 		} else {
708 		/*
709 		 * Disable SVE and FPU in secure context so non-secure world
710 		 * can safely use them.
711 		 */
712 			sve_disable(ctx);
713 		}
714 	}
715 
716 	if (is_feat_sme_supported()) {
717 		if (ENABLE_SME_FOR_SWD) {
718 		/*
719 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
720 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
721 		 */
722 			sme_init_el3();
723 			sme_enable(ctx);
724 		} else {
725 		/*
726 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
727 		 * world can safely use the associated registers.
728 		 */
729 			sme_disable(ctx);
730 		}
731 	}
732 
733 	/* NS can access this but Secure shouldn't */
734 	if (is_feat_sys_reg_trace_supported()) {
735 		sys_reg_trace_disable(ctx);
736 	}
737 #endif /* IMAGE_BL31 */
738 }
739 
740 /*******************************************************************************
741  * The following function initializes the cpu_context for a CPU specified by
742  * its `cpu_idx` for first use, and sets the initial entrypoint state as
743  * specified by the entry_point_info structure.
744  ******************************************************************************/
745 void cm_init_context_by_index(unsigned int cpu_idx,
746 			      const entry_point_info_t *ep)
747 {
748 	cpu_context_t *ctx;
749 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
750 	cm_setup_context(ctx, ep);
751 }
752 
753 /*******************************************************************************
754  * The following function initializes the cpu_context for the current CPU
755  * for first use, and sets the initial entrypoint state as specified by the
756  * entry_point_info structure.
757  ******************************************************************************/
758 void cm_init_my_context(const entry_point_info_t *ep)
759 {
760 	cpu_context_t *ctx;
761 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
762 	cm_setup_context(ctx, ep);
763 }
764 
765 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
766 static __unused void init_nonsecure_el2_unused(cpu_context_t *ctx)
767 {
768 	u_register_t hcr_el2 = HCR_RESET_VAL;
769 	u_register_t mdcr_el2;
770 	u_register_t scr_el3;
771 
772 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
773 
774 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
775 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
776 		hcr_el2 |= HCR_RW_BIT;
777 	}
778 
779 	write_hcr_el2(hcr_el2);
780 
781 	/*
782 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
783 	 * All fields have architecturally UNKNOWN reset values.
784 	 */
785 	write_cptr_el2(CPTR_EL2_RESET_VAL);
786 
787 	/*
788 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
789 	 * reset and are set to zero except for field(s) listed below.
790 	 *
791 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
792 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
793 	 *
794 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
795 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
796 	 */
797 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
798 
799 	/*
800 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
801 	 * UNKNOWN value.
802 	 */
803 	write_cntvoff_el2(0);
804 
805 	/*
806 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
807 	 * respectively.
808 	 */
809 	write_vpidr_el2(read_midr_el1());
810 	write_vmpidr_el2(read_mpidr_el1());
811 
812 	/*
813 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
814 	 *
815 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
816 	 * translation is disabled, cache maintenance operations depend on the
817 	 * VMID.
818 	 *
819 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
820 	 * disabled.
821 	 */
822 	write_vttbr_el2(VTTBR_RESET_VAL &
823 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
824 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
825 
826 	/*
827 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
828 	 * Some fields are architecturally UNKNOWN on reset.
829 	 *
830 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
831 	 * register accesses to the Debug ROM registers are not trapped to EL2.
832 	 *
833 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
834 	 * accesses to the powerdown debug registers are not trapped to EL2.
835 	 *
836 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
837 	 * debug registers do not trap to EL2.
838 	 *
839 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
840 	 * EL2.
841 	 */
842 	mdcr_el2 = MDCR_EL2_RESET_VAL &
843 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
844 		   MDCR_EL2_TDE_BIT);
845 
846 	write_mdcr_el2(mdcr_el2);
847 
848 	/*
849 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
850 	 *
851 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
852 	 * EL1 accesses to System registers do not trap to EL2.
853 	 */
854 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
855 
856 	/*
857 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
858 	 * reset.
859 	 *
860 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
861 	 * and prevent timer interrupts.
862 	 */
863 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
864 
865 	manage_extensions_nonsecure_el2_unused();
866 }
867 
868 /*******************************************************************************
869  * Prepare the CPU system registers for first entry into realm, secure, or
870  * normal world.
871  *
872  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
873  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
874  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
875  * For all entries, the EL1 registers are initialized from the cpu_context
876  ******************************************************************************/
877 void cm_prepare_el3_exit(uint32_t security_state)
878 {
879 	u_register_t sctlr_elx, scr_el3;
880 	cpu_context_t *ctx = cm_get_context(security_state);
881 
882 	assert(ctx != NULL);
883 
884 	if (security_state == NON_SECURE) {
885 		uint64_t el2_implemented = el_implemented(2);
886 
887 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
888 						 CTX_SCR_EL3);
889 
890 		if (((scr_el3 & SCR_HCE_BIT) != 0U)
891 			|| (el2_implemented != EL_IMPL_NONE)) {
892 			/*
893 			 * If context is not being used for EL2, initialize
894 			 * HCRX_EL2 with its init value here.
895 			 */
896 			if (is_feat_hcx_supported()) {
897 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
898 			}
899 
900 			/*
901 			 * Initialize Fine-grained trap registers introduced
902 			 * by FEAT_FGT so all traps are initially disabled when
903 			 * switching to EL2 or a lower EL, preventing undesired
904 			 * behavior.
905 			 */
906 			if (is_feat_fgt_supported()) {
907 				/*
908 				 * Initialize HFG*_EL2 registers with a default
909 				 * value so legacy systems unaware of FEAT_FGT
910 				 * do not get trapped due to their lack of
911 				 * initialization for this feature.
912 				 */
913 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
914 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
915 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
916 			}
917 		}
918 
919 
920 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
921 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
922 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
923 							   CTX_SCTLR_EL1);
924 			sctlr_elx &= SCTLR_EE_BIT;
925 			sctlr_elx |= SCTLR_EL2_RES1;
926 #if ERRATA_A75_764081
927 			/*
928 			 * If workaround of errata 764081 for Cortex-A75 is used
929 			 * then set SCTLR_EL2.IESB to enable Implicit Error
930 			 * Synchronization Barrier.
931 			 */
932 			sctlr_elx |= SCTLR_IESB_BIT;
933 #endif
934 			write_sctlr_el2(sctlr_elx);
935 		} else if (el2_implemented != EL_IMPL_NONE) {
936 			init_nonsecure_el2_unused(ctx);
937 		}
938 	}
939 
940 	cm_el1_sysregs_context_restore(security_state);
941 	cm_set_next_eret_context(security_state);
942 }
943 
944 #if CTX_INCLUDE_EL2_REGS
945 
946 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
947 {
948 	write_ctx_reg(ctx, CTX_HDFGRTR_EL2, read_hdfgrtr_el2());
949 	if (is_feat_amu_supported()) {
950 		write_ctx_reg(ctx, CTX_HAFGRTR_EL2, read_hafgrtr_el2());
951 	}
952 	write_ctx_reg(ctx, CTX_HDFGWTR_EL2, read_hdfgwtr_el2());
953 	write_ctx_reg(ctx, CTX_HFGITR_EL2, read_hfgitr_el2());
954 	write_ctx_reg(ctx, CTX_HFGRTR_EL2, read_hfgrtr_el2());
955 	write_ctx_reg(ctx, CTX_HFGWTR_EL2, read_hfgwtr_el2());
956 }
957 
958 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
959 {
960 	write_hdfgrtr_el2(read_ctx_reg(ctx, CTX_HDFGRTR_EL2));
961 	if (is_feat_amu_supported()) {
962 		write_hafgrtr_el2(read_ctx_reg(ctx, CTX_HAFGRTR_EL2));
963 	}
964 	write_hdfgwtr_el2(read_ctx_reg(ctx, CTX_HDFGWTR_EL2));
965 	write_hfgitr_el2(read_ctx_reg(ctx, CTX_HFGITR_EL2));
966 	write_hfgrtr_el2(read_ctx_reg(ctx, CTX_HFGRTR_EL2));
967 	write_hfgwtr_el2(read_ctx_reg(ctx, CTX_HFGWTR_EL2));
968 }
969 
970 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
971 {
972 	u_register_t mpam_idr = read_mpamidr_el1();
973 
974 	write_ctx_reg(ctx, CTX_MPAM2_EL2, read_mpam2_el2());
975 
976 	/*
977 	 * The context registers that we intend to save would be part of the
978 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
979 	 */
980 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
981 		return;
982 	}
983 
984 	/*
985 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
986 	 * MPAMIDR_HAS_HCR_BIT == 1.
987 	 */
988 	write_ctx_reg(ctx, CTX_MPAMHCR_EL2, read_mpamhcr_el2());
989 	write_ctx_reg(ctx, CTX_MPAMVPM0_EL2, read_mpamvpm0_el2());
990 	write_ctx_reg(ctx, CTX_MPAMVPMV_EL2, read_mpamvpmv_el2());
991 
992 	/*
993 	 * The number of MPAMVPM registers is implementation defined, their
994 	 * number is stored in the MPAMIDR_EL1 register.
995 	 */
996 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
997 	case 7:
998 		write_ctx_reg(ctx, CTX_MPAMVPM7_EL2, read_mpamvpm7_el2());
999 		__fallthrough;
1000 	case 6:
1001 		write_ctx_reg(ctx, CTX_MPAMVPM6_EL2, read_mpamvpm6_el2());
1002 		__fallthrough;
1003 	case 5:
1004 		write_ctx_reg(ctx, CTX_MPAMVPM5_EL2, read_mpamvpm5_el2());
1005 		__fallthrough;
1006 	case 4:
1007 		write_ctx_reg(ctx, CTX_MPAMVPM4_EL2, read_mpamvpm4_el2());
1008 		__fallthrough;
1009 	case 3:
1010 		write_ctx_reg(ctx, CTX_MPAMVPM3_EL2, read_mpamvpm3_el2());
1011 		__fallthrough;
1012 	case 2:
1013 		write_ctx_reg(ctx, CTX_MPAMVPM2_EL2, read_mpamvpm2_el2());
1014 		__fallthrough;
1015 	case 1:
1016 		write_ctx_reg(ctx, CTX_MPAMVPM1_EL2, read_mpamvpm1_el2());
1017 		break;
1018 	}
1019 }
1020 
1021 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1022 {
1023 	u_register_t mpam_idr = read_mpamidr_el1();
1024 
1025 	write_mpam2_el2(read_ctx_reg(ctx, CTX_MPAM2_EL2));
1026 
1027 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1028 		return;
1029 	}
1030 
1031 	write_mpamhcr_el2(read_ctx_reg(ctx, CTX_MPAMHCR_EL2));
1032 	write_mpamvpm0_el2(read_ctx_reg(ctx, CTX_MPAMVPM0_EL2));
1033 	write_mpamvpmv_el2(read_ctx_reg(ctx, CTX_MPAMVPMV_EL2));
1034 
1035 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1036 	case 7:
1037 		write_mpamvpm7_el2(read_ctx_reg(ctx, CTX_MPAMVPM7_EL2));
1038 		__fallthrough;
1039 	case 6:
1040 		write_mpamvpm6_el2(read_ctx_reg(ctx, CTX_MPAMVPM6_EL2));
1041 		__fallthrough;
1042 	case 5:
1043 		write_mpamvpm5_el2(read_ctx_reg(ctx, CTX_MPAMVPM5_EL2));
1044 		__fallthrough;
1045 	case 4:
1046 		write_mpamvpm4_el2(read_ctx_reg(ctx, CTX_MPAMVPM4_EL2));
1047 		__fallthrough;
1048 	case 3:
1049 		write_mpamvpm3_el2(read_ctx_reg(ctx, CTX_MPAMVPM3_EL2));
1050 		__fallthrough;
1051 	case 2:
1052 		write_mpamvpm2_el2(read_ctx_reg(ctx, CTX_MPAMVPM2_EL2));
1053 		__fallthrough;
1054 	case 1:
1055 		write_mpamvpm1_el2(read_ctx_reg(ctx, CTX_MPAMVPM1_EL2));
1056 		break;
1057 	}
1058 }
1059 
1060 /* -----------------------------------------------------
1061  * The following registers are not added:
1062  * AMEVCNTVOFF0<n>_EL2
1063  * AMEVCNTVOFF1<n>_EL2
1064  * ICH_AP0R<n>_EL2
1065  * ICH_AP1R<n>_EL2
1066  * ICH_LR<n>_EL2
1067  * -----------------------------------------------------
1068  */
1069 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1070 {
1071 	write_ctx_reg(ctx, CTX_ACTLR_EL2, read_actlr_el2());
1072 	write_ctx_reg(ctx, CTX_AFSR0_EL2, read_afsr0_el2());
1073 	write_ctx_reg(ctx, CTX_AFSR1_EL2, read_afsr1_el2());
1074 	write_ctx_reg(ctx, CTX_AMAIR_EL2, read_amair_el2());
1075 	write_ctx_reg(ctx, CTX_CNTHCTL_EL2, read_cnthctl_el2());
1076 	write_ctx_reg(ctx, CTX_CNTVOFF_EL2, read_cntvoff_el2());
1077 	write_ctx_reg(ctx, CTX_CPTR_EL2, read_cptr_el2());
1078 	if (CTX_INCLUDE_AARCH32_REGS) {
1079 		write_ctx_reg(ctx, CTX_DBGVCR32_EL2, read_dbgvcr32_el2());
1080 	}
1081 	write_ctx_reg(ctx, CTX_ELR_EL2, read_elr_el2());
1082 	write_ctx_reg(ctx, CTX_ESR_EL2, read_esr_el2());
1083 	write_ctx_reg(ctx, CTX_FAR_EL2, read_far_el2());
1084 	write_ctx_reg(ctx, CTX_HACR_EL2, read_hacr_el2());
1085 	write_ctx_reg(ctx, CTX_HCR_EL2, read_hcr_el2());
1086 	write_ctx_reg(ctx, CTX_HPFAR_EL2, read_hpfar_el2());
1087 	write_ctx_reg(ctx, CTX_HSTR_EL2, read_hstr_el2());
1088 
1089 	/*
1090 	 * Set the NS bit to be able to access the ICC_SRE_EL2 register
1091 	 * TODO: remove with root context
1092 	 */
1093 	u_register_t scr_el3 = read_scr_el3();
1094 
1095 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1096 	isb();
1097 	write_ctx_reg(ctx, CTX_ICC_SRE_EL2, read_icc_sre_el2());
1098 
1099 	write_scr_el3(scr_el3);
1100 	isb();
1101 
1102 	write_ctx_reg(ctx, CTX_ICH_HCR_EL2, read_ich_hcr_el2());
1103 	write_ctx_reg(ctx, CTX_ICH_VMCR_EL2, read_ich_vmcr_el2());
1104 	write_ctx_reg(ctx, CTX_MAIR_EL2, read_mair_el2());
1105 	write_ctx_reg(ctx, CTX_MDCR_EL2, read_mdcr_el2());
1106 	write_ctx_reg(ctx, CTX_SCTLR_EL2, read_sctlr_el2());
1107 	write_ctx_reg(ctx, CTX_SPSR_EL2, read_spsr_el2());
1108 	write_ctx_reg(ctx, CTX_SP_EL2, read_sp_el2());
1109 	write_ctx_reg(ctx, CTX_TCR_EL2, read_tcr_el2());
1110 	write_ctx_reg(ctx, CTX_TPIDR_EL2, read_tpidr_el2());
1111 	write_ctx_reg(ctx, CTX_TTBR0_EL2, read_ttbr0_el2());
1112 	write_ctx_reg(ctx, CTX_VBAR_EL2, read_vbar_el2());
1113 	write_ctx_reg(ctx, CTX_VMPIDR_EL2, read_vmpidr_el2());
1114 	write_ctx_reg(ctx, CTX_VPIDR_EL2, read_vpidr_el2());
1115 	write_ctx_reg(ctx, CTX_VTCR_EL2, read_vtcr_el2());
1116 	write_ctx_reg(ctx, CTX_VTTBR_EL2, read_vttbr_el2());
1117 }
1118 
1119 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1120 {
1121 	write_actlr_el2(read_ctx_reg(ctx, CTX_ACTLR_EL2));
1122 	write_afsr0_el2(read_ctx_reg(ctx, CTX_AFSR0_EL2));
1123 	write_afsr1_el2(read_ctx_reg(ctx, CTX_AFSR1_EL2));
1124 	write_amair_el2(read_ctx_reg(ctx, CTX_AMAIR_EL2));
1125 	write_cnthctl_el2(read_ctx_reg(ctx, CTX_CNTHCTL_EL2));
1126 	write_cntvoff_el2(read_ctx_reg(ctx, CTX_CNTVOFF_EL2));
1127 	write_cptr_el2(read_ctx_reg(ctx, CTX_CPTR_EL2));
1128 	if (CTX_INCLUDE_AARCH32_REGS) {
1129 		write_dbgvcr32_el2(read_ctx_reg(ctx, CTX_DBGVCR32_EL2));
1130 	}
1131 	write_elr_el2(read_ctx_reg(ctx, CTX_ELR_EL2));
1132 	write_esr_el2(read_ctx_reg(ctx, CTX_ESR_EL2));
1133 	write_far_el2(read_ctx_reg(ctx, CTX_FAR_EL2));
1134 	write_hacr_el2(read_ctx_reg(ctx, CTX_HACR_EL2));
1135 	write_hcr_el2(read_ctx_reg(ctx, CTX_HCR_EL2));
1136 	write_hpfar_el2(read_ctx_reg(ctx, CTX_HPFAR_EL2));
1137 	write_hstr_el2(read_ctx_reg(ctx, CTX_HSTR_EL2));
1138 
1139 	/*
1140 	 * Set the NS bit to be able to access the ICC_SRE_EL2 register
1141 	 * TODO: remove with root context
1142 	 */
1143 	u_register_t scr_el3 = read_scr_el3();
1144 
1145 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1146 	isb();
1147 	write_icc_sre_el2(read_ctx_reg(ctx, CTX_ICC_SRE_EL2));
1148 
1149 	write_scr_el3(scr_el3);
1150 	isb();
1151 
1152 	write_ich_hcr_el2(read_ctx_reg(ctx, CTX_ICH_HCR_EL2));
1153 	write_ich_vmcr_el2(read_ctx_reg(ctx, CTX_ICH_VMCR_EL2));
1154 	write_mair_el2(read_ctx_reg(ctx, CTX_MAIR_EL2));
1155 	write_mdcr_el2(read_ctx_reg(ctx, CTX_MDCR_EL2));
1156 	write_sctlr_el2(read_ctx_reg(ctx, CTX_SCTLR_EL2));
1157 	write_spsr_el2(read_ctx_reg(ctx, CTX_SPSR_EL2));
1158 	write_sp_el2(read_ctx_reg(ctx, CTX_SP_EL2));
1159 	write_tcr_el2(read_ctx_reg(ctx, CTX_TCR_EL2));
1160 	write_tpidr_el2(read_ctx_reg(ctx, CTX_TPIDR_EL2));
1161 	write_ttbr0_el2(read_ctx_reg(ctx, CTX_TTBR0_EL2));
1162 	write_vbar_el2(read_ctx_reg(ctx, CTX_VBAR_EL2));
1163 	write_vmpidr_el2(read_ctx_reg(ctx, CTX_VMPIDR_EL2));
1164 	write_vpidr_el2(read_ctx_reg(ctx, CTX_VPIDR_EL2));
1165 	write_vtcr_el2(read_ctx_reg(ctx, CTX_VTCR_EL2));
1166 	write_vttbr_el2(read_ctx_reg(ctx, CTX_VTTBR_EL2));
1167 }
1168 
1169 /*******************************************************************************
1170  * Save EL2 sysreg context
1171  ******************************************************************************/
1172 void cm_el2_sysregs_context_save(uint32_t security_state)
1173 {
1174 	cpu_context_t *ctx;
1175 	el2_sysregs_t *el2_sysregs_ctx;
1176 
1177 	ctx = cm_get_context(security_state);
1178 	assert(ctx != NULL);
1179 
1180 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1181 
1182 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1183 #if CTX_INCLUDE_MTE_REGS
1184 	write_ctx_reg(el2_sysregs_ctx, CTX_TFSR_EL2, read_tfsr_el2());
1185 #endif
1186 	if (is_feat_mpam_supported()) {
1187 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1188 	}
1189 
1190 	if (is_feat_fgt_supported()) {
1191 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1192 	}
1193 
1194 	if (is_feat_ecv_v2_supported()) {
1195 		write_ctx_reg(el2_sysregs_ctx, CTX_CNTPOFF_EL2, read_cntpoff_el2());
1196 	}
1197 
1198 	if (is_feat_vhe_supported()) {
1199 		write_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2, read_contextidr_el2());
1200 		write_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2, read_ttbr1_el2());
1201 	}
1202 
1203 	if (is_feat_ras_supported()) {
1204 		write_ctx_reg(el2_sysregs_ctx, CTX_VDISR_EL2, read_vdisr_el2());
1205 		write_ctx_reg(el2_sysregs_ctx, CTX_VSESR_EL2, read_vsesr_el2());
1206 	}
1207 
1208 	if (is_feat_nv2_supported()) {
1209 		write_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2, read_vncr_el2());
1210 	}
1211 
1212 	if (is_feat_trf_supported()) {
1213 		write_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2, read_trfcr_el2());
1214 	}
1215 
1216 	if (is_feat_csv2_2_supported()) {
1217 		write_ctx_reg(el2_sysregs_ctx, CTX_SCXTNUM_EL2, read_scxtnum_el2());
1218 	}
1219 
1220 	if (is_feat_hcx_supported()) {
1221 		write_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2, read_hcrx_el2());
1222 	}
1223 	if (is_feat_tcr2_supported()) {
1224 		write_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2, read_tcr2_el2());
1225 	}
1226 	if (is_feat_sxpie_supported()) {
1227 		write_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2, read_pire0_el2());
1228 		write_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2, read_pir_el2());
1229 	}
1230 	if (is_feat_s2pie_supported()) {
1231 		write_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2, read_s2pir_el2());
1232 	}
1233 	if (is_feat_sxpoe_supported()) {
1234 		write_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2, read_por_el2());
1235 	}
1236 	if (is_feat_gcs_supported()) {
1237 		write_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2, read_gcspr_el2());
1238 		write_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2, read_gcscr_el2());
1239 	}
1240 }
1241 
1242 /*******************************************************************************
1243  * Restore EL2 sysreg context
1244  ******************************************************************************/
1245 void cm_el2_sysregs_context_restore(uint32_t security_state)
1246 {
1247 	cpu_context_t *ctx;
1248 	el2_sysregs_t *el2_sysregs_ctx;
1249 
1250 	ctx = cm_get_context(security_state);
1251 	assert(ctx != NULL);
1252 
1253 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1254 
1255 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1256 #if CTX_INCLUDE_MTE_REGS
1257 	write_tfsr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TFSR_EL2));
1258 #endif
1259 	if (is_feat_mpam_supported()) {
1260 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1261 	}
1262 
1263 	if (is_feat_fgt_supported()) {
1264 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1265 	}
1266 
1267 	if (is_feat_ecv_v2_supported()) {
1268 		write_cntpoff_el2(read_ctx_reg(el2_sysregs_ctx, CTX_CNTPOFF_EL2));
1269 	}
1270 
1271 	if (is_feat_vhe_supported()) {
1272 		write_contextidr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2));
1273 		write_ttbr1_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2));
1274 	}
1275 
1276 	if (is_feat_ras_supported()) {
1277 		write_vdisr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VDISR_EL2));
1278 		write_vsesr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VSESR_EL2));
1279 	}
1280 
1281 	if (is_feat_nv2_supported()) {
1282 		write_vncr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2));
1283 	}
1284 	if (is_feat_trf_supported()) {
1285 		write_trfcr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2));
1286 	}
1287 
1288 	if (is_feat_csv2_2_supported()) {
1289 		write_scxtnum_el2(read_ctx_reg(el2_sysregs_ctx, CTX_SCXTNUM_EL2));
1290 	}
1291 
1292 	if (is_feat_hcx_supported()) {
1293 		write_hcrx_el2(read_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2));
1294 	}
1295 	if (is_feat_tcr2_supported()) {
1296 		write_tcr2_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2));
1297 	}
1298 	if (is_feat_sxpie_supported()) {
1299 		write_pire0_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2));
1300 		write_pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2));
1301 	}
1302 	if (is_feat_s2pie_supported()) {
1303 		write_s2pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2));
1304 	}
1305 	if (is_feat_sxpoe_supported()) {
1306 		write_por_el2(read_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2));
1307 	}
1308 	if (is_feat_gcs_supported()) {
1309 		write_gcscr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2));
1310 		write_gcspr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2));
1311 	}
1312 }
1313 #endif /* CTX_INCLUDE_EL2_REGS */
1314 
1315 /*******************************************************************************
1316  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1317  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1318  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1319  * cm_prepare_el3_exit function.
1320  ******************************************************************************/
1321 void cm_prepare_el3_exit_ns(void)
1322 {
1323 #if CTX_INCLUDE_EL2_REGS
1324 #if ENABLE_ASSERTIONS
1325 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1326 	assert(ctx != NULL);
1327 
1328 	/* Assert that EL2 is used. */
1329 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1330 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1331 			(el_implemented(2U) != EL_IMPL_NONE));
1332 #endif /* ENABLE_ASSERTIONS */
1333 
1334 	/* Restore EL2 and EL1 sysreg contexts */
1335 	cm_el2_sysregs_context_restore(NON_SECURE);
1336 	cm_el1_sysregs_context_restore(NON_SECURE);
1337 	cm_set_next_eret_context(NON_SECURE);
1338 #else
1339 	cm_prepare_el3_exit(NON_SECURE);
1340 #endif /* CTX_INCLUDE_EL2_REGS */
1341 }
1342 
1343 /*******************************************************************************
1344  * The next four functions are used by runtime services to save and restore
1345  * EL1 context on the 'cpu_context' structure for the specified security
1346  * state.
1347  ******************************************************************************/
1348 void cm_el1_sysregs_context_save(uint32_t security_state)
1349 {
1350 	cpu_context_t *ctx;
1351 
1352 	ctx = cm_get_context(security_state);
1353 	assert(ctx != NULL);
1354 
1355 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1356 
1357 #if IMAGE_BL31
1358 	if (security_state == SECURE)
1359 		PUBLISH_EVENT(cm_exited_secure_world);
1360 	else
1361 		PUBLISH_EVENT(cm_exited_normal_world);
1362 #endif
1363 }
1364 
1365 void cm_el1_sysregs_context_restore(uint32_t security_state)
1366 {
1367 	cpu_context_t *ctx;
1368 
1369 	ctx = cm_get_context(security_state);
1370 	assert(ctx != NULL);
1371 
1372 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1373 
1374 #if IMAGE_BL31
1375 	if (security_state == SECURE)
1376 		PUBLISH_EVENT(cm_entering_secure_world);
1377 	else
1378 		PUBLISH_EVENT(cm_entering_normal_world);
1379 #endif
1380 }
1381 
1382 /*******************************************************************************
1383  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1384  * given security state with the given entrypoint
1385  ******************************************************************************/
1386 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1387 {
1388 	cpu_context_t *ctx;
1389 	el3_state_t *state;
1390 
1391 	ctx = cm_get_context(security_state);
1392 	assert(ctx != NULL);
1393 
1394 	/* Populate EL3 state so that ERET jumps to the correct entry */
1395 	state = get_el3state_ctx(ctx);
1396 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1397 }
1398 
1399 /*******************************************************************************
1400  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1401  * pertaining to the given security state
1402  ******************************************************************************/
1403 void cm_set_elr_spsr_el3(uint32_t security_state,
1404 			uintptr_t entrypoint, uint32_t spsr)
1405 {
1406 	cpu_context_t *ctx;
1407 	el3_state_t *state;
1408 
1409 	ctx = cm_get_context(security_state);
1410 	assert(ctx != NULL);
1411 
1412 	/* Populate EL3 state so that ERET jumps to the correct entry */
1413 	state = get_el3state_ctx(ctx);
1414 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1415 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1416 }
1417 
1418 /*******************************************************************************
1419  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1420  * pertaining to the given security state using the value and bit position
1421  * specified in the parameters. It preserves all other bits.
1422  ******************************************************************************/
1423 void cm_write_scr_el3_bit(uint32_t security_state,
1424 			  uint32_t bit_pos,
1425 			  uint32_t value)
1426 {
1427 	cpu_context_t *ctx;
1428 	el3_state_t *state;
1429 	u_register_t scr_el3;
1430 
1431 	ctx = cm_get_context(security_state);
1432 	assert(ctx != NULL);
1433 
1434 	/* Ensure that the bit position is a valid one */
1435 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1436 
1437 	/* Ensure that the 'value' is only a bit wide */
1438 	assert(value <= 1U);
1439 
1440 	/*
1441 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1442 	 * and set it to its new value.
1443 	 */
1444 	state = get_el3state_ctx(ctx);
1445 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1446 	scr_el3 &= ~(1UL << bit_pos);
1447 	scr_el3 |= (u_register_t)value << bit_pos;
1448 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1449 }
1450 
1451 /*******************************************************************************
1452  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1453  * given security state.
1454  ******************************************************************************/
1455 u_register_t cm_get_scr_el3(uint32_t security_state)
1456 {
1457 	cpu_context_t *ctx;
1458 	el3_state_t *state;
1459 
1460 	ctx = cm_get_context(security_state);
1461 	assert(ctx != NULL);
1462 
1463 	/* Populate EL3 state so that ERET jumps to the correct entry */
1464 	state = get_el3state_ctx(ctx);
1465 	return read_ctx_reg(state, CTX_SCR_EL3);
1466 }
1467 
1468 /*******************************************************************************
1469  * This function is used to program the context that's used for exception
1470  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1471  * the required security state
1472  ******************************************************************************/
1473 void cm_set_next_eret_context(uint32_t security_state)
1474 {
1475 	cpu_context_t *ctx;
1476 
1477 	ctx = cm_get_context(security_state);
1478 	assert(ctx != NULL);
1479 
1480 	cm_set_next_context(ctx);
1481 }
1482