xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 5e8cc7278659820bcd64c243cbd89c131462314c)
1 /*
2  * Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/pubsub_events.h>
24 #include <lib/extensions/amu.h>
25 #include <lib/extensions/brbe.h>
26 #include <lib/extensions/mpam.h>
27 #include <lib/extensions/pmuv3.h>
28 #include <lib/extensions/sme.h>
29 #include <lib/extensions/spe.h>
30 #include <lib/extensions/sve.h>
31 #include <lib/extensions/sys_reg_trace.h>
32 #include <lib/extensions/trbe.h>
33 #include <lib/extensions/trf.h>
34 #include <lib/utils.h>
35 
36 #if ENABLE_FEAT_TWED
37 /* Make sure delay value fits within the range(0-15) */
38 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
39 #endif /* ENABLE_FEAT_TWED */
40 
41 static void manage_extensions_nonsecure(cpu_context_t *ctx);
42 static void manage_extensions_secure(cpu_context_t *ctx);
43 
44 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
45 {
46 	u_register_t sctlr_elx, actlr_elx;
47 
48 	/*
49 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
50 	 * execution state setting all fields rather than relying on the hw.
51 	 * Some fields have architecturally UNKNOWN reset values and these are
52 	 * set to zero.
53 	 *
54 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
55 	 *
56 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
57 	 * required by PSCI specification)
58 	 */
59 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
60 	if (GET_RW(ep->spsr) == MODE_RW_64) {
61 		sctlr_elx |= SCTLR_EL1_RES1;
62 	} else {
63 		/*
64 		 * If the target execution state is AArch32 then the following
65 		 * fields need to be set.
66 		 *
67 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
68 		 *  instructions are not trapped to EL1.
69 		 *
70 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
71 		 *  instructions are not trapped to EL1.
72 		 *
73 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
74 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
75 		 */
76 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
77 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
78 	}
79 
80 #if ERRATA_A75_764081
81 	/*
82 	 * If workaround of errata 764081 for Cortex-A75 is used then set
83 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
84 	 */
85 	sctlr_elx |= SCTLR_IESB_BIT;
86 #endif
87 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
88 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
89 
90 	/*
91 	 * Base the context ACTLR_EL1 on the current value, as it is
92 	 * implementation defined. The context restore process will write
93 	 * the value from the context to the actual register and can cause
94 	 * problems for processor cores that don't expect certain bits to
95 	 * be zero.
96 	 */
97 	actlr_elx = read_actlr_el1();
98 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
99 }
100 
101 /******************************************************************************
102  * This function performs initializations that are specific to SECURE state
103  * and updates the cpu context specified by 'ctx'.
104  *****************************************************************************/
105 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
106 {
107 	u_register_t scr_el3;
108 	el3_state_t *state;
109 
110 	state = get_el3state_ctx(ctx);
111 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
112 
113 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
114 	/*
115 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
116 	 * indicated by the interrupt routing model for BL31.
117 	 */
118 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
119 #endif
120 
121 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
122 	/* Get Memory Tagging Extension support level */
123 	unsigned int mte = get_armv8_5_mte_support();
124 #endif
125 	/*
126 	 * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS
127 	 * is set, or when MTE is only implemented at EL0.
128 	 */
129 #if CTX_INCLUDE_MTE_REGS
130 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
131 	scr_el3 |= SCR_ATA_BIT;
132 #else
133 	if (mte == MTE_IMPLEMENTED_EL0) {
134 		scr_el3 |= SCR_ATA_BIT;
135 	}
136 #endif /* CTX_INCLUDE_MTE_REGS */
137 
138 	/* Enable S-EL2 if the next EL is EL2 and S-EL2 is present */
139 	if ((GET_EL(ep->spsr) == MODE_EL2) && is_feat_sel2_supported()) {
140 		if (GET_RW(ep->spsr) != MODE_RW_64) {
141 			ERROR("S-EL2 can not be used in AArch32\n.");
142 			panic();
143 		}
144 
145 		scr_el3 |= SCR_EEL2_BIT;
146 	}
147 
148 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
149 
150 	/*
151 	 * Initialize EL1 context registers unless SPMC is running
152 	 * at S-EL2.
153 	 */
154 #if !SPMD_SPM_AT_SEL2
155 	setup_el1_context(ctx, ep);
156 #endif
157 
158 	manage_extensions_secure(ctx);
159 }
160 
161 #if ENABLE_RME
162 /******************************************************************************
163  * This function performs initializations that are specific to REALM state
164  * and updates the cpu context specified by 'ctx'.
165  *****************************************************************************/
166 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
167 {
168 	u_register_t scr_el3;
169 	el3_state_t *state;
170 
171 	state = get_el3state_ctx(ctx);
172 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
173 
174 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
175 
176 	if (is_feat_csv2_2_supported()) {
177 		/* Enable access to the SCXTNUM_ELx registers. */
178 		scr_el3 |= SCR_EnSCXT_BIT;
179 	}
180 
181 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
182 }
183 #endif /* ENABLE_RME */
184 
185 /******************************************************************************
186  * This function performs initializations that are specific to NON-SECURE state
187  * and updates the cpu context specified by 'ctx'.
188  *****************************************************************************/
189 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
190 {
191 	u_register_t scr_el3;
192 	el3_state_t *state;
193 
194 	state = get_el3state_ctx(ctx);
195 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
196 
197 	/* SCR_NS: Set the NS bit */
198 	scr_el3 |= SCR_NS_BIT;
199 
200 	/* Allow access to Allocation Tags when MTE is implemented. */
201 	scr_el3 |= SCR_ATA_BIT;
202 
203 #if !CTX_INCLUDE_PAUTH_REGS
204 	/*
205 	 * Pointer Authentication feature, if present, is always enabled by default
206 	 * for Non secure lower exception levels. We do not have an explicit
207 	 * flag to set it.
208 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
209 	 * exception levels of secure and realm worlds.
210 	 *
211 	 * To prevent the leakage between the worlds during world switch,
212 	 * we enable it only for the non-secure world.
213 	 *
214 	 * If the Secure/realm world wants to use pointer authentication,
215 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
216 	 * it will be enabled globally for all the contexts.
217 	 *
218 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
219 	 *  other than EL3
220 	 *
221 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
222 	 *  than EL3
223 	 */
224 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
225 
226 #endif /* CTX_INCLUDE_PAUTH_REGS */
227 
228 #if HANDLE_EA_EL3_FIRST_NS
229 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
230 	scr_el3 |= SCR_EA_BIT;
231 #endif
232 
233 #if RAS_TRAP_NS_ERR_REC_ACCESS
234 	/*
235 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
236 	 * and RAS ERX registers from EL1 and EL2(from any security state)
237 	 * are trapped to EL3.
238 	 * Set here to trap only for NS EL1/EL2
239 	 *
240 	 */
241 	scr_el3 |= SCR_TERR_BIT;
242 #endif
243 
244 	if (is_feat_csv2_2_supported()) {
245 		/* Enable access to the SCXTNUM_ELx registers. */
246 		scr_el3 |= SCR_EnSCXT_BIT;
247 	}
248 
249 #ifdef IMAGE_BL31
250 	/*
251 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
252 	 *  indicated by the interrupt routing model for BL31.
253 	 */
254 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
255 #endif
256 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
257 
258 	/* Initialize EL1 context registers */
259 	setup_el1_context(ctx, ep);
260 
261 	/* Initialize EL2 context registers */
262 #if CTX_INCLUDE_EL2_REGS
263 
264 	/*
265 	 * Initialize SCTLR_EL2 context register using Endianness value
266 	 * taken from the entrypoint attribute.
267 	 */
268 	u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
269 	sctlr_el2 |= SCTLR_EL2_RES1;
270 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2,
271 			sctlr_el2);
272 
273 	if (is_feat_hcx_supported()) {
274 		/*
275 		 * Initialize register HCRX_EL2 with its init value.
276 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
277 		 * chance that this can lead to unexpected behavior in lower
278 		 * ELs that have not been updated since the introduction of
279 		 * this feature if not properly initialized, especially when
280 		 * it comes to those bits that enable/disable traps.
281 		 */
282 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HCRX_EL2,
283 			HCRX_EL2_INIT_VAL);
284 	}
285 
286 	if (is_feat_fgt_supported()) {
287 		/*
288 		 * Initialize HFG*_EL2 registers with a default value so legacy
289 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
290 		 * of initialization for this feature.
291 		 */
292 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGITR_EL2,
293 			HFGITR_EL2_INIT_VAL);
294 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGRTR_EL2,
295 			HFGRTR_EL2_INIT_VAL);
296 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGWTR_EL2,
297 			HFGWTR_EL2_INIT_VAL);
298 	}
299 #endif /* CTX_INCLUDE_EL2_REGS */
300 
301 	manage_extensions_nonsecure(ctx);
302 }
303 
304 /*******************************************************************************
305  * The following function performs initialization of the cpu_context 'ctx'
306  * for first use that is common to all security states, and sets the
307  * initial entrypoint state as specified by the entry_point_info structure.
308  *
309  * The EE and ST attributes are used to configure the endianness and secure
310  * timer availability for the new execution context.
311  ******************************************************************************/
312 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
313 {
314 	u_register_t cptr_el3;
315 	u_register_t scr_el3;
316 	el3_state_t *state;
317 	gp_regs_t *gp_regs;
318 
319 	state = get_el3state_ctx(ctx);
320 
321 	/* Clear any residual register values from the context */
322 	zeromem(ctx, sizeof(*ctx));
323 
324 	/*
325 	 * The lower-EL context is zeroed so that no stale values leak to a world.
326 	 * It is assumed that an all-zero lower-EL context is good enough for it
327 	 * to boot correctly. However, there are very few registers where this
328 	 * is not true and some values need to be recreated.
329 	 */
330 #if CTX_INCLUDE_EL2_REGS
331 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
332 
333 	/*
334 	 * These bits are set in the gicv3 driver. Losing them (especially the
335 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
336 	 */
337 	u_register_t icc_sre_el2 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
338 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
339 	write_ctx_reg(el2_ctx, CTX_ICC_SRE_EL2, icc_sre_el2);
340 #endif /* CTX_INCLUDE_EL2_REGS */
341 
342 	/*
343 	 * SCR_EL3 was initialised during reset sequence in macro
344 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
345 	 * affect the next EL.
346 	 *
347 	 * The following fields are initially set to zero and then updated to
348 	 * the required value depending on the state of the SPSR_EL3 and the
349 	 * Security state and entrypoint attributes of the next EL.
350 	 */
351 	scr_el3 = read_scr();
352 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_EA_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
353 			SCR_ST_BIT | SCR_HCE_BIT | SCR_NSE_BIT);
354 
355 	/*
356 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
357 	 *  EL2, EL1 and EL0 are not trapped to EL3.
358 	 *
359 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
360 	 *  EL2, EL1 and EL0 are not trapped to EL3.
361 	 *
362 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
363 	 *  both Security states and both Execution states.
364 	 *
365 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
366 	 *  Non-secure memory.
367 	 */
368 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
369 
370 	scr_el3 |= SCR_SIF_BIT;
371 
372 	/*
373 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
374 	 *  Exception level as specified by SPSR.
375 	 */
376 	if (GET_RW(ep->spsr) == MODE_RW_64) {
377 		scr_el3 |= SCR_RW_BIT;
378 	}
379 
380 	/*
381 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
382 	 * Secure timer registers to EL3, from AArch64 state only, if specified
383 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
384 	 * bit always behaves as 1 (i.e. secure physical timer register access
385 	 * is not trapped)
386 	 */
387 	if (EP_GET_ST(ep->h.attr) != 0U) {
388 		scr_el3 |= SCR_ST_BIT;
389 	}
390 
391 	/*
392 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
393 	 * SCR_EL3.HXEn.
394 	 */
395 	if (is_feat_hcx_supported()) {
396 		scr_el3 |= SCR_HXEn_BIT;
397 	}
398 
399 	/*
400 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
401 	 * registers are trapped to EL3.
402 	 */
403 #if ENABLE_FEAT_RNG_TRAP
404 	scr_el3 |= SCR_TRNDR_BIT;
405 #endif
406 
407 #if FAULT_INJECTION_SUPPORT
408 	/* Enable fault injection from lower ELs */
409 	scr_el3 |= SCR_FIEN_BIT;
410 #endif
411 
412 #if CTX_INCLUDE_PAUTH_REGS
413 	/*
414 	 * Enable Pointer Authentication globally for all the worlds.
415 	 *
416 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
417 	 *  other than EL3
418 	 *
419 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
420 	 *  than EL3
421 	 */
422 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
423 #endif /* CTX_INCLUDE_PAUTH_REGS */
424 
425 	/*
426 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
427 	 */
428 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
429 		scr_el3 |= SCR_TCR2EN_BIT;
430 	}
431 
432 	/*
433 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
434 	 * registers for AArch64 if present.
435 	 */
436 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
437 		scr_el3 |= SCR_PIEN_BIT;
438 	}
439 
440 	/*
441 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
442 	 */
443 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
444 		scr_el3 |= SCR_GCSEn_BIT;
445 	}
446 
447 	/*
448 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
449 	 * All fields are architecturally UNKNOWN on reset.
450 	 *
451 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
452 	 *  by Advanced SIMD, floating-point or SVE instructions (if
453 	 *  implemented) do not trap to EL3.
454 	 *
455 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
456 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
457 	 */
458 	cptr_el3 = CPTR_EL3_RESET_VAL & ~(TFP_BIT | TCPAC_BIT);
459 
460 	write_ctx_reg(state, CTX_CPTR_EL3, cptr_el3);
461 
462 	/*
463 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
464 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
465 	 * next mode is Hyp.
466 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
467 	 * same conditions as HVC instructions and when the processor supports
468 	 * ARMv8.6-FGT.
469 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
470 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
471 	 * and when the processor supports ECV.
472 	 */
473 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
474 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
475 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
476 		scr_el3 |= SCR_HCE_BIT;
477 
478 		if (is_feat_fgt_supported()) {
479 			scr_el3 |= SCR_FGTEN_BIT;
480 		}
481 
482 		if (is_feat_ecv_supported()) {
483 			scr_el3 |= SCR_ECVEN_BIT;
484 		}
485 	}
486 
487 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
488 	if (is_feat_twed_supported()) {
489 		/* Set delay in SCR_EL3 */
490 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
491 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
492 				<< SCR_TWEDEL_SHIFT);
493 
494 		/* Enable WFE delay */
495 		scr_el3 |= SCR_TWEDEn_BIT;
496 	}
497 
498 	/*
499 	 * Populate EL3 state so that we've the right context
500 	 * before doing ERET
501 	 */
502 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
503 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
504 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
505 
506 	/*
507 	 * Store the X0-X7 value from the entrypoint into the context
508 	 * Use memcpy as we are in control of the layout of the structures
509 	 */
510 	gp_regs = get_gpregs_ctx(ctx);
511 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
512 }
513 
514 /*******************************************************************************
515  * Context management library initialization routine. This library is used by
516  * runtime services to share pointers to 'cpu_context' structures for secure
517  * non-secure and realm states. Management of the structures and their associated
518  * memory is not done by the context management library e.g. the PSCI service
519  * manages the cpu context used for entry from and exit to the non-secure state.
520  * The Secure payload dispatcher service manages the context(s) corresponding to
521  * the secure state. It also uses this library to get access to the non-secure
522  * state cpu context pointers.
523  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
524  * which will be used for programming an entry into a lower EL. The same context
525  * will be used to save state upon exception entry from that EL.
526  ******************************************************************************/
527 void __init cm_init(void)
528 {
529 	/*
530 	 * The context management library has only global data to initialize, but
531 	 * that will be done when the BSS is zeroed out.
532 	 */
533 }
534 
535 /*******************************************************************************
536  * This is the high-level function used to initialize the cpu_context 'ctx' for
537  * first use. It performs initializations that are common to all security states
538  * and initializations specific to the security state specified in 'ep'
539  ******************************************************************************/
540 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
541 {
542 	unsigned int security_state;
543 
544 	assert(ctx != NULL);
545 
546 	/*
547 	 * Perform initializations that are common
548 	 * to all security states
549 	 */
550 	setup_context_common(ctx, ep);
551 
552 	security_state = GET_SECURITY_STATE(ep->h.attr);
553 
554 	/* Perform security state specific initializations */
555 	switch (security_state) {
556 	case SECURE:
557 		setup_secure_context(ctx, ep);
558 		break;
559 #if ENABLE_RME
560 	case REALM:
561 		setup_realm_context(ctx, ep);
562 		break;
563 #endif
564 	case NON_SECURE:
565 		setup_ns_context(ctx, ep);
566 		break;
567 	default:
568 		ERROR("Invalid security state\n");
569 		panic();
570 		break;
571 	}
572 }
573 
574 /*******************************************************************************
575  * Enable architecture extensions for EL3 execution. This function only updates
576  * registers in-place which are expected to either never change or be
577  * overwritten by el3_exit.
578  ******************************************************************************/
579 #if IMAGE_BL31
580 void cm_manage_extensions_el3(void)
581 {
582 	if (is_feat_spe_supported()) {
583 		spe_init_el3();
584 	}
585 
586 	if (is_feat_amu_supported()) {
587 		amu_init_el3();
588 	}
589 
590 	if (is_feat_sme_supported()) {
591 		sme_init_el3();
592 	}
593 
594 	if (is_feat_mpam_supported()) {
595 		mpam_init_el3();
596 	}
597 
598 	if (is_feat_trbe_supported()) {
599 		trbe_init_el3();
600 	}
601 
602 	if (is_feat_brbe_supported()) {
603 		brbe_init_el3();
604 	}
605 
606 	if (is_feat_trf_supported()) {
607 		trf_init_el3();
608 	}
609 
610 	pmuv3_init_el3();
611 }
612 #endif /* IMAGE_BL31 */
613 
614 /*******************************************************************************
615  * Enable architecture extensions on first entry to Non-secure world.
616  ******************************************************************************/
617 static void manage_extensions_nonsecure(cpu_context_t *ctx)
618 {
619 #if IMAGE_BL31
620 	if (is_feat_amu_supported()) {
621 		amu_enable(ctx);
622 	}
623 
624 	/* Enable SVE and FPU/SIMD */
625 	if (is_feat_sve_supported()) {
626 		sve_enable(ctx);
627 	}
628 
629 	if (is_feat_sme_supported()) {
630 		sme_enable(ctx);
631 	}
632 
633 	if (is_feat_sys_reg_trace_supported()) {
634 		sys_reg_trace_enable(ctx);
635 	}
636 
637 	pmuv3_enable(ctx);
638 #endif /* IMAGE_BL31 */
639 }
640 
641 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
642 static __unused void enable_pauth_el2(void)
643 {
644 	u_register_t hcr_el2 = read_hcr_el2();
645 	/*
646 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
647 	 *  accessing key registers or using pointer authentication instructions
648 	 *  from lower ELs.
649 	 */
650 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
651 
652 	write_hcr_el2(hcr_el2);
653 }
654 
655 /*******************************************************************************
656  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
657  * world when EL2 is empty and unused.
658  ******************************************************************************/
659 static void manage_extensions_nonsecure_el2_unused(void)
660 {
661 #if IMAGE_BL31
662 	if (is_feat_spe_supported()) {
663 		spe_init_el2_unused();
664 	}
665 
666 	if (is_feat_amu_supported()) {
667 		amu_init_el2_unused();
668 	}
669 
670 	if (is_feat_mpam_supported()) {
671 		mpam_init_el2_unused();
672 	}
673 
674 	if (is_feat_trbe_supported()) {
675 		trbe_init_el2_unused();
676 	}
677 
678 	if (is_feat_sys_reg_trace_supported()) {
679 		sys_reg_trace_init_el2_unused();
680 	}
681 
682 	if (is_feat_trf_supported()) {
683 		trf_init_el2_unused();
684 	}
685 
686 	pmuv3_init_el2_unused();
687 
688 	if (is_feat_sve_supported()) {
689 		sve_init_el2_unused();
690 	}
691 
692 	if (is_feat_sme_supported()) {
693 		sme_init_el2_unused();
694 	}
695 
696 #if ENABLE_PAUTH
697 	enable_pauth_el2();
698 #endif /* ENABLE_PAUTH */
699 #endif /* IMAGE_BL31 */
700 }
701 
702 /*******************************************************************************
703  * Enable architecture extensions on first entry to Secure world.
704  ******************************************************************************/
705 static void manage_extensions_secure(cpu_context_t *ctx)
706 {
707 #if IMAGE_BL31
708 	if (is_feat_sve_supported()) {
709 		if (ENABLE_SVE_FOR_SWD) {
710 		/*
711 		 * Enable SVE and FPU in secure context, secure manager must
712 		 * ensure that the SVE and FPU register contexts are properly
713 		 * managed.
714 		 */
715 			sve_enable(ctx);
716 		} else {
717 		/*
718 		 * Disable SVE and FPU in secure context so non-secure world
719 		 * can safely use them.
720 		 */
721 			sve_disable(ctx);
722 		}
723 	}
724 
725 	if (is_feat_sme_supported()) {
726 		if (ENABLE_SME_FOR_SWD) {
727 		/*
728 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
729 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
730 		 */
731 			sme_init_el3();
732 			sme_enable(ctx);
733 		} else {
734 		/*
735 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
736 		 * world can safely use the associated registers.
737 		 */
738 			sme_disable(ctx);
739 		}
740 	}
741 
742 	/* NS can access this but Secure shouldn't */
743 	if (is_feat_sys_reg_trace_supported()) {
744 		sys_reg_trace_disable(ctx);
745 	}
746 #endif /* IMAGE_BL31 */
747 }
748 
749 /*******************************************************************************
750  * The following function initializes the cpu_context for a CPU specified by
751  * its `cpu_idx` for first use, and sets the initial entrypoint state as
752  * specified by the entry_point_info structure.
753  ******************************************************************************/
754 void cm_init_context_by_index(unsigned int cpu_idx,
755 			      const entry_point_info_t *ep)
756 {
757 	cpu_context_t *ctx;
758 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
759 	cm_setup_context(ctx, ep);
760 }
761 
762 /*******************************************************************************
763  * The following function initializes the cpu_context for the current CPU
764  * for first use, and sets the initial entrypoint state as specified by the
765  * entry_point_info structure.
766  ******************************************************************************/
767 void cm_init_my_context(const entry_point_info_t *ep)
768 {
769 	cpu_context_t *ctx;
770 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
771 	cm_setup_context(ctx, ep);
772 }
773 
774 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
775 static __unused void init_nonsecure_el2_unused(cpu_context_t *ctx)
776 {
777 	u_register_t hcr_el2 = HCR_RESET_VAL;
778 	u_register_t mdcr_el2;
779 	u_register_t scr_el3;
780 
781 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
782 
783 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
784 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
785 		hcr_el2 |= HCR_RW_BIT;
786 	}
787 
788 	write_hcr_el2(hcr_el2);
789 
790 	/*
791 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
792 	 * All fields have architecturally UNKNOWN reset values.
793 	 */
794 	write_cptr_el2(CPTR_EL2_RESET_VAL);
795 
796 	/*
797 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
798 	 * reset and are set to zero except for field(s) listed below.
799 	 *
800 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
801 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
802 	 *
803 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
804 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
805 	 */
806 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
807 
808 	/*
809 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
810 	 * UNKNOWN value.
811 	 */
812 	write_cntvoff_el2(0);
813 
814 	/*
815 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
816 	 * respectively.
817 	 */
818 	write_vpidr_el2(read_midr_el1());
819 	write_vmpidr_el2(read_mpidr_el1());
820 
821 	/*
822 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
823 	 *
824 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
825 	 * translation is disabled, cache maintenance operations depend on the
826 	 * VMID.
827 	 *
828 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
829 	 * disabled.
830 	 */
831 	write_vttbr_el2(VTTBR_RESET_VAL &
832 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
833 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
834 
835 	/*
836 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
837 	 * Some fields are architecturally UNKNOWN on reset.
838 	 *
839 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
840 	 * register accesses to the Debug ROM registers are not trapped to EL2.
841 	 *
842 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
843 	 * accesses to the powerdown debug registers are not trapped to EL2.
844 	 *
845 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
846 	 * debug registers do not trap to EL2.
847 	 *
848 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
849 	 * EL2.
850 	 */
851 	mdcr_el2 = MDCR_EL2_RESET_VAL &
852 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
853 		   MDCR_EL2_TDE_BIT);
854 
855 	write_mdcr_el2(mdcr_el2);
856 
857 	/*
858 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
859 	 *
860 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
861 	 * EL1 accesses to System registers do not trap to EL2.
862 	 */
863 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
864 
865 	/*
866 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
867 	 * reset.
868 	 *
869 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
870 	 * and prevent timer interrupts.
871 	 */
872 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
873 
874 	manage_extensions_nonsecure_el2_unused();
875 }
876 
877 /*******************************************************************************
878  * Prepare the CPU system registers for first entry into realm, secure, or
879  * normal world.
880  *
881  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
882  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
883  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
884  * For all entries, the EL1 registers are initialized from the cpu_context
885  ******************************************************************************/
886 void cm_prepare_el3_exit(uint32_t security_state)
887 {
888 	u_register_t sctlr_elx, scr_el3;
889 	cpu_context_t *ctx = cm_get_context(security_state);
890 
891 	assert(ctx != NULL);
892 
893 	if (security_state == NON_SECURE) {
894 		uint64_t el2_implemented = el_implemented(2);
895 
896 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
897 						 CTX_SCR_EL3);
898 
899 		if (((scr_el3 & SCR_HCE_BIT) != 0U)
900 			|| (el2_implemented != EL_IMPL_NONE)) {
901 			/*
902 			 * If context is not being used for EL2, initialize
903 			 * HCRX_EL2 with its init value here.
904 			 */
905 			if (is_feat_hcx_supported()) {
906 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
907 			}
908 
909 			/*
910 			 * Initialize Fine-grained trap registers introduced
911 			 * by FEAT_FGT so all traps are initially disabled when
912 			 * switching to EL2 or a lower EL, preventing undesired
913 			 * behavior.
914 			 */
915 			if (is_feat_fgt_supported()) {
916 				/*
917 				 * Initialize HFG*_EL2 registers with a default
918 				 * value so legacy systems unaware of FEAT_FGT
919 				 * do not get trapped due to their lack of
920 				 * initialization for this feature.
921 				 */
922 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
923 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
924 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
925 			}
926 		}
927 
928 
929 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
930 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
931 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
932 							   CTX_SCTLR_EL1);
933 			sctlr_elx &= SCTLR_EE_BIT;
934 			sctlr_elx |= SCTLR_EL2_RES1;
935 #if ERRATA_A75_764081
936 			/*
937 			 * If workaround of errata 764081 for Cortex-A75 is used
938 			 * then set SCTLR_EL2.IESB to enable Implicit Error
939 			 * Synchronization Barrier.
940 			 */
941 			sctlr_elx |= SCTLR_IESB_BIT;
942 #endif
943 			write_sctlr_el2(sctlr_elx);
944 		} else if (el2_implemented != EL_IMPL_NONE) {
945 			init_nonsecure_el2_unused(ctx);
946 		}
947 	}
948 
949 	cm_el1_sysregs_context_restore(security_state);
950 	cm_set_next_eret_context(security_state);
951 }
952 
953 #if CTX_INCLUDE_EL2_REGS
954 
955 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
956 {
957 	write_ctx_reg(ctx, CTX_HDFGRTR_EL2, read_hdfgrtr_el2());
958 	if (is_feat_amu_supported()) {
959 		write_ctx_reg(ctx, CTX_HAFGRTR_EL2, read_hafgrtr_el2());
960 	}
961 	write_ctx_reg(ctx, CTX_HDFGWTR_EL2, read_hdfgwtr_el2());
962 	write_ctx_reg(ctx, CTX_HFGITR_EL2, read_hfgitr_el2());
963 	write_ctx_reg(ctx, CTX_HFGRTR_EL2, read_hfgrtr_el2());
964 	write_ctx_reg(ctx, CTX_HFGWTR_EL2, read_hfgwtr_el2());
965 }
966 
967 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
968 {
969 	write_hdfgrtr_el2(read_ctx_reg(ctx, CTX_HDFGRTR_EL2));
970 	if (is_feat_amu_supported()) {
971 		write_hafgrtr_el2(read_ctx_reg(ctx, CTX_HAFGRTR_EL2));
972 	}
973 	write_hdfgwtr_el2(read_ctx_reg(ctx, CTX_HDFGWTR_EL2));
974 	write_hfgitr_el2(read_ctx_reg(ctx, CTX_HFGITR_EL2));
975 	write_hfgrtr_el2(read_ctx_reg(ctx, CTX_HFGRTR_EL2));
976 	write_hfgwtr_el2(read_ctx_reg(ctx, CTX_HFGWTR_EL2));
977 }
978 
979 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
980 {
981 	u_register_t mpam_idr = read_mpamidr_el1();
982 
983 	write_ctx_reg(ctx, CTX_MPAM2_EL2, read_mpam2_el2());
984 
985 	/*
986 	 * The context registers that we intend to save would be part of the
987 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
988 	 */
989 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
990 		return;
991 	}
992 
993 	/*
994 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
995 	 * MPAMIDR_HAS_HCR_BIT == 1.
996 	 */
997 	write_ctx_reg(ctx, CTX_MPAMHCR_EL2, read_mpamhcr_el2());
998 	write_ctx_reg(ctx, CTX_MPAMVPM0_EL2, read_mpamvpm0_el2());
999 	write_ctx_reg(ctx, CTX_MPAMVPMV_EL2, read_mpamvpmv_el2());
1000 
1001 	/*
1002 	 * The number of MPAMVPM registers is implementation defined, their
1003 	 * number is stored in the MPAMIDR_EL1 register.
1004 	 */
1005 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1006 	case 7:
1007 		write_ctx_reg(ctx, CTX_MPAMVPM7_EL2, read_mpamvpm7_el2());
1008 		__fallthrough;
1009 	case 6:
1010 		write_ctx_reg(ctx, CTX_MPAMVPM6_EL2, read_mpamvpm6_el2());
1011 		__fallthrough;
1012 	case 5:
1013 		write_ctx_reg(ctx, CTX_MPAMVPM5_EL2, read_mpamvpm5_el2());
1014 		__fallthrough;
1015 	case 4:
1016 		write_ctx_reg(ctx, CTX_MPAMVPM4_EL2, read_mpamvpm4_el2());
1017 		__fallthrough;
1018 	case 3:
1019 		write_ctx_reg(ctx, CTX_MPAMVPM3_EL2, read_mpamvpm3_el2());
1020 		__fallthrough;
1021 	case 2:
1022 		write_ctx_reg(ctx, CTX_MPAMVPM2_EL2, read_mpamvpm2_el2());
1023 		__fallthrough;
1024 	case 1:
1025 		write_ctx_reg(ctx, CTX_MPAMVPM1_EL2, read_mpamvpm1_el2());
1026 		break;
1027 	}
1028 }
1029 
1030 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1031 {
1032 	u_register_t mpam_idr = read_mpamidr_el1();
1033 
1034 	write_mpam2_el2(read_ctx_reg(ctx, CTX_MPAM2_EL2));
1035 
1036 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1037 		return;
1038 	}
1039 
1040 	write_mpamhcr_el2(read_ctx_reg(ctx, CTX_MPAMHCR_EL2));
1041 	write_mpamvpm0_el2(read_ctx_reg(ctx, CTX_MPAMVPM0_EL2));
1042 	write_mpamvpmv_el2(read_ctx_reg(ctx, CTX_MPAMVPMV_EL2));
1043 
1044 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1045 	case 7:
1046 		write_mpamvpm7_el2(read_ctx_reg(ctx, CTX_MPAMVPM7_EL2));
1047 		__fallthrough;
1048 	case 6:
1049 		write_mpamvpm6_el2(read_ctx_reg(ctx, CTX_MPAMVPM6_EL2));
1050 		__fallthrough;
1051 	case 5:
1052 		write_mpamvpm5_el2(read_ctx_reg(ctx, CTX_MPAMVPM5_EL2));
1053 		__fallthrough;
1054 	case 4:
1055 		write_mpamvpm4_el2(read_ctx_reg(ctx, CTX_MPAMVPM4_EL2));
1056 		__fallthrough;
1057 	case 3:
1058 		write_mpamvpm3_el2(read_ctx_reg(ctx, CTX_MPAMVPM3_EL2));
1059 		__fallthrough;
1060 	case 2:
1061 		write_mpamvpm2_el2(read_ctx_reg(ctx, CTX_MPAMVPM2_EL2));
1062 		__fallthrough;
1063 	case 1:
1064 		write_mpamvpm1_el2(read_ctx_reg(ctx, CTX_MPAMVPM1_EL2));
1065 		break;
1066 	}
1067 }
1068 
1069 /* -----------------------------------------------------
1070  * The following registers are not added:
1071  * AMEVCNTVOFF0<n>_EL2
1072  * AMEVCNTVOFF1<n>_EL2
1073  * ICH_AP0R<n>_EL2
1074  * ICH_AP1R<n>_EL2
1075  * ICH_LR<n>_EL2
1076  * -----------------------------------------------------
1077  */
1078 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1079 {
1080 	write_ctx_reg(ctx, CTX_ACTLR_EL2, read_actlr_el2());
1081 	write_ctx_reg(ctx, CTX_AFSR0_EL2, read_afsr0_el2());
1082 	write_ctx_reg(ctx, CTX_AFSR1_EL2, read_afsr1_el2());
1083 	write_ctx_reg(ctx, CTX_AMAIR_EL2, read_amair_el2());
1084 	write_ctx_reg(ctx, CTX_CNTHCTL_EL2, read_cnthctl_el2());
1085 	write_ctx_reg(ctx, CTX_CNTVOFF_EL2, read_cntvoff_el2());
1086 	write_ctx_reg(ctx, CTX_CPTR_EL2, read_cptr_el2());
1087 	if (CTX_INCLUDE_AARCH32_REGS) {
1088 		write_ctx_reg(ctx, CTX_DBGVCR32_EL2, read_dbgvcr32_el2());
1089 	}
1090 	write_ctx_reg(ctx, CTX_ELR_EL2, read_elr_el2());
1091 	write_ctx_reg(ctx, CTX_ESR_EL2, read_esr_el2());
1092 	write_ctx_reg(ctx, CTX_FAR_EL2, read_far_el2());
1093 	write_ctx_reg(ctx, CTX_HACR_EL2, read_hacr_el2());
1094 	write_ctx_reg(ctx, CTX_HCR_EL2, read_hcr_el2());
1095 	write_ctx_reg(ctx, CTX_HPFAR_EL2, read_hpfar_el2());
1096 	write_ctx_reg(ctx, CTX_HSTR_EL2, read_hstr_el2());
1097 	write_ctx_reg(ctx, CTX_ICC_SRE_EL2, read_icc_sre_el2());
1098 	write_ctx_reg(ctx, CTX_ICH_HCR_EL2, read_ich_hcr_el2());
1099 	write_ctx_reg(ctx, CTX_ICH_VMCR_EL2, read_ich_vmcr_el2());
1100 	write_ctx_reg(ctx, CTX_MAIR_EL2, read_mair_el2());
1101 	write_ctx_reg(ctx, CTX_MDCR_EL2, read_mdcr_el2());
1102 	write_ctx_reg(ctx, CTX_SCTLR_EL2, read_sctlr_el2());
1103 	write_ctx_reg(ctx, CTX_SPSR_EL2, read_spsr_el2());
1104 	write_ctx_reg(ctx, CTX_SP_EL2, read_sp_el2());
1105 	write_ctx_reg(ctx, CTX_TCR_EL2, read_tcr_el2());
1106 	write_ctx_reg(ctx, CTX_TPIDR_EL2, read_tpidr_el2());
1107 	write_ctx_reg(ctx, CTX_TTBR0_EL2, read_ttbr0_el2());
1108 	write_ctx_reg(ctx, CTX_VBAR_EL2, read_vbar_el2());
1109 	write_ctx_reg(ctx, CTX_VMPIDR_EL2, read_vmpidr_el2());
1110 	write_ctx_reg(ctx, CTX_VPIDR_EL2, read_vpidr_el2());
1111 	write_ctx_reg(ctx, CTX_VTCR_EL2, read_vtcr_el2());
1112 	write_ctx_reg(ctx, CTX_VTTBR_EL2, read_vttbr_el2());
1113 }
1114 
1115 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1116 {
1117 	write_actlr_el2(read_ctx_reg(ctx, CTX_ACTLR_EL2));
1118 	write_afsr0_el2(read_ctx_reg(ctx, CTX_AFSR0_EL2));
1119 	write_afsr1_el2(read_ctx_reg(ctx, CTX_AFSR1_EL2));
1120 	write_amair_el2(read_ctx_reg(ctx, CTX_AMAIR_EL2));
1121 	write_cnthctl_el2(read_ctx_reg(ctx, CTX_CNTHCTL_EL2));
1122 	write_cntvoff_el2(read_ctx_reg(ctx, CTX_CNTVOFF_EL2));
1123 	write_cptr_el2(read_ctx_reg(ctx, CTX_CPTR_EL2));
1124 	if (CTX_INCLUDE_AARCH32_REGS) {
1125 		write_dbgvcr32_el2(read_ctx_reg(ctx, CTX_DBGVCR32_EL2));
1126 	}
1127 	write_elr_el2(read_ctx_reg(ctx, CTX_ELR_EL2));
1128 	write_esr_el2(read_ctx_reg(ctx, CTX_ESR_EL2));
1129 	write_far_el2(read_ctx_reg(ctx, CTX_FAR_EL2));
1130 	write_hacr_el2(read_ctx_reg(ctx, CTX_HACR_EL2));
1131 	write_hcr_el2(read_ctx_reg(ctx, CTX_HCR_EL2));
1132 	write_hpfar_el2(read_ctx_reg(ctx, CTX_HPFAR_EL2));
1133 	write_hstr_el2(read_ctx_reg(ctx, CTX_HSTR_EL2));
1134 	write_icc_sre_el2(read_ctx_reg(ctx, CTX_ICC_SRE_EL2));
1135 	write_ich_hcr_el2(read_ctx_reg(ctx, CTX_ICH_HCR_EL2));
1136 	write_ich_vmcr_el2(read_ctx_reg(ctx, CTX_ICH_VMCR_EL2));
1137 	write_mair_el2(read_ctx_reg(ctx, CTX_MAIR_EL2));
1138 	write_mdcr_el2(read_ctx_reg(ctx, CTX_MDCR_EL2));
1139 	write_sctlr_el2(read_ctx_reg(ctx, CTX_SCTLR_EL2));
1140 	write_spsr_el2(read_ctx_reg(ctx, CTX_SPSR_EL2));
1141 	write_sp_el2(read_ctx_reg(ctx, CTX_SP_EL2));
1142 	write_tcr_el2(read_ctx_reg(ctx, CTX_TCR_EL2));
1143 	write_tpidr_el2(read_ctx_reg(ctx, CTX_TPIDR_EL2));
1144 	write_ttbr0_el2(read_ctx_reg(ctx, CTX_TTBR0_EL2));
1145 	write_vbar_el2(read_ctx_reg(ctx, CTX_VBAR_EL2));
1146 	write_vmpidr_el2(read_ctx_reg(ctx, CTX_VMPIDR_EL2));
1147 	write_vpidr_el2(read_ctx_reg(ctx, CTX_VPIDR_EL2));
1148 	write_vtcr_el2(read_ctx_reg(ctx, CTX_VTCR_EL2));
1149 	write_vttbr_el2(read_ctx_reg(ctx, CTX_VTTBR_EL2));
1150 }
1151 
1152 /*******************************************************************************
1153  * Save EL2 sysreg context
1154  ******************************************************************************/
1155 void cm_el2_sysregs_context_save(uint32_t security_state)
1156 {
1157 	u_register_t scr_el3 = read_scr();
1158 
1159 	/*
1160 	 * Always save the non-secure and realm EL2 context, only save the
1161 	 * S-EL2 context if S-EL2 is enabled.
1162 	 */
1163 	if ((security_state != SECURE) ||
1164 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
1165 		cpu_context_t *ctx;
1166 		el2_sysregs_t *el2_sysregs_ctx;
1167 
1168 		ctx = cm_get_context(security_state);
1169 		assert(ctx != NULL);
1170 
1171 		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1172 
1173 		el2_sysregs_context_save_common(el2_sysregs_ctx);
1174 #if CTX_INCLUDE_MTE_REGS
1175 		write_ctx_reg(el2_sysregs_ctx, CTX_TFSR_EL2, read_tfsr_el2());
1176 #endif
1177 		if (is_feat_mpam_supported()) {
1178 			el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1179 		}
1180 
1181 		if (is_feat_fgt_supported()) {
1182 			el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1183 		}
1184 
1185 		if (is_feat_ecv_v2_supported()) {
1186 			write_ctx_reg(el2_sysregs_ctx, CTX_CNTPOFF_EL2,
1187 				      read_cntpoff_el2());
1188 		}
1189 
1190 		if (is_feat_vhe_supported()) {
1191 			write_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2,
1192 				      read_contextidr_el2());
1193 			write_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2,
1194 				      read_ttbr1_el2());
1195 		}
1196 
1197 		if (is_feat_ras_supported()) {
1198 			write_ctx_reg(el2_sysregs_ctx, CTX_VDISR_EL2,
1199 				      read_vdisr_el2());
1200 			write_ctx_reg(el2_sysregs_ctx, CTX_VSESR_EL2,
1201 				      read_vsesr_el2());
1202 		}
1203 
1204 		if (is_feat_nv2_supported()) {
1205 			write_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2,
1206 				      read_vncr_el2());
1207 		}
1208 
1209 		if (is_feat_trf_supported()) {
1210 			write_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2, read_trfcr_el2());
1211 		}
1212 
1213 		if (is_feat_csv2_2_supported()) {
1214 			write_ctx_reg(el2_sysregs_ctx, CTX_SCXTNUM_EL2,
1215 				      read_scxtnum_el2());
1216 		}
1217 
1218 		if (is_feat_hcx_supported()) {
1219 			write_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2, read_hcrx_el2());
1220 		}
1221 		if (is_feat_tcr2_supported()) {
1222 			write_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2, read_tcr2_el2());
1223 		}
1224 		if (is_feat_sxpie_supported()) {
1225 			write_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2, read_pire0_el2());
1226 			write_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2, read_pir_el2());
1227 		}
1228 		if (is_feat_s2pie_supported()) {
1229 			write_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2, read_s2pir_el2());
1230 		}
1231 		if (is_feat_sxpoe_supported()) {
1232 			write_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2, read_por_el2());
1233 		}
1234 		if (is_feat_gcs_supported()) {
1235 			write_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2, read_gcspr_el2());
1236 			write_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2, read_gcscr_el2());
1237 		}
1238 	}
1239 }
1240 
1241 /*******************************************************************************
1242  * Restore EL2 sysreg context
1243  ******************************************************************************/
1244 void cm_el2_sysregs_context_restore(uint32_t security_state)
1245 {
1246 	u_register_t scr_el3 = read_scr();
1247 
1248 	/*
1249 	 * Always restore the non-secure and realm EL2 context, only restore the
1250 	 * S-EL2 context if S-EL2 is enabled.
1251 	 */
1252 	if ((security_state != SECURE) ||
1253 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
1254 		cpu_context_t *ctx;
1255 		el2_sysregs_t *el2_sysregs_ctx;
1256 
1257 		ctx = cm_get_context(security_state);
1258 		assert(ctx != NULL);
1259 
1260 		el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1261 
1262 		el2_sysregs_context_restore_common(el2_sysregs_ctx);
1263 #if CTX_INCLUDE_MTE_REGS
1264 		write_tfsr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TFSR_EL2));
1265 #endif
1266 		if (is_feat_mpam_supported()) {
1267 			el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1268 		}
1269 
1270 		if (is_feat_fgt_supported()) {
1271 			el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1272 		}
1273 
1274 		if (is_feat_ecv_v2_supported()) {
1275 			write_cntpoff_el2(read_ctx_reg(el2_sysregs_ctx,
1276 						       CTX_CNTPOFF_EL2));
1277 		}
1278 
1279 		if (is_feat_vhe_supported()) {
1280 			write_contextidr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2));
1281 			write_ttbr1_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2));
1282 		}
1283 
1284 		if (is_feat_ras_supported()) {
1285 			write_vdisr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VDISR_EL2));
1286 			write_vsesr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VSESR_EL2));
1287 		}
1288 
1289 		if (is_feat_nv2_supported()) {
1290 			write_vncr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2));
1291 		}
1292 		if (is_feat_trf_supported()) {
1293 			write_trfcr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2));
1294 		}
1295 
1296 		if (is_feat_csv2_2_supported()) {
1297 			write_scxtnum_el2(read_ctx_reg(el2_sysregs_ctx,
1298 						       CTX_SCXTNUM_EL2));
1299 		}
1300 
1301 		if (is_feat_hcx_supported()) {
1302 			write_hcrx_el2(read_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2));
1303 		}
1304 		if (is_feat_tcr2_supported()) {
1305 			write_tcr2_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2));
1306 		}
1307 		if (is_feat_sxpie_supported()) {
1308 			write_pire0_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2));
1309 			write_pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2));
1310 		}
1311 		if (is_feat_s2pie_supported()) {
1312 			write_s2pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2));
1313 		}
1314 		if (is_feat_sxpoe_supported()) {
1315 			write_por_el2(read_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2));
1316 		}
1317 		if (is_feat_gcs_supported()) {
1318 			write_gcscr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2));
1319 			write_gcspr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2));
1320 		}
1321 	}
1322 }
1323 #endif /* CTX_INCLUDE_EL2_REGS */
1324 
1325 /*******************************************************************************
1326  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1327  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1328  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1329  * cm_prepare_el3_exit function.
1330  ******************************************************************************/
1331 void cm_prepare_el3_exit_ns(void)
1332 {
1333 #if CTX_INCLUDE_EL2_REGS
1334 #if ENABLE_ASSERTIONS
1335 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1336 	assert(ctx != NULL);
1337 
1338 	/* Assert that EL2 is used. */
1339 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1340 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1341 			(el_implemented(2U) != EL_IMPL_NONE));
1342 #endif /* ENABLE_ASSERTIONS */
1343 
1344 	/*
1345 	 * Set the NS bit to be able to access the ICC_SRE_EL2
1346 	 * register when restoring context.
1347 	 */
1348 	write_scr_el3(read_scr_el3() | SCR_NS_BIT);
1349 
1350 	/*
1351 	 * Ensure the NS bit change is committed before the EL2/EL1
1352 	 * state restoration.
1353 	 */
1354 	isb();
1355 
1356 	/* Restore EL2 and EL1 sysreg contexts */
1357 	cm_el2_sysregs_context_restore(NON_SECURE);
1358 	cm_el1_sysregs_context_restore(NON_SECURE);
1359 	cm_set_next_eret_context(NON_SECURE);
1360 #else
1361 	cm_prepare_el3_exit(NON_SECURE);
1362 #endif /* CTX_INCLUDE_EL2_REGS */
1363 }
1364 
1365 /*******************************************************************************
1366  * The next four functions are used by runtime services to save and restore
1367  * EL1 context on the 'cpu_context' structure for the specified security
1368  * state.
1369  ******************************************************************************/
1370 void cm_el1_sysregs_context_save(uint32_t security_state)
1371 {
1372 	cpu_context_t *ctx;
1373 
1374 	ctx = cm_get_context(security_state);
1375 	assert(ctx != NULL);
1376 
1377 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1378 
1379 #if IMAGE_BL31
1380 	if (security_state == SECURE)
1381 		PUBLISH_EVENT(cm_exited_secure_world);
1382 	else
1383 		PUBLISH_EVENT(cm_exited_normal_world);
1384 #endif
1385 }
1386 
1387 void cm_el1_sysregs_context_restore(uint32_t security_state)
1388 {
1389 	cpu_context_t *ctx;
1390 
1391 	ctx = cm_get_context(security_state);
1392 	assert(ctx != NULL);
1393 
1394 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1395 
1396 #if IMAGE_BL31
1397 	if (security_state == SECURE)
1398 		PUBLISH_EVENT(cm_entering_secure_world);
1399 	else
1400 		PUBLISH_EVENT(cm_entering_normal_world);
1401 #endif
1402 }
1403 
1404 /*******************************************************************************
1405  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1406  * given security state with the given entrypoint
1407  ******************************************************************************/
1408 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1409 {
1410 	cpu_context_t *ctx;
1411 	el3_state_t *state;
1412 
1413 	ctx = cm_get_context(security_state);
1414 	assert(ctx != NULL);
1415 
1416 	/* Populate EL3 state so that ERET jumps to the correct entry */
1417 	state = get_el3state_ctx(ctx);
1418 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1419 }
1420 
1421 /*******************************************************************************
1422  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1423  * pertaining to the given security state
1424  ******************************************************************************/
1425 void cm_set_elr_spsr_el3(uint32_t security_state,
1426 			uintptr_t entrypoint, uint32_t spsr)
1427 {
1428 	cpu_context_t *ctx;
1429 	el3_state_t *state;
1430 
1431 	ctx = cm_get_context(security_state);
1432 	assert(ctx != NULL);
1433 
1434 	/* Populate EL3 state so that ERET jumps to the correct entry */
1435 	state = get_el3state_ctx(ctx);
1436 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1437 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1438 }
1439 
1440 /*******************************************************************************
1441  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1442  * pertaining to the given security state using the value and bit position
1443  * specified in the parameters. It preserves all other bits.
1444  ******************************************************************************/
1445 void cm_write_scr_el3_bit(uint32_t security_state,
1446 			  uint32_t bit_pos,
1447 			  uint32_t value)
1448 {
1449 	cpu_context_t *ctx;
1450 	el3_state_t *state;
1451 	u_register_t scr_el3;
1452 
1453 	ctx = cm_get_context(security_state);
1454 	assert(ctx != NULL);
1455 
1456 	/* Ensure that the bit position is a valid one */
1457 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1458 
1459 	/* Ensure that the 'value' is only a bit wide */
1460 	assert(value <= 1U);
1461 
1462 	/*
1463 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1464 	 * and set it to its new value.
1465 	 */
1466 	state = get_el3state_ctx(ctx);
1467 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1468 	scr_el3 &= ~(1UL << bit_pos);
1469 	scr_el3 |= (u_register_t)value << bit_pos;
1470 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1471 }
1472 
1473 /*******************************************************************************
1474  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1475  * given security state.
1476  ******************************************************************************/
1477 u_register_t cm_get_scr_el3(uint32_t security_state)
1478 {
1479 	cpu_context_t *ctx;
1480 	el3_state_t *state;
1481 
1482 	ctx = cm_get_context(security_state);
1483 	assert(ctx != NULL);
1484 
1485 	/* Populate EL3 state so that ERET jumps to the correct entry */
1486 	state = get_el3state_ctx(ctx);
1487 	return read_ctx_reg(state, CTX_SCR_EL3);
1488 }
1489 
1490 /*******************************************************************************
1491  * This function is used to program the context that's used for exception
1492  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1493  * the required security state
1494  ******************************************************************************/
1495 void cm_set_next_eret_context(uint32_t security_state)
1496 {
1497 	cpu_context_t *ctx;
1498 
1499 	ctx = cm_get_context(security_state);
1500 	assert(ctx != NULL);
1501 
1502 	cm_set_next_context(ctx);
1503 }
1504