xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 665e71b8ea28162ec7737c1411bca3ea89e5957e)
1 /*
2  * Copyright (c) 2013-2020, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_helpers.h>
15 #include <arch_features.h>
16 #include <bl31/interrupt_mgmt.h>
17 #include <common/bl_common.h>
18 #include <context.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/el3_runtime/pubsub_events.h>
21 #include <lib/extensions/amu.h>
22 #include <lib/extensions/mpam.h>
23 #include <lib/extensions/spe.h>
24 #include <lib/extensions/sve.h>
25 #include <lib/utils.h>
26 
27 
28 /*******************************************************************************
29  * Context management library initialisation routine. This library is used by
30  * runtime services to share pointers to 'cpu_context' structures for the secure
31  * and non-secure states. Management of the structures and their associated
32  * memory is not done by the context management library e.g. the PSCI service
33  * manages the cpu context used for entry from and exit to the non-secure state.
34  * The Secure payload dispatcher service manages the context(s) corresponding to
35  * the secure state. It also uses this library to get access to the non-secure
36  * state cpu context pointers.
37  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
38  * which will used for programming an entry into a lower EL. The same context
39  * will used to save state upon exception entry from that EL.
40  ******************************************************************************/
41 void __init cm_init(void)
42 {
43 	/*
44 	 * The context management library has only global data to intialize, but
45 	 * that will be done when the BSS is zeroed out
46 	 */
47 }
48 
49 /*******************************************************************************
50  * The following function initializes the cpu_context 'ctx' for
51  * first use, and sets the initial entrypoint state as specified by the
52  * entry_point_info structure.
53  *
54  * The security state to initialize is determined by the SECURE attribute
55  * of the entry_point_info.
56  *
57  * The EE and ST attributes are used to configure the endianness and secure
58  * timer availability for the new execution context.
59  *
60  * To prepare the register state for entry call cm_prepare_el3_exit() and
61  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
62  * cm_e1_sysreg_context_restore().
63  ******************************************************************************/
64 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
65 {
66 	unsigned int security_state;
67 	u_register_t scr_el3;
68 	el3_state_t *state;
69 	gp_regs_t *gp_regs;
70 	u_register_t sctlr_elx, actlr_elx;
71 
72 	assert(ctx != NULL);
73 
74 	security_state = GET_SECURITY_STATE(ep->h.attr);
75 
76 	/* Clear any residual register values from the context */
77 	zeromem(ctx, sizeof(*ctx));
78 
79 	/*
80 	 * SCR_EL3 was initialised during reset sequence in macro
81 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
82 	 * affect the next EL.
83 	 *
84 	 * The following fields are initially set to zero and then updated to
85 	 * the required value depending on the state of the SPSR_EL3 and the
86 	 * Security state and entrypoint attributes of the next EL.
87 	 */
88 	scr_el3 = read_scr();
89 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
90 			SCR_ST_BIT | SCR_HCE_BIT);
91 	/*
92 	 * SCR_NS: Set the security state of the next EL.
93 	 */
94 	if (security_state != SECURE)
95 		scr_el3 |= SCR_NS_BIT;
96 	/*
97 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
98 	 *  Exception level as specified by SPSR.
99 	 */
100 	if (GET_RW(ep->spsr) == MODE_RW_64)
101 		scr_el3 |= SCR_RW_BIT;
102 	/*
103 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
104 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
105 	 *  by the entrypoint attributes.
106 	 */
107 	if (EP_GET_ST(ep->h.attr) != 0U)
108 		scr_el3 |= SCR_ST_BIT;
109 
110 #if !HANDLE_EA_EL3_FIRST
111 	/*
112 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
113 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
114 	 *  Aborts are taken to EL3.
115 	 */
116 	scr_el3 &= ~SCR_EA_BIT;
117 #endif
118 
119 #if FAULT_INJECTION_SUPPORT
120 	/* Enable fault injection from lower ELs */
121 	scr_el3 |= SCR_FIEN_BIT;
122 #endif
123 
124 #if !CTX_INCLUDE_PAUTH_REGS
125 	/*
126 	 * If the pointer authentication registers aren't saved during world
127 	 * switches the value of the registers can be leaked from the Secure to
128 	 * the Non-secure world. To prevent this, rather than enabling pointer
129 	 * authentication everywhere, we only enable it in the Non-secure world.
130 	 *
131 	 * If the Secure world wants to use pointer authentication,
132 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
133 	 */
134 	if (security_state == NON_SECURE)
135 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
136 #endif /* !CTX_INCLUDE_PAUTH_REGS */
137 
138 	/*
139 	 * Enable MTE support. Support is enabled unilaterally for the normal
140 	 * world, and only for the secure world when CTX_INCLUDE_MTE_REGS is
141 	 * set.
142 	 */
143 #if CTX_INCLUDE_MTE_REGS
144 	assert(get_armv8_5_mte_support() == MTE_IMPLEMENTED_ELX);
145 	scr_el3 |= SCR_ATA_BIT;
146 #else
147 	unsigned int mte = get_armv8_5_mte_support();
148 	if (mte == MTE_IMPLEMENTED_EL0) {
149 		/*
150 		 * Can enable MTE across both worlds as no MTE registers are
151 		 * used
152 		 */
153 		scr_el3 |= SCR_ATA_BIT;
154 	} else if (mte == MTE_IMPLEMENTED_ELX && security_state == NON_SECURE) {
155 		/*
156 		 * Can only enable MTE in Non-Secure world without register
157 		 * saving
158 		 */
159 		scr_el3 |= SCR_ATA_BIT;
160 	}
161 #endif
162 
163 #ifdef IMAGE_BL31
164 	/*
165 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
166 	 *  indicated by the interrupt routing model for BL31.
167 	 */
168 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
169 #endif
170 
171 	/*
172 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
173 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
174 	 * next mode is Hyp.
175 	 */
176 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
177 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
178 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
179 		scr_el3 |= SCR_HCE_BIT;
180 	}
181 
182 	/* Enable S-EL2 if the next EL is EL2 and security state is secure */
183 	if ((security_state == SECURE) && (GET_EL(ep->spsr) == MODE_EL2)) {
184 		if (GET_RW(ep->spsr) != MODE_RW_64) {
185 			ERROR("S-EL2 can not be used in AArch32.");
186 			panic();
187 		}
188 
189 		scr_el3 |= SCR_EEL2_BIT;
190 	}
191 
192 	/*
193 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
194 	 * execution state setting all fields rather than relying of the hw.
195 	 * Some fields have architecturally UNKNOWN reset values and these are
196 	 * set to zero.
197 	 *
198 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
199 	 *
200 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
201 	 *  required by PSCI specification)
202 	 */
203 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
204 	if (GET_RW(ep->spsr) == MODE_RW_64)
205 		sctlr_elx |= SCTLR_EL1_RES1;
206 	else {
207 		/*
208 		 * If the target execution state is AArch32 then the following
209 		 * fields need to be set.
210 		 *
211 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
212 		 *  instructions are not trapped to EL1.
213 		 *
214 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
215 		 *  instructions are not trapped to EL1.
216 		 *
217 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
218 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
219 		 */
220 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
221 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
222 	}
223 
224 #if ERRATA_A75_764081
225 	/*
226 	 * If workaround of errata 764081 for Cortex-A75 is used then set
227 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
228 	 */
229 	sctlr_elx |= SCTLR_IESB_BIT;
230 #endif
231 
232 	/*
233 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
234 	 * and other EL2 registers are set up by cm_prepare_ns_entry() as they
235 	 * are not part of the stored cpu_context.
236 	 */
237 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
238 
239 	/*
240 	 * Base the context ACTLR_EL1 on the current value, as it is
241 	 * implementation defined. The context restore process will write
242 	 * the value from the context to the actual register and can cause
243 	 * problems for processor cores that don't expect certain bits to
244 	 * be zero.
245 	 */
246 	actlr_elx = read_actlr_el1();
247 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
248 
249 	/*
250 	 * Populate EL3 state so that we've the right context
251 	 * before doing ERET
252 	 */
253 	state = get_el3state_ctx(ctx);
254 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
255 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
256 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
257 
258 	/*
259 	 * Store the X0-X7 value from the entrypoint into the context
260 	 * Use memcpy as we are in control of the layout of the structures
261 	 */
262 	gp_regs = get_gpregs_ctx(ctx);
263 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
264 }
265 
266 /*******************************************************************************
267  * Enable architecture extensions on first entry to Non-secure world.
268  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
269  * it is zero.
270  ******************************************************************************/
271 static void enable_extensions_nonsecure(bool el2_unused)
272 {
273 #if IMAGE_BL31
274 #if ENABLE_SPE_FOR_LOWER_ELS
275 	spe_enable(el2_unused);
276 #endif
277 
278 #if ENABLE_AMU
279 	amu_enable(el2_unused);
280 #endif
281 
282 #if ENABLE_SVE_FOR_NS
283 	sve_enable(el2_unused);
284 #endif
285 
286 #if ENABLE_MPAM_FOR_LOWER_ELS
287 	mpam_enable(el2_unused);
288 #endif
289 #endif
290 }
291 
292 /*******************************************************************************
293  * The following function initializes the cpu_context for a CPU specified by
294  * its `cpu_idx` for first use, and sets the initial entrypoint state as
295  * specified by the entry_point_info structure.
296  ******************************************************************************/
297 void cm_init_context_by_index(unsigned int cpu_idx,
298 			      const entry_point_info_t *ep)
299 {
300 	cpu_context_t *ctx;
301 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
302 	cm_setup_context(ctx, ep);
303 }
304 
305 /*******************************************************************************
306  * The following function initializes the cpu_context for the current CPU
307  * for first use, and sets the initial entrypoint state as specified by the
308  * entry_point_info structure.
309  ******************************************************************************/
310 void cm_init_my_context(const entry_point_info_t *ep)
311 {
312 	cpu_context_t *ctx;
313 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
314 	cm_setup_context(ctx, ep);
315 }
316 
317 /*******************************************************************************
318  * Prepare the CPU system registers for first entry into secure or normal world
319  *
320  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
321  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
322  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
323  * For all entries, the EL1 registers are initialized from the cpu_context
324  ******************************************************************************/
325 void cm_prepare_el3_exit(uint32_t security_state)
326 {
327 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
328 	cpu_context_t *ctx = cm_get_context(security_state);
329 	bool el2_unused = false;
330 	uint64_t hcr_el2 = 0U;
331 
332 	assert(ctx != NULL);
333 
334 	if (security_state == NON_SECURE) {
335 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
336 						 CTX_SCR_EL3);
337 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
338 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
339 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
340 							   CTX_SCTLR_EL1);
341 			sctlr_elx &= SCTLR_EE_BIT;
342 			sctlr_elx |= SCTLR_EL2_RES1;
343 #if ERRATA_A75_764081
344 			/*
345 			 * If workaround of errata 764081 for Cortex-A75 is used
346 			 * then set SCTLR_EL2.IESB to enable Implicit Error
347 			 * Synchronization Barrier.
348 			 */
349 			sctlr_elx |= SCTLR_IESB_BIT;
350 #endif
351 			write_sctlr_el2(sctlr_elx);
352 		} else if (el_implemented(2) != EL_IMPL_NONE) {
353 			el2_unused = true;
354 
355 			/*
356 			 * EL2 present but unused, need to disable safely.
357 			 * SCTLR_EL2 can be ignored in this case.
358 			 *
359 			 * Set EL2 register width appropriately: Set HCR_EL2
360 			 * field to match SCR_EL3.RW.
361 			 */
362 			if ((scr_el3 & SCR_RW_BIT) != 0U)
363 				hcr_el2 |= HCR_RW_BIT;
364 
365 			/*
366 			 * For Armv8.3 pointer authentication feature, disable
367 			 * traps to EL2 when accessing key registers or using
368 			 * pointer authentication instructions from lower ELs.
369 			 */
370 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
371 
372 			write_hcr_el2(hcr_el2);
373 
374 			/*
375 			 * Initialise CPTR_EL2 setting all fields rather than
376 			 * relying on the hw. All fields have architecturally
377 			 * UNKNOWN reset values.
378 			 *
379 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
380 			 *  accesses to the CPACR_EL1 or CPACR from both
381 			 *  Execution states do not trap to EL2.
382 			 *
383 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
384 			 *  register accesses to the trace registers from both
385 			 *  Execution states do not trap to EL2.
386 			 *
387 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
388 			 *  to SIMD and floating-point functionality from both
389 			 *  Execution states do not trap to EL2.
390 			 */
391 			write_cptr_el2(CPTR_EL2_RESET_VAL &
392 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
393 					| CPTR_EL2_TFP_BIT));
394 
395 			/*
396 			 * Initialise CNTHCTL_EL2. All fields are
397 			 * architecturally UNKNOWN on reset and are set to zero
398 			 * except for field(s) listed below.
399 			 *
400 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
401 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
402 			 *  physical timer registers.
403 			 *
404 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
405 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
406 			 *  physical counter registers.
407 			 */
408 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
409 						EL1PCEN_BIT | EL1PCTEN_BIT);
410 
411 			/*
412 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
413 			 * architecturally UNKNOWN value.
414 			 */
415 			write_cntvoff_el2(0);
416 
417 			/*
418 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
419 			 * MPIDR_EL1 respectively.
420 			 */
421 			write_vpidr_el2(read_midr_el1());
422 			write_vmpidr_el2(read_mpidr_el1());
423 
424 			/*
425 			 * Initialise VTTBR_EL2. All fields are architecturally
426 			 * UNKNOWN on reset.
427 			 *
428 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
429 			 *  2 address translation is disabled, cache maintenance
430 			 *  operations depend on the VMID.
431 			 *
432 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
433 			 *  translation is disabled.
434 			 */
435 			write_vttbr_el2(VTTBR_RESET_VAL &
436 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
437 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
438 
439 			/*
440 			 * Initialise MDCR_EL2, setting all fields rather than
441 			 * relying on hw. Some fields are architecturally
442 			 * UNKNOWN on reset.
443 			 *
444 			 * MDCR_EL2.HLP: Set to one so that event counter
445 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
446 			 *  occurs on the increment that changes
447 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
448 			 *  implemented. This bit is RES0 in versions of the
449 			 *  architecture earlier than ARMv8.5, setting it to 1
450 			 *  doesn't have any effect on them.
451 			 *
452 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
453 			 *  Filter Control register TRFCR_EL1 at EL1 is not
454 			 *  trapped to EL2. This bit is RES0 in versions of
455 			 *  the architecture earlier than ARMv8.4.
456 			 *
457 			 * MDCR_EL2.HPMD: Set to one so that event counting is
458 			 *  prohibited at EL2. This bit is RES0 in versions of
459 			 *  the architecture earlier than ARMv8.1, setting it
460 			 *  to 1 doesn't have any effect on them.
461 			 *
462 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
463 			 *  Statistical Profiling control registers from EL1
464 			 *  do not trap to EL2. This bit is RES0 when SPE is
465 			 *  not implemented.
466 			 *
467 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
468 			 *  EL1 System register accesses to the Debug ROM
469 			 *  registers are not trapped to EL2.
470 			 *
471 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
472 			 *  System register accesses to the powerdown debug
473 			 *  registers are not trapped to EL2.
474 			 *
475 			 * MDCR_EL2.TDA: Set to zero so that System register
476 			 *  accesses to the debug registers do not trap to EL2.
477 			 *
478 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
479 			 *  are not routed to EL2.
480 			 *
481 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
482 			 *  Monitors.
483 			 *
484 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
485 			 *  EL1 accesses to all Performance Monitors registers
486 			 *  are not trapped to EL2.
487 			 *
488 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
489 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
490 			 *  trapped to EL2.
491 			 *
492 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
493 			 *  architecturally-defined reset value.
494 			 */
495 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
496 				     MDCR_EL2_HPMD) |
497 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
498 				   >> PMCR_EL0_N_SHIFT)) &
499 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
500 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
501 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
502 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
503 				     MDCR_EL2_TPMCR_BIT);
504 
505 			write_mdcr_el2(mdcr_el2);
506 
507 			/*
508 			 * Initialise HSTR_EL2. All fields are architecturally
509 			 * UNKNOWN on reset.
510 			 *
511 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
512 			 *  Non-secure EL0 or EL1 accesses to System registers
513 			 *  do not trap to EL2.
514 			 */
515 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
516 			/*
517 			 * Initialise CNTHP_CTL_EL2. All fields are
518 			 * architecturally UNKNOWN on reset.
519 			 *
520 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
521 			 *  physical timer and prevent timer interrupts.
522 			 */
523 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
524 						~(CNTHP_CTL_ENABLE_BIT));
525 		}
526 		enable_extensions_nonsecure(el2_unused);
527 	}
528 
529 	cm_el1_sysregs_context_restore(security_state);
530 	cm_set_next_eret_context(security_state);
531 }
532 
533 #if CTX_INCLUDE_EL2_REGS
534 /*******************************************************************************
535  * Save EL2 sysreg context
536  ******************************************************************************/
537 void cm_el2_sysregs_context_save(uint32_t security_state)
538 {
539 	u_register_t scr_el3 = read_scr();
540 
541 	/*
542 	 * Always save the non-secure EL2 context, only save the
543 	 * S-EL2 context if S-EL2 is enabled.
544 	 */
545 	if ((security_state == NON_SECURE) ||
546 	    ((scr_el3 & SCR_EEL2_BIT) != 0U)) {
547 		cpu_context_t *ctx;
548 
549 		ctx = cm_get_context(security_state);
550 		assert(ctx != NULL);
551 
552 		el2_sysregs_context_save(get_el2_sysregs_ctx(ctx));
553 	}
554 }
555 
556 /*******************************************************************************
557  * Restore EL2 sysreg context
558  ******************************************************************************/
559 void cm_el2_sysregs_context_restore(uint32_t security_state)
560 {
561 	u_register_t scr_el3 = read_scr();
562 
563 	/*
564 	 * Always restore the non-secure EL2 context, only restore the
565 	 * S-EL2 context if S-EL2 is enabled.
566 	 */
567 	if ((security_state == NON_SECURE) ||
568 	    ((scr_el3 & SCR_EEL2_BIT) != 0U)) {
569 		cpu_context_t *ctx;
570 
571 		ctx = cm_get_context(security_state);
572 		assert(ctx != NULL);
573 
574 		el2_sysregs_context_restore(get_el2_sysregs_ctx(ctx));
575 	}
576 }
577 #endif /* CTX_INCLUDE_EL2_REGS */
578 
579 /*******************************************************************************
580  * The next four functions are used by runtime services to save and restore
581  * EL1 context on the 'cpu_context' structure for the specified security
582  * state.
583  ******************************************************************************/
584 void cm_el1_sysregs_context_save(uint32_t security_state)
585 {
586 	cpu_context_t *ctx;
587 
588 	ctx = cm_get_context(security_state);
589 	assert(ctx != NULL);
590 
591 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
592 
593 #if IMAGE_BL31
594 	if (security_state == SECURE)
595 		PUBLISH_EVENT(cm_exited_secure_world);
596 	else
597 		PUBLISH_EVENT(cm_exited_normal_world);
598 #endif
599 }
600 
601 void cm_el1_sysregs_context_restore(uint32_t security_state)
602 {
603 	cpu_context_t *ctx;
604 
605 	ctx = cm_get_context(security_state);
606 	assert(ctx != NULL);
607 
608 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
609 
610 #if IMAGE_BL31
611 	if (security_state == SECURE)
612 		PUBLISH_EVENT(cm_entering_secure_world);
613 	else
614 		PUBLISH_EVENT(cm_entering_normal_world);
615 #endif
616 }
617 
618 /*******************************************************************************
619  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
620  * given security state with the given entrypoint
621  ******************************************************************************/
622 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
623 {
624 	cpu_context_t *ctx;
625 	el3_state_t *state;
626 
627 	ctx = cm_get_context(security_state);
628 	assert(ctx != NULL);
629 
630 	/* Populate EL3 state so that ERET jumps to the correct entry */
631 	state = get_el3state_ctx(ctx);
632 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
633 }
634 
635 /*******************************************************************************
636  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
637  * pertaining to the given security state
638  ******************************************************************************/
639 void cm_set_elr_spsr_el3(uint32_t security_state,
640 			uintptr_t entrypoint, uint32_t spsr)
641 {
642 	cpu_context_t *ctx;
643 	el3_state_t *state;
644 
645 	ctx = cm_get_context(security_state);
646 	assert(ctx != NULL);
647 
648 	/* Populate EL3 state so that ERET jumps to the correct entry */
649 	state = get_el3state_ctx(ctx);
650 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
651 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
652 }
653 
654 /*******************************************************************************
655  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
656  * pertaining to the given security state using the value and bit position
657  * specified in the parameters. It preserves all other bits.
658  ******************************************************************************/
659 void cm_write_scr_el3_bit(uint32_t security_state,
660 			  uint32_t bit_pos,
661 			  uint32_t value)
662 {
663 	cpu_context_t *ctx;
664 	el3_state_t *state;
665 	u_register_t scr_el3;
666 
667 	ctx = cm_get_context(security_state);
668 	assert(ctx != NULL);
669 
670 	/* Ensure that the bit position is a valid one */
671 	assert(((1U << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
672 
673 	/* Ensure that the 'value' is only a bit wide */
674 	assert(value <= 1U);
675 
676 	/*
677 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
678 	 * and set it to its new value.
679 	 */
680 	state = get_el3state_ctx(ctx);
681 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
682 	scr_el3 &= ~(1U << bit_pos);
683 	scr_el3 |= (u_register_t)value << bit_pos;
684 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
685 }
686 
687 /*******************************************************************************
688  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
689  * given security state.
690  ******************************************************************************/
691 u_register_t cm_get_scr_el3(uint32_t security_state)
692 {
693 	cpu_context_t *ctx;
694 	el3_state_t *state;
695 
696 	ctx = cm_get_context(security_state);
697 	assert(ctx != NULL);
698 
699 	/* Populate EL3 state so that ERET jumps to the correct entry */
700 	state = get_el3state_ctx(ctx);
701 	return read_ctx_reg(state, CTX_SCR_EL3);
702 }
703 
704 /*******************************************************************************
705  * This function is used to program the context that's used for exception
706  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
707  * the required security state
708  ******************************************************************************/
709 void cm_set_next_eret_context(uint32_t security_state)
710 {
711 	cpu_context_t *ctx;
712 
713 	ctx = cm_get_context(security_state);
714 	assert(ctx != NULL);
715 
716 	cm_set_next_context(ctx);
717 }
718