xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 5e0be8c0241e5075b34bd5b14df2df9f048715d3)
1 /*
2  * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/cpu_data.h>
24 #include <lib/el3_runtime/pubsub_events.h>
25 #include <lib/extensions/amu.h>
26 #include <lib/extensions/brbe.h>
27 #include <lib/extensions/debug_v8p9.h>
28 #include <lib/extensions/fgt2.h>
29 #include <lib/extensions/mpam.h>
30 #include <lib/extensions/pmuv3.h>
31 #include <lib/extensions/sme.h>
32 #include <lib/extensions/spe.h>
33 #include <lib/extensions/sve.h>
34 #include <lib/extensions/sys_reg_trace.h>
35 #include <lib/extensions/trbe.h>
36 #include <lib/extensions/trf.h>
37 #include <lib/utils.h>
38 
39 #if ENABLE_FEAT_TWED
40 /* Make sure delay value fits within the range(0-15) */
41 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
42 #endif /* ENABLE_FEAT_TWED */
43 
44 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
45 static bool has_secure_perworld_init;
46 
47 static void manage_extensions_common(cpu_context_t *ctx);
48 static void manage_extensions_nonsecure(cpu_context_t *ctx);
49 static void manage_extensions_secure(cpu_context_t *ctx);
50 static void manage_extensions_secure_per_world(void);
51 
52 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
53 {
54 	u_register_t sctlr_elx, actlr_elx;
55 
56 	/*
57 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
58 	 * execution state setting all fields rather than relying on the hw.
59 	 * Some fields have architecturally UNKNOWN reset values and these are
60 	 * set to zero.
61 	 *
62 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
63 	 *
64 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
65 	 * required by PSCI specification)
66 	 */
67 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
68 	if (GET_RW(ep->spsr) == MODE_RW_64) {
69 		sctlr_elx |= SCTLR_EL1_RES1;
70 	} else {
71 		/*
72 		 * If the target execution state is AArch32 then the following
73 		 * fields need to be set.
74 		 *
75 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
76 		 *  instructions are not trapped to EL1.
77 		 *
78 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
79 		 *  instructions are not trapped to EL1.
80 		 *
81 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
82 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
83 		 */
84 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
85 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
86 	}
87 
88 #if ERRATA_A75_764081
89 	/*
90 	 * If workaround of errata 764081 for Cortex-A75 is used then set
91 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
92 	 */
93 	sctlr_elx |= SCTLR_IESB_BIT;
94 #endif
95 
96 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
97 #if (ERRATA_SPECULATIVE_AT)
98 	write_ctx_reg(get_errata_speculative_at_ctx(ctx), CTX_ERRATA_SPEC_AT_SCTLR_EL1, sctlr_elx);
99 #else
100 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), sctlr_el1, sctlr_elx);
101 #endif /* ERRATA_SPECULATIVE_AT */
102 
103 	/*
104 	 * Base the context ACTLR_EL1 on the current value, as it is
105 	 * implementation defined. The context restore process will write
106 	 * the value from the context to the actual register and can cause
107 	 * problems for processor cores that don't expect certain bits to
108 	 * be zero.
109 	 */
110 	actlr_elx = read_actlr_el1();
111 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx);
112 }
113 
114 /******************************************************************************
115  * This function performs initializations that are specific to SECURE state
116  * and updates the cpu context specified by 'ctx'.
117  *****************************************************************************/
118 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
119 {
120 	u_register_t scr_el3;
121 	el3_state_t *state;
122 
123 	state = get_el3state_ctx(ctx);
124 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
125 
126 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
127 	/*
128 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
129 	 * indicated by the interrupt routing model for BL31.
130 	 */
131 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
132 #endif
133 
134 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
135 	if (is_feat_mte2_supported()) {
136 		scr_el3 |= SCR_ATA_BIT;
137 	}
138 
139 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
140 
141 	/*
142 	 * Initialize EL1 context registers unless SPMC is running
143 	 * at S-EL2.
144 	 */
145 #if !SPMD_SPM_AT_SEL2
146 	setup_el1_context(ctx, ep);
147 #endif
148 
149 	manage_extensions_secure(ctx);
150 
151 	/**
152 	 * manage_extensions_secure_per_world api has to be executed once,
153 	 * as the registers getting initialised, maintain constant value across
154 	 * all the cpus for the secure world.
155 	 * Henceforth, this check ensures that the registers are initialised once
156 	 * and avoids re-initialization from multiple cores.
157 	 */
158 	if (!has_secure_perworld_init) {
159 		manage_extensions_secure_per_world();
160 	}
161 
162 }
163 
164 #if ENABLE_RME
165 /******************************************************************************
166  * This function performs initializations that are specific to REALM state
167  * and updates the cpu context specified by 'ctx'.
168  *****************************************************************************/
169 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
170 {
171 	u_register_t scr_el3;
172 	el3_state_t *state;
173 
174 	state = get_el3state_ctx(ctx);
175 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
176 
177 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
178 
179 	/* CSV2 version 2 and above */
180 	if (is_feat_csv2_2_supported()) {
181 		/* Enable access to the SCXTNUM_ELx registers. */
182 		scr_el3 |= SCR_EnSCXT_BIT;
183 	}
184 
185 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
186 }
187 #endif /* ENABLE_RME */
188 
189 /******************************************************************************
190  * This function performs initializations that are specific to NON-SECURE state
191  * and updates the cpu context specified by 'ctx'.
192  *****************************************************************************/
193 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
194 {
195 	u_register_t scr_el3;
196 	el3_state_t *state;
197 
198 	state = get_el3state_ctx(ctx);
199 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
200 
201 	/* SCR_NS: Set the NS bit */
202 	scr_el3 |= SCR_NS_BIT;
203 
204 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
205 	if (is_feat_mte2_supported()) {
206 		scr_el3 |= SCR_ATA_BIT;
207 	}
208 
209 #if !CTX_INCLUDE_PAUTH_REGS
210 	/*
211 	 * Pointer Authentication feature, if present, is always enabled by default
212 	 * for Non secure lower exception levels. We do not have an explicit
213 	 * flag to set it.
214 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
215 	 * exception levels of secure and realm worlds.
216 	 *
217 	 * To prevent the leakage between the worlds during world switch,
218 	 * we enable it only for the non-secure world.
219 	 *
220 	 * If the Secure/realm world wants to use pointer authentication,
221 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
222 	 * it will be enabled globally for all the contexts.
223 	 *
224 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
225 	 *  other than EL3
226 	 *
227 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
228 	 *  than EL3
229 	 */
230 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
231 
232 #endif /* CTX_INCLUDE_PAUTH_REGS */
233 
234 #if HANDLE_EA_EL3_FIRST_NS
235 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
236 	scr_el3 |= SCR_EA_BIT;
237 #endif
238 
239 #if RAS_TRAP_NS_ERR_REC_ACCESS
240 	/*
241 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
242 	 * and RAS ERX registers from EL1 and EL2(from any security state)
243 	 * are trapped to EL3.
244 	 * Set here to trap only for NS EL1/EL2
245 	 *
246 	 */
247 	scr_el3 |= SCR_TERR_BIT;
248 #endif
249 
250 	/* CSV2 version 2 and above */
251 	if (is_feat_csv2_2_supported()) {
252 		/* Enable access to the SCXTNUM_ELx registers. */
253 		scr_el3 |= SCR_EnSCXT_BIT;
254 	}
255 
256 #ifdef IMAGE_BL31
257 	/*
258 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
259 	 *  indicated by the interrupt routing model for BL31.
260 	 */
261 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
262 #endif
263 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
264 
265 	/* Initialize EL1 context registers */
266 	setup_el1_context(ctx, ep);
267 
268 	/* Initialize EL2 context registers */
269 #if CTX_INCLUDE_EL2_REGS
270 
271 	/*
272 	 * Initialize SCTLR_EL2 context register with reset value.
273 	 */
274 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
275 
276 	if (is_feat_hcx_supported()) {
277 		/*
278 		 * Initialize register HCRX_EL2 with its init value.
279 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
280 		 * chance that this can lead to unexpected behavior in lower
281 		 * ELs that have not been updated since the introduction of
282 		 * this feature if not properly initialized, especially when
283 		 * it comes to those bits that enable/disable traps.
284 		 */
285 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
286 			HCRX_EL2_INIT_VAL);
287 	}
288 
289 	if (is_feat_fgt_supported()) {
290 		/*
291 		 * Initialize HFG*_EL2 registers with a default value so legacy
292 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
293 		 * of initialization for this feature.
294 		 */
295 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
296 			HFGITR_EL2_INIT_VAL);
297 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
298 			HFGRTR_EL2_INIT_VAL);
299 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
300 			HFGWTR_EL2_INIT_VAL);
301 	}
302 
303 #endif /* CTX_INCLUDE_EL2_REGS */
304 
305 	manage_extensions_nonsecure(ctx);
306 }
307 
308 /*******************************************************************************
309  * The following function performs initialization of the cpu_context 'ctx'
310  * for first use that is common to all security states, and sets the
311  * initial entrypoint state as specified by the entry_point_info structure.
312  *
313  * The EE and ST attributes are used to configure the endianness and secure
314  * timer availability for the new execution context.
315  ******************************************************************************/
316 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
317 {
318 	u_register_t scr_el3;
319 	u_register_t mdcr_el3;
320 	el3_state_t *state;
321 	gp_regs_t *gp_regs;
322 
323 	state = get_el3state_ctx(ctx);
324 
325 	/* Clear any residual register values from the context */
326 	zeromem(ctx, sizeof(*ctx));
327 
328 	/*
329 	 * The lower-EL context is zeroed so that no stale values leak to a world.
330 	 * It is assumed that an all-zero lower-EL context is good enough for it
331 	 * to boot correctly. However, there are very few registers where this
332 	 * is not true and some values need to be recreated.
333 	 */
334 #if CTX_INCLUDE_EL2_REGS
335 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
336 
337 	/*
338 	 * These bits are set in the gicv3 driver. Losing them (especially the
339 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
340 	 */
341 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
342 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
343 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
344 
345 	/*
346 	 * The actlr_el2 register can be initialized in platform's reset handler
347 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
348 	 */
349 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
350 #endif /* CTX_INCLUDE_EL2_REGS */
351 
352 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
353 	scr_el3 = SCR_RESET_VAL;
354 
355 	/*
356 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
357 	 *  EL2, EL1 and EL0 are not trapped to EL3.
358 	 *
359 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
360 	 *  EL2, EL1 and EL0 are not trapped to EL3.
361 	 *
362 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
363 	 *  both Security states and both Execution states.
364 	 *
365 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
366 	 *  Non-secure memory.
367 	 */
368 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
369 
370 	scr_el3 |= SCR_SIF_BIT;
371 
372 	/*
373 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
374 	 *  Exception level as specified by SPSR.
375 	 */
376 	if (GET_RW(ep->spsr) == MODE_RW_64) {
377 		scr_el3 |= SCR_RW_BIT;
378 	}
379 
380 	/*
381 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
382 	 * Secure timer registers to EL3, from AArch64 state only, if specified
383 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
384 	 * bit always behaves as 1 (i.e. secure physical timer register access
385 	 * is not trapped)
386 	 */
387 	if (EP_GET_ST(ep->h.attr) != 0U) {
388 		scr_el3 |= SCR_ST_BIT;
389 	}
390 
391 	/*
392 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
393 	 * SCR_EL3.HXEn.
394 	 */
395 	if (is_feat_hcx_supported()) {
396 		scr_el3 |= SCR_HXEn_BIT;
397 	}
398 
399 	/*
400 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
401 	 * registers are trapped to EL3.
402 	 */
403 #if ENABLE_FEAT_RNG_TRAP
404 	scr_el3 |= SCR_TRNDR_BIT;
405 #endif
406 
407 #if FAULT_INJECTION_SUPPORT
408 	/* Enable fault injection from lower ELs */
409 	scr_el3 |= SCR_FIEN_BIT;
410 #endif
411 
412 #if CTX_INCLUDE_PAUTH_REGS
413 	/*
414 	 * Enable Pointer Authentication globally for all the worlds.
415 	 *
416 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
417 	 *  other than EL3
418 	 *
419 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
420 	 *  than EL3
421 	 */
422 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
423 #endif /* CTX_INCLUDE_PAUTH_REGS */
424 
425 	/*
426 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
427 	 */
428 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
429 		scr_el3 |= SCR_TCR2EN_BIT;
430 	}
431 
432 	/*
433 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
434 	 * registers for AArch64 if present.
435 	 */
436 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
437 		scr_el3 |= SCR_PIEN_BIT;
438 	}
439 
440 	/*
441 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
442 	 */
443 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
444 		scr_el3 |= SCR_GCSEn_BIT;
445 	}
446 
447 	/*
448 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
449 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
450 	 * next mode is Hyp.
451 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
452 	 * same conditions as HVC instructions and when the processor supports
453 	 * ARMv8.6-FGT.
454 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
455 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
456 	 * and when the processor supports ECV.
457 	 */
458 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
459 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
460 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
461 		scr_el3 |= SCR_HCE_BIT;
462 
463 		if (is_feat_fgt_supported()) {
464 			scr_el3 |= SCR_FGTEN_BIT;
465 		}
466 
467 		if (is_feat_ecv_supported()) {
468 			scr_el3 |= SCR_ECVEN_BIT;
469 		}
470 	}
471 
472 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
473 	if (is_feat_twed_supported()) {
474 		/* Set delay in SCR_EL3 */
475 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
476 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
477 				<< SCR_TWEDEL_SHIFT);
478 
479 		/* Enable WFE delay */
480 		scr_el3 |= SCR_TWEDEn_BIT;
481 	}
482 
483 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
484 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
485 	if (is_feat_sel2_supported()) {
486 		scr_el3 |= SCR_EEL2_BIT;
487 	}
488 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
489 
490 	/*
491 	 * Populate EL3 state so that we've the right context
492 	 * before doing ERET
493 	 */
494 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
495 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
496 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
497 
498 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
499 	mdcr_el3 = MDCR_EL3_RESET_VAL;
500 
501 	/* ---------------------------------------------------------------------
502 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
503 	 * Some fields are architecturally UNKNOWN on reset.
504 	 *
505 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
506 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
507 	 *  disabled from all ELs in Secure state.
508 	 *
509 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
510 	 *  privileged debug from S-EL1.
511 	 *
512 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
513 	 *  access to the powerdown debug registers do not trap to EL3.
514 	 *
515 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
516 	 *  debug registers, other than those registers that are controlled by
517 	 *  MDCR_EL3.TDOSA.
518 	 */
519 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
520 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
521 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
522 
523 	/*
524 	 * Configure MDCR_EL3 register as applicable for each world
525 	 * (NS/Secure/Realm) context.
526 	 */
527 	manage_extensions_common(ctx);
528 
529 	/*
530 	 * Store the X0-X7 value from the entrypoint into the context
531 	 * Use memcpy as we are in control of the layout of the structures
532 	 */
533 	gp_regs = get_gpregs_ctx(ctx);
534 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
535 }
536 
537 /*******************************************************************************
538  * Context management library initialization routine. This library is used by
539  * runtime services to share pointers to 'cpu_context' structures for secure
540  * non-secure and realm states. Management of the structures and their associated
541  * memory is not done by the context management library e.g. the PSCI service
542  * manages the cpu context used for entry from and exit to the non-secure state.
543  * The Secure payload dispatcher service manages the context(s) corresponding to
544  * the secure state. It also uses this library to get access to the non-secure
545  * state cpu context pointers.
546  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
547  * which will be used for programming an entry into a lower EL. The same context
548  * will be used to save state upon exception entry from that EL.
549  ******************************************************************************/
550 void __init cm_init(void)
551 {
552 	/*
553 	 * The context management library has only global data to initialize, but
554 	 * that will be done when the BSS is zeroed out.
555 	 */
556 }
557 
558 /*******************************************************************************
559  * This is the high-level function used to initialize the cpu_context 'ctx' for
560  * first use. It performs initializations that are common to all security states
561  * and initializations specific to the security state specified in 'ep'
562  ******************************************************************************/
563 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
564 {
565 	unsigned int security_state;
566 
567 	assert(ctx != NULL);
568 
569 	/*
570 	 * Perform initializations that are common
571 	 * to all security states
572 	 */
573 	setup_context_common(ctx, ep);
574 
575 	security_state = GET_SECURITY_STATE(ep->h.attr);
576 
577 	/* Perform security state specific initializations */
578 	switch (security_state) {
579 	case SECURE:
580 		setup_secure_context(ctx, ep);
581 		break;
582 #if ENABLE_RME
583 	case REALM:
584 		setup_realm_context(ctx, ep);
585 		break;
586 #endif
587 	case NON_SECURE:
588 		setup_ns_context(ctx, ep);
589 		break;
590 	default:
591 		ERROR("Invalid security state\n");
592 		panic();
593 		break;
594 	}
595 }
596 
597 /*******************************************************************************
598  * Enable architecture extensions for EL3 execution. This function only updates
599  * registers in-place which are expected to either never change or be
600  * overwritten by el3_exit.
601  ******************************************************************************/
602 #if IMAGE_BL31
603 void cm_manage_extensions_el3(void)
604 {
605 	if (is_feat_amu_supported()) {
606 		amu_init_el3();
607 	}
608 
609 	if (is_feat_sme_supported()) {
610 		sme_init_el3();
611 	}
612 
613 	pmuv3_init_el3();
614 }
615 #endif /* IMAGE_BL31 */
616 
617 /******************************************************************************
618  * Function to initialise the registers with the RESET values in the context
619  * memory, which are maintained per world.
620  ******************************************************************************/
621 #if IMAGE_BL31
622 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
623 {
624 	/*
625 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
626 	 *
627 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
628 	 *  by Advanced SIMD, floating-point or SVE instructions (if
629 	 *  implemented) do not trap to EL3.
630 	 *
631 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
632 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
633 	 */
634 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
635 
636 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
637 
638 	/*
639 	 * Initialize MPAM3_EL3 to its default reset value
640 	 *
641 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
642 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
643 	 */
644 
645 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
646 }
647 #endif /* IMAGE_BL31 */
648 
649 /*******************************************************************************
650  * Initialise per_world_context for Non-Secure world.
651  * This function enables the architecture extensions, which have same value
652  * across the cores for the non-secure world.
653  ******************************************************************************/
654 #if IMAGE_BL31
655 void manage_extensions_nonsecure_per_world(void)
656 {
657 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
658 
659 	if (is_feat_sme_supported()) {
660 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
661 	}
662 
663 	if (is_feat_sve_supported()) {
664 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
665 	}
666 
667 	if (is_feat_amu_supported()) {
668 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
669 	}
670 
671 	if (is_feat_sys_reg_trace_supported()) {
672 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
673 	}
674 
675 	if (is_feat_mpam_supported()) {
676 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
677 	}
678 }
679 #endif /* IMAGE_BL31 */
680 
681 /*******************************************************************************
682  * Initialise per_world_context for Secure world.
683  * This function enables the architecture extensions, which have same value
684  * across the cores for the secure world.
685  ******************************************************************************/
686 static void manage_extensions_secure_per_world(void)
687 {
688 #if IMAGE_BL31
689 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
690 
691 	if (is_feat_sme_supported()) {
692 
693 		if (ENABLE_SME_FOR_SWD) {
694 		/*
695 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
696 		 * SME, SVE, and FPU/SIMD context properly managed.
697 		 */
698 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
699 		} else {
700 		/*
701 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
702 		 * world can safely use the associated registers.
703 		 */
704 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
705 		}
706 	}
707 	if (is_feat_sve_supported()) {
708 		if (ENABLE_SVE_FOR_SWD) {
709 		/*
710 		 * Enable SVE and FPU in secure context, SPM must ensure
711 		 * that the SVE and FPU register contexts are properly managed.
712 		 */
713 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
714 		} else {
715 		/*
716 		 * Disable SVE and FPU in secure context so non-secure world
717 		 * can safely use them.
718 		 */
719 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
720 		}
721 	}
722 
723 	/* NS can access this but Secure shouldn't */
724 	if (is_feat_sys_reg_trace_supported()) {
725 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
726 	}
727 
728 	has_secure_perworld_init = true;
729 #endif /* IMAGE_BL31 */
730 }
731 
732 /*******************************************************************************
733  * Enable architecture extensions on first entry to Non-secure world only
734  * and disable for secure world.
735  *
736  * NOTE: Arch features which have been provided with the capability of getting
737  * enabled only for non-secure world and being disabled for secure world are
738  * grouped here, as the MDCR_EL3 context value remains same across the worlds.
739  ******************************************************************************/
740 static void manage_extensions_common(cpu_context_t *ctx)
741 {
742 #if IMAGE_BL31
743 	if (is_feat_spe_supported()) {
744 		/*
745 		 * Enable FEAT_SPE for Non-Secure and prohibit for Secure state.
746 		 */
747 		spe_enable(ctx);
748 	}
749 
750 	if (is_feat_trbe_supported()) {
751 		/*
752 		 * Enable FEAT_TRBE for Non-Secure and prohibit for Secure and
753 		 * Realm state.
754 		 */
755 		trbe_enable(ctx);
756 	}
757 
758 	if (is_feat_trf_supported()) {
759 		/*
760 		 * Enable FEAT_TRF for Non-Secure and prohibit for Secure state.
761 		 */
762 		trf_enable(ctx);
763 	}
764 
765 	if (is_feat_brbe_supported()) {
766 		/*
767 		 * Enable FEAT_BRBE for Non-Secure and prohibit for Secure state.
768 		 */
769 		brbe_enable(ctx);
770 	}
771 #endif /* IMAGE_BL31 */
772 }
773 
774 /*******************************************************************************
775  * Enable architecture extensions on first entry to Non-secure world.
776  ******************************************************************************/
777 static void manage_extensions_nonsecure(cpu_context_t *ctx)
778 {
779 #if IMAGE_BL31
780 	if (is_feat_amu_supported()) {
781 		amu_enable(ctx);
782 	}
783 
784 	if (is_feat_sme_supported()) {
785 		sme_enable(ctx);
786 	}
787 
788 	if (is_feat_fgt2_supported()) {
789 		fgt2_enable(ctx);
790 	}
791 
792 	if (is_feat_debugv8p9_supported()) {
793 		debugv8p9_extended_bp_wp_enable(ctx);
794 	}
795 
796 	pmuv3_enable(ctx);
797 #endif /* IMAGE_BL31 */
798 }
799 
800 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
801 static __unused void enable_pauth_el2(void)
802 {
803 	u_register_t hcr_el2 = read_hcr_el2();
804 	/*
805 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
806 	 *  accessing key registers or using pointer authentication instructions
807 	 *  from lower ELs.
808 	 */
809 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
810 
811 	write_hcr_el2(hcr_el2);
812 }
813 
814 #if INIT_UNUSED_NS_EL2
815 /*******************************************************************************
816  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
817  * world when EL2 is empty and unused.
818  ******************************************************************************/
819 static void manage_extensions_nonsecure_el2_unused(void)
820 {
821 #if IMAGE_BL31
822 	if (is_feat_spe_supported()) {
823 		spe_init_el2_unused();
824 	}
825 
826 	if (is_feat_amu_supported()) {
827 		amu_init_el2_unused();
828 	}
829 
830 	if (is_feat_mpam_supported()) {
831 		mpam_init_el2_unused();
832 	}
833 
834 	if (is_feat_trbe_supported()) {
835 		trbe_init_el2_unused();
836 	}
837 
838 	if (is_feat_sys_reg_trace_supported()) {
839 		sys_reg_trace_init_el2_unused();
840 	}
841 
842 	if (is_feat_trf_supported()) {
843 		trf_init_el2_unused();
844 	}
845 
846 	pmuv3_init_el2_unused();
847 
848 	if (is_feat_sve_supported()) {
849 		sve_init_el2_unused();
850 	}
851 
852 	if (is_feat_sme_supported()) {
853 		sme_init_el2_unused();
854 	}
855 
856 #if ENABLE_PAUTH
857 	enable_pauth_el2();
858 #endif /* ENABLE_PAUTH */
859 #endif /* IMAGE_BL31 */
860 }
861 #endif /* INIT_UNUSED_NS_EL2 */
862 
863 /*******************************************************************************
864  * Enable architecture extensions on first entry to Secure world.
865  ******************************************************************************/
866 static void manage_extensions_secure(cpu_context_t *ctx)
867 {
868 #if IMAGE_BL31
869 	if (is_feat_sme_supported()) {
870 		if (ENABLE_SME_FOR_SWD) {
871 		/*
872 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
873 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
874 		 */
875 			sme_init_el3();
876 			sme_enable(ctx);
877 		} else {
878 		/*
879 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
880 		 * world can safely use the associated registers.
881 		 */
882 			sme_disable(ctx);
883 		}
884 	}
885 #endif /* IMAGE_BL31 */
886 }
887 
888 #if !IMAGE_BL1
889 /*******************************************************************************
890  * The following function initializes the cpu_context for a CPU specified by
891  * its `cpu_idx` for first use, and sets the initial entrypoint state as
892  * specified by the entry_point_info structure.
893  ******************************************************************************/
894 void cm_init_context_by_index(unsigned int cpu_idx,
895 			      const entry_point_info_t *ep)
896 {
897 	cpu_context_t *ctx;
898 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
899 	cm_setup_context(ctx, ep);
900 }
901 #endif /* !IMAGE_BL1 */
902 
903 /*******************************************************************************
904  * The following function initializes the cpu_context for the current CPU
905  * for first use, and sets the initial entrypoint state as specified by the
906  * entry_point_info structure.
907  ******************************************************************************/
908 void cm_init_my_context(const entry_point_info_t *ep)
909 {
910 	cpu_context_t *ctx;
911 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
912 	cm_setup_context(ctx, ep);
913 }
914 
915 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
916 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
917 {
918 #if INIT_UNUSED_NS_EL2
919 	u_register_t hcr_el2 = HCR_RESET_VAL;
920 	u_register_t mdcr_el2;
921 	u_register_t scr_el3;
922 
923 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
924 
925 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
926 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
927 		hcr_el2 |= HCR_RW_BIT;
928 	}
929 
930 	write_hcr_el2(hcr_el2);
931 
932 	/*
933 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
934 	 * All fields have architecturally UNKNOWN reset values.
935 	 */
936 	write_cptr_el2(CPTR_EL2_RESET_VAL);
937 
938 	/*
939 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
940 	 * reset and are set to zero except for field(s) listed below.
941 	 *
942 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
943 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
944 	 *
945 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
946 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
947 	 */
948 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
949 
950 	/*
951 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
952 	 * UNKNOWN value.
953 	 */
954 	write_cntvoff_el2(0);
955 
956 	/*
957 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
958 	 * respectively.
959 	 */
960 	write_vpidr_el2(read_midr_el1());
961 	write_vmpidr_el2(read_mpidr_el1());
962 
963 	/*
964 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
965 	 *
966 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
967 	 * translation is disabled, cache maintenance operations depend on the
968 	 * VMID.
969 	 *
970 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
971 	 * disabled.
972 	 */
973 	write_vttbr_el2(VTTBR_RESET_VAL &
974 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
975 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
976 
977 	/*
978 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
979 	 * Some fields are architecturally UNKNOWN on reset.
980 	 *
981 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
982 	 * register accesses to the Debug ROM registers are not trapped to EL2.
983 	 *
984 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
985 	 * accesses to the powerdown debug registers are not trapped to EL2.
986 	 *
987 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
988 	 * debug registers do not trap to EL2.
989 	 *
990 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
991 	 * EL2.
992 	 */
993 	mdcr_el2 = MDCR_EL2_RESET_VAL &
994 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
995 		   MDCR_EL2_TDE_BIT);
996 
997 	write_mdcr_el2(mdcr_el2);
998 
999 	/*
1000 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
1001 	 *
1002 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
1003 	 * EL1 accesses to System registers do not trap to EL2.
1004 	 */
1005 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
1006 
1007 	/*
1008 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
1009 	 * reset.
1010 	 *
1011 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1012 	 * and prevent timer interrupts.
1013 	 */
1014 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1015 
1016 	manage_extensions_nonsecure_el2_unused();
1017 #endif /* INIT_UNUSED_NS_EL2 */
1018 }
1019 
1020 /*******************************************************************************
1021  * Prepare the CPU system registers for first entry into realm, secure, or
1022  * normal world.
1023  *
1024  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1025  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1026  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1027  * For all entries, the EL1 registers are initialized from the cpu_context
1028  ******************************************************************************/
1029 void cm_prepare_el3_exit(uint32_t security_state)
1030 {
1031 	u_register_t sctlr_el2, scr_el3;
1032 	cpu_context_t *ctx = cm_get_context(security_state);
1033 
1034 	assert(ctx != NULL);
1035 
1036 	if (security_state == NON_SECURE) {
1037 		uint64_t el2_implemented = el_implemented(2);
1038 
1039 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1040 						 CTX_SCR_EL3);
1041 
1042 		if (el2_implemented != EL_IMPL_NONE) {
1043 
1044 			/*
1045 			 * If context is not being used for EL2, initialize
1046 			 * HCRX_EL2 with its init value here.
1047 			 */
1048 			if (is_feat_hcx_supported()) {
1049 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1050 			}
1051 
1052 			/*
1053 			 * Initialize Fine-grained trap registers introduced
1054 			 * by FEAT_FGT so all traps are initially disabled when
1055 			 * switching to EL2 or a lower EL, preventing undesired
1056 			 * behavior.
1057 			 */
1058 			if (is_feat_fgt_supported()) {
1059 				/*
1060 				 * Initialize HFG*_EL2 registers with a default
1061 				 * value so legacy systems unaware of FEAT_FGT
1062 				 * do not get trapped due to their lack of
1063 				 * initialization for this feature.
1064 				 */
1065 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1066 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1067 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1068 			}
1069 
1070 			/* Condition to ensure EL2 is being used. */
1071 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1072 				/* Initialize SCTLR_EL2 register with reset value. */
1073 				sctlr_el2 = SCTLR_EL2_RES1;
1074 #if ERRATA_A75_764081
1075 				/*
1076 				 * If workaround of errata 764081 for Cortex-A75
1077 				 * is used then set SCTLR_EL2.IESB to enable
1078 				 * Implicit Error Synchronization Barrier.
1079 				 */
1080 				sctlr_el2 |= SCTLR_IESB_BIT;
1081 #endif
1082 				write_sctlr_el2(sctlr_el2);
1083 			} else {
1084 				/*
1085 				 * (scr_el3 & SCR_HCE_BIT==0)
1086 				 * EL2 implemented but unused.
1087 				 */
1088 				init_nonsecure_el2_unused(ctx);
1089 			}
1090 		}
1091 	}
1092 	cm_el1_sysregs_context_restore(security_state);
1093 	cm_set_next_eret_context(security_state);
1094 }
1095 
1096 #if CTX_INCLUDE_EL2_REGS
1097 
1098 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1099 {
1100 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1101 	if (is_feat_amu_supported()) {
1102 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1103 	}
1104 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1105 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1106 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1107 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1108 }
1109 
1110 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1111 {
1112 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1113 	if (is_feat_amu_supported()) {
1114 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1115 	}
1116 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1117 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1118 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1119 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1120 }
1121 
1122 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1123 {
1124 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1125 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1126 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1127 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1128 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1129 }
1130 
1131 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1132 {
1133 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1134 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1135 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1136 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1137 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1138 }
1139 
1140 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1141 {
1142 	u_register_t mpam_idr = read_mpamidr_el1();
1143 
1144 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1145 
1146 	/*
1147 	 * The context registers that we intend to save would be part of the
1148 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1149 	 */
1150 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1151 		return;
1152 	}
1153 
1154 	/*
1155 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1156 	 * MPAMIDR_HAS_HCR_BIT == 1.
1157 	 */
1158 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1159 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1160 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1161 
1162 	/*
1163 	 * The number of MPAMVPM registers is implementation defined, their
1164 	 * number is stored in the MPAMIDR_EL1 register.
1165 	 */
1166 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1167 	case 7:
1168 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1169 		__fallthrough;
1170 	case 6:
1171 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1172 		__fallthrough;
1173 	case 5:
1174 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1175 		__fallthrough;
1176 	case 4:
1177 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1178 		__fallthrough;
1179 	case 3:
1180 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1181 		__fallthrough;
1182 	case 2:
1183 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1184 		__fallthrough;
1185 	case 1:
1186 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1187 		break;
1188 	}
1189 }
1190 
1191 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1192 {
1193 	u_register_t mpam_idr = read_mpamidr_el1();
1194 
1195 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1196 
1197 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1198 		return;
1199 	}
1200 
1201 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1202 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1203 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1204 
1205 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1206 	case 7:
1207 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1208 		__fallthrough;
1209 	case 6:
1210 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1211 		__fallthrough;
1212 	case 5:
1213 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1214 		__fallthrough;
1215 	case 4:
1216 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1217 		__fallthrough;
1218 	case 3:
1219 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1220 		__fallthrough;
1221 	case 2:
1222 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1223 		__fallthrough;
1224 	case 1:
1225 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1226 		break;
1227 	}
1228 }
1229 
1230 /* ---------------------------------------------------------------------------
1231  * The following registers are not added:
1232  * ICH_AP0R<n>_EL2
1233  * ICH_AP1R<n>_EL2
1234  * ICH_LR<n>_EL2
1235  *
1236  * NOTE: For a system with S-EL2 present but not enabled, accessing
1237  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1238  * SCR_EL3.NS = 1 before accessing this register.
1239  * ---------------------------------------------------------------------------
1240  */
1241 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx)
1242 {
1243 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1244 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1245 #else
1246 	u_register_t scr_el3 = read_scr_el3();
1247 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1248 	isb();
1249 
1250 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1251 
1252 	write_scr_el3(scr_el3);
1253 	isb();
1254 #endif
1255 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1256 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1257 }
1258 
1259 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx)
1260 {
1261 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1262 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1263 #else
1264 	u_register_t scr_el3 = read_scr_el3();
1265 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1266 	isb();
1267 
1268 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1269 
1270 	write_scr_el3(scr_el3);
1271 	isb();
1272 #endif
1273 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1274 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1275 }
1276 
1277 /* -----------------------------------------------------
1278  * The following registers are not added:
1279  * AMEVCNTVOFF0<n>_EL2
1280  * AMEVCNTVOFF1<n>_EL2
1281  * -----------------------------------------------------
1282  */
1283 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1284 {
1285 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1286 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1287 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1288 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1289 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1290 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1291 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1292 	if (CTX_INCLUDE_AARCH32_REGS) {
1293 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1294 	}
1295 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1296 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1297 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1298 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1299 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1300 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1301 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1302 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1303 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1304 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1305 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1306 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1307 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1308 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1309 	write_el2_ctx_common(ctx, ttbr0_el2, read_ttbr0_el2());
1310 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1311 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1312 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1313 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1314 	write_el2_ctx_common(ctx, vttbr_el2, read_vttbr_el2());
1315 }
1316 
1317 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1318 {
1319 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1320 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1321 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1322 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1323 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1324 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1325 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1326 	if (CTX_INCLUDE_AARCH32_REGS) {
1327 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1328 	}
1329 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1330 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1331 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1332 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1333 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1334 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1335 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1336 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1337 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1338 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1339 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1340 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1341 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1342 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1343 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1344 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1345 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1346 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1347 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1348 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1349 }
1350 
1351 /*******************************************************************************
1352  * Save EL2 sysreg context
1353  ******************************************************************************/
1354 void cm_el2_sysregs_context_save(uint32_t security_state)
1355 {
1356 	cpu_context_t *ctx;
1357 	el2_sysregs_t *el2_sysregs_ctx;
1358 
1359 	ctx = cm_get_context(security_state);
1360 	assert(ctx != NULL);
1361 
1362 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1363 
1364 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1365 	el2_sysregs_context_save_gic(el2_sysregs_ctx);
1366 
1367 	if (is_feat_mte2_supported()) {
1368 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1369 	}
1370 
1371 	if (is_feat_mpam_supported()) {
1372 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1373 	}
1374 
1375 	if (is_feat_fgt_supported()) {
1376 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1377 	}
1378 
1379 	if (is_feat_fgt2_supported()) {
1380 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1381 	}
1382 
1383 	if (is_feat_ecv_v2_supported()) {
1384 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1385 	}
1386 
1387 	if (is_feat_vhe_supported()) {
1388 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1389 					read_contextidr_el2());
1390 		write_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1391 	}
1392 
1393 	if (is_feat_ras_supported()) {
1394 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1395 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1396 	}
1397 
1398 	if (is_feat_nv2_supported()) {
1399 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1400 	}
1401 
1402 	if (is_feat_trf_supported()) {
1403 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1404 	}
1405 
1406 	if (is_feat_csv2_2_supported()) {
1407 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1408 					read_scxtnum_el2());
1409 	}
1410 
1411 	if (is_feat_hcx_supported()) {
1412 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1413 	}
1414 
1415 	if (is_feat_tcr2_supported()) {
1416 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1417 	}
1418 
1419 	if (is_feat_sxpie_supported()) {
1420 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1421 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1422 	}
1423 
1424 	if (is_feat_sxpoe_supported()) {
1425 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1426 	}
1427 
1428 	if (is_feat_s2pie_supported()) {
1429 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1430 	}
1431 
1432 	if (is_feat_gcs_supported()) {
1433 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1434 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1435 	}
1436 }
1437 
1438 /*******************************************************************************
1439  * Restore EL2 sysreg context
1440  ******************************************************************************/
1441 void cm_el2_sysregs_context_restore(uint32_t security_state)
1442 {
1443 	cpu_context_t *ctx;
1444 	el2_sysregs_t *el2_sysregs_ctx;
1445 
1446 	ctx = cm_get_context(security_state);
1447 	assert(ctx != NULL);
1448 
1449 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1450 
1451 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1452 	el2_sysregs_context_restore_gic(el2_sysregs_ctx);
1453 
1454 	if (is_feat_mte2_supported()) {
1455 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1456 	}
1457 
1458 	if (is_feat_mpam_supported()) {
1459 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1460 	}
1461 
1462 	if (is_feat_fgt_supported()) {
1463 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1464 	}
1465 
1466 	if (is_feat_fgt2_supported()) {
1467 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1468 	}
1469 
1470 	if (is_feat_ecv_v2_supported()) {
1471 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1472 	}
1473 
1474 	if (is_feat_vhe_supported()) {
1475 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1476 					contextidr_el2));
1477 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1478 	}
1479 
1480 	if (is_feat_ras_supported()) {
1481 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1482 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1483 	}
1484 
1485 	if (is_feat_nv2_supported()) {
1486 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1487 	}
1488 
1489 	if (is_feat_trf_supported()) {
1490 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1491 	}
1492 
1493 	if (is_feat_csv2_2_supported()) {
1494 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1495 					scxtnum_el2));
1496 	}
1497 
1498 	if (is_feat_hcx_supported()) {
1499 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1500 	}
1501 
1502 	if (is_feat_tcr2_supported()) {
1503 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1504 	}
1505 
1506 	if (is_feat_sxpie_supported()) {
1507 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1508 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1509 	}
1510 
1511 	if (is_feat_sxpoe_supported()) {
1512 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1513 	}
1514 
1515 	if (is_feat_s2pie_supported()) {
1516 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1517 	}
1518 
1519 	if (is_feat_gcs_supported()) {
1520 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1521 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1522 	}
1523 }
1524 #endif /* CTX_INCLUDE_EL2_REGS */
1525 
1526 /*******************************************************************************
1527  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1528  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1529  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1530  * cm_prepare_el3_exit function.
1531  ******************************************************************************/
1532 void cm_prepare_el3_exit_ns(void)
1533 {
1534 #if CTX_INCLUDE_EL2_REGS
1535 #if ENABLE_ASSERTIONS
1536 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1537 	assert(ctx != NULL);
1538 
1539 	/* Assert that EL2 is used. */
1540 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1541 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1542 			(el_implemented(2U) != EL_IMPL_NONE));
1543 #endif /* ENABLE_ASSERTIONS */
1544 
1545 	/* Restore EL2 and EL1 sysreg contexts */
1546 	cm_el2_sysregs_context_restore(NON_SECURE);
1547 	cm_el1_sysregs_context_restore(NON_SECURE);
1548 	cm_set_next_eret_context(NON_SECURE);
1549 #else
1550 	cm_prepare_el3_exit(NON_SECURE);
1551 #endif /* CTX_INCLUDE_EL2_REGS */
1552 }
1553 
1554 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1555 {
1556 	write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1());
1557 	write_el1_ctx_common(ctx, elr_el1, read_elr_el1());
1558 
1559 #if (!ERRATA_SPECULATIVE_AT)
1560 	write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1());
1561 	write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1());
1562 #endif /* (!ERRATA_SPECULATIVE_AT) */
1563 
1564 	write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1());
1565 	write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1());
1566 	write_el1_ctx_common(ctx, sp_el1, read_sp_el1());
1567 	write_el1_ctx_common(ctx, esr_el1, read_esr_el1());
1568 	write_el1_ctx_common(ctx, ttbr0_el1, read_ttbr0_el1());
1569 	write_el1_ctx_common(ctx, ttbr1_el1, read_ttbr1_el1());
1570 	write_el1_ctx_common(ctx, mair_el1, read_mair_el1());
1571 	write_el1_ctx_common(ctx, amair_el1, read_amair_el1());
1572 	write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1());
1573 	write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1());
1574 	write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0());
1575 	write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0());
1576 	write_el1_ctx_common(ctx, par_el1, read_par_el1());
1577 	write_el1_ctx_common(ctx, far_el1, read_far_el1());
1578 	write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1());
1579 	write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1());
1580 	write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1());
1581 	write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1());
1582 	write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1());
1583 	write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1());
1584 
1585 	if (CTX_INCLUDE_AARCH32_REGS) {
1586 		/* Save Aarch32 registers */
1587 		write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt());
1588 		write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und());
1589 		write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq());
1590 		write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq());
1591 		write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2());
1592 		write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2());
1593 	}
1594 
1595 	if (NS_TIMER_SWITCH) {
1596 		/* Save NS Timer registers */
1597 		write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0());
1598 		write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0());
1599 		write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0());
1600 		write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0());
1601 		write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1());
1602 	}
1603 
1604 	if (is_feat_mte2_supported()) {
1605 		write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1());
1606 		write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1());
1607 		write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1());
1608 		write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1());
1609 	}
1610 
1611 	if (is_feat_ras_supported()) {
1612 		write_el1_ctx_ras(ctx, disr_el1, read_disr_el1());
1613 	}
1614 
1615 	if (is_feat_s1pie_supported()) {
1616 		write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1());
1617 		write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1());
1618 	}
1619 
1620 	if (is_feat_s1poe_supported()) {
1621 		write_el1_ctx_s1poe(ctx, por_el1, read_por_el1());
1622 	}
1623 
1624 	if (is_feat_s2poe_supported()) {
1625 		write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1());
1626 	}
1627 
1628 	if (is_feat_tcr2_supported()) {
1629 		write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1());
1630 	}
1631 
1632 	if (is_feat_trf_supported()) {
1633 		write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1());
1634 	}
1635 
1636 	if (is_feat_csv2_2_supported()) {
1637 		write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0());
1638 		write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1());
1639 	}
1640 
1641 	if (is_feat_gcs_supported()) {
1642 		write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1());
1643 		write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1());
1644 		write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1());
1645 		write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0());
1646 	}
1647 }
1648 
1649 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1650 {
1651 	write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1));
1652 	write_elr_el1(read_el1_ctx_common(ctx, elr_el1));
1653 
1654 #if (!ERRATA_SPECULATIVE_AT)
1655 	write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1));
1656 	write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1));
1657 #endif /* (!ERRATA_SPECULATIVE_AT) */
1658 
1659 	write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1));
1660 	write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1));
1661 	write_sp_el1(read_el1_ctx_common(ctx, sp_el1));
1662 	write_esr_el1(read_el1_ctx_common(ctx, esr_el1));
1663 	write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1));
1664 	write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1));
1665 	write_mair_el1(read_el1_ctx_common(ctx, mair_el1));
1666 	write_amair_el1(read_el1_ctx_common(ctx, amair_el1));
1667 	write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1));
1668 	write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1));
1669 	write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0));
1670 	write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0));
1671 	write_par_el1(read_el1_ctx_common(ctx, par_el1));
1672 	write_far_el1(read_el1_ctx_common(ctx, far_el1));
1673 	write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1));
1674 	write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1));
1675 	write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1));
1676 	write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1));
1677 	write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1));
1678 	write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1));
1679 
1680 	if (CTX_INCLUDE_AARCH32_REGS) {
1681 		/* Restore Aarch32 registers */
1682 		write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt));
1683 		write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und));
1684 		write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq));
1685 		write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq));
1686 		write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2));
1687 		write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2));
1688 	}
1689 
1690 	if (NS_TIMER_SWITCH) {
1691 		/* Restore NS Timer registers */
1692 		write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0));
1693 		write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0));
1694 		write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0));
1695 		write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0));
1696 		write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1));
1697 	}
1698 
1699 	if (is_feat_mte2_supported()) {
1700 		write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1));
1701 		write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1));
1702 		write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1));
1703 		write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1));
1704 	}
1705 
1706 	if (is_feat_ras_supported()) {
1707 		write_disr_el1(read_el1_ctx_ras(ctx, disr_el1));
1708 	}
1709 
1710 	if (is_feat_s1pie_supported()) {
1711 		write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1));
1712 		write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1));
1713 	}
1714 
1715 	if (is_feat_s1poe_supported()) {
1716 		write_por_el1(read_el1_ctx_s1poe(ctx, por_el1));
1717 	}
1718 
1719 	if (is_feat_s2poe_supported()) {
1720 		write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1));
1721 	}
1722 
1723 	if (is_feat_tcr2_supported()) {
1724 		write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1));
1725 	}
1726 
1727 	if (is_feat_trf_supported()) {
1728 		write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1));
1729 	}
1730 
1731 	if (is_feat_csv2_2_supported()) {
1732 		write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0));
1733 		write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1));
1734 	}
1735 
1736 	if (is_feat_gcs_supported()) {
1737 		write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1));
1738 		write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1));
1739 		write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1));
1740 		write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0));
1741 	}
1742 }
1743 
1744 /*******************************************************************************
1745  * The next four functions are used by runtime services to save and restore
1746  * EL1 context on the 'cpu_context' structure for the specified security
1747  * state.
1748  ******************************************************************************/
1749 void cm_el1_sysregs_context_save(uint32_t security_state)
1750 {
1751 	cpu_context_t *ctx;
1752 
1753 	ctx = cm_get_context(security_state);
1754 	assert(ctx != NULL);
1755 
1756 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1757 
1758 #if IMAGE_BL31
1759 	if (security_state == SECURE)
1760 		PUBLISH_EVENT(cm_exited_secure_world);
1761 	else
1762 		PUBLISH_EVENT(cm_exited_normal_world);
1763 #endif
1764 }
1765 
1766 void cm_el1_sysregs_context_restore(uint32_t security_state)
1767 {
1768 	cpu_context_t *ctx;
1769 
1770 	ctx = cm_get_context(security_state);
1771 	assert(ctx != NULL);
1772 
1773 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1774 
1775 #if IMAGE_BL31
1776 	if (security_state == SECURE)
1777 		PUBLISH_EVENT(cm_entering_secure_world);
1778 	else
1779 		PUBLISH_EVENT(cm_entering_normal_world);
1780 #endif
1781 }
1782 
1783 /*******************************************************************************
1784  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1785  * given security state with the given entrypoint
1786  ******************************************************************************/
1787 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1788 {
1789 	cpu_context_t *ctx;
1790 	el3_state_t *state;
1791 
1792 	ctx = cm_get_context(security_state);
1793 	assert(ctx != NULL);
1794 
1795 	/* Populate EL3 state so that ERET jumps to the correct entry */
1796 	state = get_el3state_ctx(ctx);
1797 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1798 }
1799 
1800 /*******************************************************************************
1801  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1802  * pertaining to the given security state
1803  ******************************************************************************/
1804 void cm_set_elr_spsr_el3(uint32_t security_state,
1805 			uintptr_t entrypoint, uint32_t spsr)
1806 {
1807 	cpu_context_t *ctx;
1808 	el3_state_t *state;
1809 
1810 	ctx = cm_get_context(security_state);
1811 	assert(ctx != NULL);
1812 
1813 	/* Populate EL3 state so that ERET jumps to the correct entry */
1814 	state = get_el3state_ctx(ctx);
1815 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1816 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1817 }
1818 
1819 /*******************************************************************************
1820  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1821  * pertaining to the given security state using the value and bit position
1822  * specified in the parameters. It preserves all other bits.
1823  ******************************************************************************/
1824 void cm_write_scr_el3_bit(uint32_t security_state,
1825 			  uint32_t bit_pos,
1826 			  uint32_t value)
1827 {
1828 	cpu_context_t *ctx;
1829 	el3_state_t *state;
1830 	u_register_t scr_el3;
1831 
1832 	ctx = cm_get_context(security_state);
1833 	assert(ctx != NULL);
1834 
1835 	/* Ensure that the bit position is a valid one */
1836 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1837 
1838 	/* Ensure that the 'value' is only a bit wide */
1839 	assert(value <= 1U);
1840 
1841 	/*
1842 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1843 	 * and set it to its new value.
1844 	 */
1845 	state = get_el3state_ctx(ctx);
1846 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1847 	scr_el3 &= ~(1UL << bit_pos);
1848 	scr_el3 |= (u_register_t)value << bit_pos;
1849 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1850 }
1851 
1852 /*******************************************************************************
1853  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1854  * given security state.
1855  ******************************************************************************/
1856 u_register_t cm_get_scr_el3(uint32_t security_state)
1857 {
1858 	cpu_context_t *ctx;
1859 	el3_state_t *state;
1860 
1861 	ctx = cm_get_context(security_state);
1862 	assert(ctx != NULL);
1863 
1864 	/* Populate EL3 state so that ERET jumps to the correct entry */
1865 	state = get_el3state_ctx(ctx);
1866 	return read_ctx_reg(state, CTX_SCR_EL3);
1867 }
1868 
1869 /*******************************************************************************
1870  * This function is used to program the context that's used for exception
1871  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1872  * the required security state
1873  ******************************************************************************/
1874 void cm_set_next_eret_context(uint32_t security_state)
1875 {
1876 	cpu_context_t *ctx;
1877 
1878 	ctx = cm_get_context(security_state);
1879 	assert(ctx != NULL);
1880 
1881 	cm_set_next_context(ctx);
1882 }
1883