xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 5d796b3a25150faff68013880f5a9350cbc53889)
1 /*
2  * Copyright (c) 2013-2022, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_helpers.h>
15 #include <arch_features.h>
16 #include <bl31/interrupt_mgmt.h>
17 #include <common/bl_common.h>
18 #include <context.h>
19 #include <drivers/arm/gicv3.h>
20 #include <lib/el3_runtime/context_mgmt.h>
21 #include <lib/el3_runtime/pubsub_events.h>
22 #include <lib/extensions/amu.h>
23 #include <lib/extensions/brbe.h>
24 #include <lib/extensions/mpam.h>
25 #include <lib/extensions/sme.h>
26 #include <lib/extensions/spe.h>
27 #include <lib/extensions/sve.h>
28 #include <lib/extensions/sys_reg_trace.h>
29 #include <lib/extensions/trbe.h>
30 #include <lib/extensions/trf.h>
31 #include <lib/utils.h>
32 
33 #if ENABLE_FEAT_TWED
34 /* Make sure delay value fits within the range(0-15) */
35 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
36 #endif /* ENABLE_FEAT_TWED */
37 
38 static void manage_extensions_secure(cpu_context_t *ctx);
39 /******************************************************************************
40  * This function performs initializations that are specific to SECURE state
41  * and updates the cpu context specified by 'ctx'.
42  *****************************************************************************/
43 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
44 {
45 	u_register_t scr_el3;
46 	el3_state_t *state;
47 
48 	state = get_el3state_ctx(ctx);
49 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
50 
51 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
52 	/*
53 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
54 	 * indicated by the interrupt routing model for BL31.
55 	 */
56 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
57 #endif
58 
59 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
60 	/* Get Memory Tagging Extension support level */
61 	unsigned int mte = get_armv8_5_mte_support();
62 #endif
63 	/*
64 	 * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS
65 	 * is set, or when MTE is only implemented at EL0.
66 	 */
67 #if CTX_INCLUDE_MTE_REGS
68 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
69 	scr_el3 |= SCR_ATA_BIT;
70 #else
71 	if (mte == MTE_IMPLEMENTED_EL0) {
72 		scr_el3 |= SCR_ATA_BIT;
73 	}
74 #endif /* CTX_INCLUDE_MTE_REGS */
75 
76 	/* Enable S-EL2 if the next EL is EL2 and S-EL2 is present */
77 	if ((GET_EL(ep->spsr) == MODE_EL2) && is_armv8_4_sel2_present()) {
78 		if (GET_RW(ep->spsr) != MODE_RW_64) {
79 			ERROR("S-EL2 can not be used in AArch32\n.");
80 			panic();
81 		}
82 
83 		scr_el3 |= SCR_EEL2_BIT;
84 	}
85 
86 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
87 
88 	manage_extensions_secure(ctx);
89 }
90 
91 #if ENABLE_RME
92 /******************************************************************************
93  * This function performs initializations that are specific to REALM state
94  * and updates the cpu context specified by 'ctx'.
95  *****************************************************************************/
96 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
97 {
98 	u_register_t scr_el3;
99 	el3_state_t *state;
100 
101 	state = get_el3state_ctx(ctx);
102 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
103 
104 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT | SCR_EnSCXT_BIT;
105 
106 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
107 }
108 #endif /* ENABLE_RME */
109 
110 /******************************************************************************
111  * This function performs initializations that are specific to NON-SECURE state
112  * and updates the cpu context specified by 'ctx'.
113  *****************************************************************************/
114 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
115 {
116 	u_register_t scr_el3;
117 	el3_state_t *state;
118 
119 	state = get_el3state_ctx(ctx);
120 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
121 
122 	/* SCR_NS: Set the NS bit */
123 	scr_el3 |= SCR_NS_BIT;
124 
125 #if !CTX_INCLUDE_PAUTH_REGS
126 	/*
127 	 * If the pointer authentication registers aren't saved during world
128 	 * switches the value of the registers can be leaked from the Secure to
129 	 * the Non-secure world. To prevent this, rather than enabling pointer
130 	 * authentication everywhere, we only enable it in the Non-secure world.
131 	 *
132 	 * If the Secure world wants to use pointer authentication,
133 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
134 	 */
135 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
136 #endif /* !CTX_INCLUDE_PAUTH_REGS */
137 
138 	/* Allow access to Allocation Tags when MTE is implemented. */
139 	scr_el3 |= SCR_ATA_BIT;
140 
141 #ifdef IMAGE_BL31
142 	/*
143 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
144 	 *  indicated by the interrupt routing model for BL31.
145 	 */
146 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
147 #endif
148 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
149 
150 	/* Initialize EL2 context registers */
151 #if CTX_INCLUDE_EL2_REGS
152 
153 	/*
154 	 * Initialize SCTLR_EL2 context register using Endianness value
155 	 * taken from the entrypoint attribute.
156 	 */
157 	u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
158 	sctlr_el2 |= SCTLR_EL2_RES1;
159 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2,
160 			sctlr_el2);
161 
162 	/*
163 	 * The GICv3 driver initializes the ICC_SRE_EL2 register during
164 	 * platform setup. Use the same setting for the corresponding
165 	 * context register to make sure the correct bits are set when
166 	 * restoring NS context.
167 	 */
168 	u_register_t icc_sre_el2 = read_icc_sre_el2();
169 	icc_sre_el2 |= (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT);
170 	icc_sre_el2 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
171 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_ICC_SRE_EL2,
172 			icc_sre_el2);
173 #endif /* CTX_INCLUDE_EL2_REGS */
174 }
175 
176 /*******************************************************************************
177  * The following function performs initialization of the cpu_context 'ctx'
178  * for first use that is common to all security states, and sets the
179  * initial entrypoint state as specified by the entry_point_info structure.
180  *
181  * The EE and ST attributes are used to configure the endianness and secure
182  * timer availability for the new execution context.
183  ******************************************************************************/
184 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
185 {
186 	u_register_t scr_el3;
187 	el3_state_t *state;
188 	gp_regs_t *gp_regs;
189 	u_register_t sctlr_elx, actlr_elx;
190 
191 	/* Clear any residual register values from the context */
192 	zeromem(ctx, sizeof(*ctx));
193 
194 	/*
195 	 * SCR_EL3 was initialised during reset sequence in macro
196 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
197 	 * affect the next EL.
198 	 *
199 	 * The following fields are initially set to zero and then updated to
200 	 * the required value depending on the state of the SPSR_EL3 and the
201 	 * Security state and entrypoint attributes of the next EL.
202 	 */
203 	scr_el3 = read_scr();
204 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
205 			SCR_ST_BIT | SCR_HCE_BIT | SCR_NSE_BIT);
206 
207 	/*
208 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
209 	 *  Exception level as specified by SPSR.
210 	 */
211 	if (GET_RW(ep->spsr) == MODE_RW_64) {
212 		scr_el3 |= SCR_RW_BIT;
213 	}
214 
215 	/*
216 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
217 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
218 	 *  by the entrypoint attributes.
219 	 */
220 	if (EP_GET_ST(ep->h.attr) != 0U) {
221 		scr_el3 |= SCR_ST_BIT;
222 	}
223 
224 	/*
225 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
226 	 * SCR_EL3.HXEn.
227 	 */
228 #if ENABLE_FEAT_HCX
229 	scr_el3 |= SCR_HXEn_BIT;
230 #endif
231 
232 #if RAS_TRAP_LOWER_EL_ERR_ACCESS
233 	/*
234 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
235 	 * and RAS ERX registers from EL1 and EL2 are trapped to EL3.
236 	 */
237 	scr_el3 |= SCR_TERR_BIT;
238 #endif
239 
240 #if !HANDLE_EA_EL3_FIRST
241 	/*
242 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
243 	 * to EL3 when executing at a lower EL. When executing at EL3, External
244 	 * Aborts are taken to EL3.
245 	 */
246 	scr_el3 &= ~SCR_EA_BIT;
247 #endif
248 
249 #if FAULT_INJECTION_SUPPORT
250 	/* Enable fault injection from lower ELs */
251 	scr_el3 |= SCR_FIEN_BIT;
252 #endif
253 
254 	/*
255 	 * CPTR_EL3 was initialized out of reset, copy that value to the
256 	 * context register.
257 	 */
258 	write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3());
259 
260 	/*
261 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
262 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
263 	 * next mode is Hyp.
264 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
265 	 * same conditions as HVC instructions and when the processor supports
266 	 * ARMv8.6-FGT.
267 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
268 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
269 	 * and when the processor supports ECV.
270 	 */
271 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
272 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
273 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
274 		scr_el3 |= SCR_HCE_BIT;
275 
276 		if (is_armv8_6_fgt_present()) {
277 			scr_el3 |= SCR_FGTEN_BIT;
278 		}
279 
280 		if (get_armv8_6_ecv_support()
281 		    == ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) {
282 			scr_el3 |= SCR_ECVEN_BIT;
283 		}
284 	}
285 
286 	/*
287 	 * FEAT_AMUv1p1 virtual offset registers are only accessible from EL3
288 	 * and EL2, when clear, this bit traps accesses from EL2 so we set it
289 	 * to 1 when EL2 is present.
290 	 */
291 	if (is_armv8_6_feat_amuv1p1_present() &&
292 		(el_implemented(2) != EL_IMPL_NONE)) {
293 		scr_el3 |= SCR_AMVOFFEN_BIT;
294 	}
295 
296 	/*
297 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
298 	 * execution state setting all fields rather than relying of the hw.
299 	 * Some fields have architecturally UNKNOWN reset values and these are
300 	 * set to zero.
301 	 *
302 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
303 	 *
304 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
305 	 *  required by PSCI specification)
306 	 */
307 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
308 	if (GET_RW(ep->spsr) == MODE_RW_64) {
309 		sctlr_elx |= SCTLR_EL1_RES1;
310 	} else {
311 		/*
312 		 * If the target execution state is AArch32 then the following
313 		 * fields need to be set.
314 		 *
315 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
316 		 *  instructions are not trapped to EL1.
317 		 *
318 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
319 		 *  instructions are not trapped to EL1.
320 		 *
321 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
322 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
323 		 */
324 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
325 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
326 	}
327 
328 #if ERRATA_A75_764081
329 	/*
330 	 * If workaround of errata 764081 for Cortex-A75 is used then set
331 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
332 	 */
333 	sctlr_elx |= SCTLR_IESB_BIT;
334 #endif
335 
336 #if ENABLE_FEAT_TWED
337 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
338 	/* Set delay in SCR_EL3 */
339 	scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
340 	scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
341 			<< SCR_TWEDEL_SHIFT);
342 
343 	/* Enable WFE delay */
344 	scr_el3 |= SCR_TWEDEn_BIT;
345 #endif /* ENABLE_FEAT_TWED */
346 
347 	/*
348 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
349 	 * and other EL2 registers are set up by cm_prepare_el3_exit() as they
350 	 * are not part of the stored cpu_context.
351 	 */
352 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
353 
354 	/*
355 	 * Base the context ACTLR_EL1 on the current value, as it is
356 	 * implementation defined. The context restore process will write
357 	 * the value from the context to the actual register and can cause
358 	 * problems for processor cores that don't expect certain bits to
359 	 * be zero.
360 	 */
361 	actlr_elx = read_actlr_el1();
362 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
363 
364 	/*
365 	 * Populate EL3 state so that we've the right context
366 	 * before doing ERET
367 	 */
368 	state = get_el3state_ctx(ctx);
369 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
370 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
371 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
372 
373 	/*
374 	 * Store the X0-X7 value from the entrypoint into the context
375 	 * Use memcpy as we are in control of the layout of the structures
376 	 */
377 	gp_regs = get_gpregs_ctx(ctx);
378 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
379 }
380 
381 /*******************************************************************************
382  * Context management library initialization routine. This library is used by
383  * runtime services to share pointers to 'cpu_context' structures for secure
384  * non-secure and realm states. Management of the structures and their associated
385  * memory is not done by the context management library e.g. the PSCI service
386  * manages the cpu context used for entry from and exit to the non-secure state.
387  * The Secure payload dispatcher service manages the context(s) corresponding to
388  * the secure state. It also uses this library to get access to the non-secure
389  * state cpu context pointers.
390  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
391  * which will be used for programming an entry into a lower EL. The same context
392  * will be used to save state upon exception entry from that EL.
393  ******************************************************************************/
394 void __init cm_init(void)
395 {
396 	/*
397 	 * The context management library has only global data to intialize, but
398 	 * that will be done when the BSS is zeroed out.
399 	 */
400 }
401 
402 /*******************************************************************************
403  * This is the high-level function used to initialize the cpu_context 'ctx' for
404  * first use. It performs initializations that are common to all security states
405  * and initializations specific to the security state specified in 'ep'
406  ******************************************************************************/
407 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
408 {
409 	unsigned int security_state;
410 
411 	assert(ctx != NULL);
412 
413 	/*
414 	 * Perform initializations that are common
415 	 * to all security states
416 	 */
417 	setup_context_common(ctx, ep);
418 
419 	security_state = GET_SECURITY_STATE(ep->h.attr);
420 
421 	/* Perform security state specific initializations */
422 	switch (security_state) {
423 	case SECURE:
424 		setup_secure_context(ctx, ep);
425 		break;
426 #if ENABLE_RME
427 	case REALM:
428 		setup_realm_context(ctx, ep);
429 		break;
430 #endif
431 	case NON_SECURE:
432 		setup_ns_context(ctx, ep);
433 		break;
434 	default:
435 		ERROR("Invalid security state\n");
436 		panic();
437 		break;
438 	}
439 }
440 
441 /*******************************************************************************
442  * Enable architecture extensions on first entry to Non-secure world.
443  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
444  * it is zero.
445  ******************************************************************************/
446 static void manage_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx)
447 {
448 #if IMAGE_BL31
449 #if ENABLE_SPE_FOR_LOWER_ELS
450 	spe_enable(el2_unused);
451 #endif
452 
453 #if ENABLE_AMU
454 	amu_enable(el2_unused, ctx);
455 #endif
456 
457 #if ENABLE_SME_FOR_NS
458 	/* Enable SME, SVE, and FPU/SIMD for non-secure world. */
459 	sme_enable(ctx);
460 #elif ENABLE_SVE_FOR_NS
461 	/* Enable SVE and FPU/SIMD for non-secure world. */
462 	sve_enable(ctx);
463 #endif
464 
465 #if ENABLE_MPAM_FOR_LOWER_ELS
466 	mpam_enable(el2_unused);
467 #endif
468 
469 #if ENABLE_TRBE_FOR_NS
470 	trbe_enable();
471 #endif /* ENABLE_TRBE_FOR_NS */
472 
473 #if ENABLE_BRBE_FOR_NS
474 	brbe_enable();
475 #endif /* ENABLE_BRBE_FOR_NS */
476 
477 #if ENABLE_SYS_REG_TRACE_FOR_NS
478 	sys_reg_trace_enable(ctx);
479 #endif /* ENABLE_SYS_REG_TRACE_FOR_NS */
480 
481 #if ENABLE_TRF_FOR_NS
482 	trf_enable();
483 #endif /* ENABLE_TRF_FOR_NS */
484 #endif
485 }
486 
487 /*******************************************************************************
488  * Enable architecture extensions on first entry to Secure world.
489  ******************************************************************************/
490 static void manage_extensions_secure(cpu_context_t *ctx)
491 {
492 #if IMAGE_BL31
493  #if ENABLE_SME_FOR_NS
494   #if ENABLE_SME_FOR_SWD
495 	/*
496 	 * Enable SME, SVE, FPU/SIMD in secure context, secure manager must
497 	 * ensure SME, SVE, and FPU/SIMD context properly managed.
498 	 */
499 	sme_enable(ctx);
500   #else /* ENABLE_SME_FOR_SWD */
501 	/*
502 	 * Disable SME, SVE, FPU/SIMD in secure context so non-secure world can
503 	 * safely use the associated registers.
504 	 */
505 	sme_disable(ctx);
506   #endif /* ENABLE_SME_FOR_SWD */
507  #elif ENABLE_SVE_FOR_NS
508   #if ENABLE_SVE_FOR_SWD
509 	/*
510 	 * Enable SVE and FPU in secure context, secure manager must ensure that
511 	 * the SVE and FPU register contexts are properly managed.
512 	 */
513 	sve_enable(ctx);
514  #else /* ENABLE_SVE_FOR_SWD */
515 	/*
516 	 * Disable SVE and FPU in secure context so non-secure world can safely
517 	 * use them.
518 	 */
519 	sve_disable(ctx);
520   #endif /* ENABLE_SVE_FOR_SWD */
521  #endif /* ENABLE_SVE_FOR_NS */
522 #endif /* IMAGE_BL31 */
523 }
524 
525 /*******************************************************************************
526  * The following function initializes the cpu_context for a CPU specified by
527  * its `cpu_idx` for first use, and sets the initial entrypoint state as
528  * specified by the entry_point_info structure.
529  ******************************************************************************/
530 void cm_init_context_by_index(unsigned int cpu_idx,
531 			      const entry_point_info_t *ep)
532 {
533 	cpu_context_t *ctx;
534 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
535 	cm_setup_context(ctx, ep);
536 }
537 
538 /*******************************************************************************
539  * The following function initializes the cpu_context for the current CPU
540  * for first use, and sets the initial entrypoint state as specified by the
541  * entry_point_info structure.
542  ******************************************************************************/
543 void cm_init_my_context(const entry_point_info_t *ep)
544 {
545 	cpu_context_t *ctx;
546 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
547 	cm_setup_context(ctx, ep);
548 }
549 
550 /*******************************************************************************
551  * Prepare the CPU system registers for first entry into realm, secure, or
552  * normal world.
553  *
554  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
555  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
556  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
557  * For all entries, the EL1 registers are initialized from the cpu_context
558  ******************************************************************************/
559 void cm_prepare_el3_exit(uint32_t security_state)
560 {
561 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
562 	cpu_context_t *ctx = cm_get_context(security_state);
563 	bool el2_unused = false;
564 	uint64_t hcr_el2 = 0U;
565 
566 	assert(ctx != NULL);
567 
568 	if (security_state == NON_SECURE) {
569 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
570 						 CTX_SCR_EL3);
571 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
572 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
573 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
574 							   CTX_SCTLR_EL1);
575 			sctlr_elx &= SCTLR_EE_BIT;
576 			sctlr_elx |= SCTLR_EL2_RES1;
577 #if ERRATA_A75_764081
578 			/*
579 			 * If workaround of errata 764081 for Cortex-A75 is used
580 			 * then set SCTLR_EL2.IESB to enable Implicit Error
581 			 * Synchronization Barrier.
582 			 */
583 			sctlr_elx |= SCTLR_IESB_BIT;
584 #endif
585 			write_sctlr_el2(sctlr_elx);
586 		} else if (el_implemented(2) != EL_IMPL_NONE) {
587 			el2_unused = true;
588 
589 			/*
590 			 * EL2 present but unused, need to disable safely.
591 			 * SCTLR_EL2 can be ignored in this case.
592 			 *
593 			 * Set EL2 register width appropriately: Set HCR_EL2
594 			 * field to match SCR_EL3.RW.
595 			 */
596 			if ((scr_el3 & SCR_RW_BIT) != 0U)
597 				hcr_el2 |= HCR_RW_BIT;
598 
599 			/*
600 			 * For Armv8.3 pointer authentication feature, disable
601 			 * traps to EL2 when accessing key registers or using
602 			 * pointer authentication instructions from lower ELs.
603 			 */
604 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
605 
606 			write_hcr_el2(hcr_el2);
607 
608 			/*
609 			 * Initialise CPTR_EL2 setting all fields rather than
610 			 * relying on the hw. All fields have architecturally
611 			 * UNKNOWN reset values.
612 			 *
613 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
614 			 *  accesses to the CPACR_EL1 or CPACR from both
615 			 *  Execution states do not trap to EL2.
616 			 *
617 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
618 			 *  register accesses to the trace registers from both
619 			 *  Execution states do not trap to EL2.
620 			 *  If PE trace unit System registers are not implemented
621 			 *  then this bit is reserved, and must be set to zero.
622 			 *
623 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
624 			 *  to SIMD and floating-point functionality from both
625 			 *  Execution states do not trap to EL2.
626 			 */
627 			write_cptr_el2(CPTR_EL2_RESET_VAL &
628 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
629 					| CPTR_EL2_TFP_BIT));
630 
631 			/*
632 			 * Initialise CNTHCTL_EL2. All fields are
633 			 * architecturally UNKNOWN on reset and are set to zero
634 			 * except for field(s) listed below.
635 			 *
636 			 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to
637 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
638 			 *  physical timer registers.
639 			 *
640 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
641 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
642 			 *  physical counter registers.
643 			 */
644 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
645 						EL1PCEN_BIT | EL1PCTEN_BIT);
646 
647 			/*
648 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
649 			 * architecturally UNKNOWN value.
650 			 */
651 			write_cntvoff_el2(0);
652 
653 			/*
654 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
655 			 * MPIDR_EL1 respectively.
656 			 */
657 			write_vpidr_el2(read_midr_el1());
658 			write_vmpidr_el2(read_mpidr_el1());
659 
660 			/*
661 			 * Initialise VTTBR_EL2. All fields are architecturally
662 			 * UNKNOWN on reset.
663 			 *
664 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
665 			 *  2 address translation is disabled, cache maintenance
666 			 *  operations depend on the VMID.
667 			 *
668 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
669 			 *  translation is disabled.
670 			 */
671 			write_vttbr_el2(VTTBR_RESET_VAL &
672 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
673 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
674 
675 			/*
676 			 * Initialise MDCR_EL2, setting all fields rather than
677 			 * relying on hw. Some fields are architecturally
678 			 * UNKNOWN on reset.
679 			 *
680 			 * MDCR_EL2.HLP: Set to one so that event counter
681 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
682 			 *  occurs on the increment that changes
683 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
684 			 *  implemented. This bit is RES0 in versions of the
685 			 *  architecture earlier than ARMv8.5, setting it to 1
686 			 *  doesn't have any effect on them.
687 			 *
688 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
689 			 *  Filter Control register TRFCR_EL1 at EL1 is not
690 			 *  trapped to EL2. This bit is RES0 in versions of
691 			 *  the architecture earlier than ARMv8.4.
692 			 *
693 			 * MDCR_EL2.HPMD: Set to one so that event counting is
694 			 *  prohibited at EL2. This bit is RES0 in versions of
695 			 *  the architecture earlier than ARMv8.1, setting it
696 			 *  to 1 doesn't have any effect on them.
697 			 *
698 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
699 			 *  Statistical Profiling control registers from EL1
700 			 *  do not trap to EL2. This bit is RES0 when SPE is
701 			 *  not implemented.
702 			 *
703 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
704 			 *  EL1 System register accesses to the Debug ROM
705 			 *  registers are not trapped to EL2.
706 			 *
707 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
708 			 *  System register accesses to the powerdown debug
709 			 *  registers are not trapped to EL2.
710 			 *
711 			 * MDCR_EL2.TDA: Set to zero so that System register
712 			 *  accesses to the debug registers do not trap to EL2.
713 			 *
714 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
715 			 *  are not routed to EL2.
716 			 *
717 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
718 			 *  Monitors.
719 			 *
720 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
721 			 *  EL1 accesses to all Performance Monitors registers
722 			 *  are not trapped to EL2.
723 			 *
724 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
725 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
726 			 *  trapped to EL2.
727 			 *
728 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
729 			 *  architecturally-defined reset value.
730 			 *
731 			 * MDCR_EL2.E2TB: Set to zero so that the trace Buffer
732 			 *  owning exception level is NS-EL1 and, tracing is
733 			 *  prohibited at NS-EL2. These bits are RES0 when
734 			 *  FEAT_TRBE is not implemented.
735 			 */
736 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
737 				     MDCR_EL2_HPMD) |
738 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
739 				   >> PMCR_EL0_N_SHIFT)) &
740 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
741 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
742 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
743 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
744 				     MDCR_EL2_TPMCR_BIT |
745 				     MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1));
746 
747 			write_mdcr_el2(mdcr_el2);
748 
749 			/*
750 			 * Initialise HSTR_EL2. All fields are architecturally
751 			 * UNKNOWN on reset.
752 			 *
753 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
754 			 *  Non-secure EL0 or EL1 accesses to System registers
755 			 *  do not trap to EL2.
756 			 */
757 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
758 			/*
759 			 * Initialise CNTHP_CTL_EL2. All fields are
760 			 * architecturally UNKNOWN on reset.
761 			 *
762 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
763 			 *  physical timer and prevent timer interrupts.
764 			 */
765 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
766 						~(CNTHP_CTL_ENABLE_BIT));
767 		}
768 		manage_extensions_nonsecure(el2_unused, ctx);
769 	}
770 
771 	cm_el1_sysregs_context_restore(security_state);
772 	cm_set_next_eret_context(security_state);
773 }
774 
775 #if CTX_INCLUDE_EL2_REGS
776 /*******************************************************************************
777  * Save EL2 sysreg context
778  ******************************************************************************/
779 void cm_el2_sysregs_context_save(uint32_t security_state)
780 {
781 	u_register_t scr_el3 = read_scr();
782 
783 	/*
784 	 * Always save the non-secure and realm EL2 context, only save the
785 	 * S-EL2 context if S-EL2 is enabled.
786 	 */
787 	if ((security_state != SECURE) ||
788 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
789 		cpu_context_t *ctx;
790 
791 		ctx = cm_get_context(security_state);
792 		assert(ctx != NULL);
793 
794 		el2_sysregs_context_save(get_el2_sysregs_ctx(ctx));
795 	}
796 }
797 
798 /*******************************************************************************
799  * Restore EL2 sysreg context
800  ******************************************************************************/
801 void cm_el2_sysregs_context_restore(uint32_t security_state)
802 {
803 	u_register_t scr_el3 = read_scr();
804 
805 	/*
806 	 * Always restore the non-secure and realm EL2 context, only restore the
807 	 * S-EL2 context if S-EL2 is enabled.
808 	 */
809 	if ((security_state != SECURE) ||
810 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
811 		cpu_context_t *ctx;
812 
813 		ctx = cm_get_context(security_state);
814 		assert(ctx != NULL);
815 
816 		el2_sysregs_context_restore(get_el2_sysregs_ctx(ctx));
817 	}
818 }
819 #endif /* CTX_INCLUDE_EL2_REGS */
820 
821 /*******************************************************************************
822  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
823  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
824  * updating EL1 and EL2 registers. Otherwise, it calls the generic
825  * cm_prepare_el3_exit function.
826  ******************************************************************************/
827 void cm_prepare_el3_exit_ns(void)
828 {
829 #if CTX_INCLUDE_EL2_REGS
830 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
831 	assert(ctx != NULL);
832 
833 	/*
834 	 * Currently some extensions are configured using
835 	 * direct register updates. Therefore, do this here
836 	 * instead of when setting up context.
837 	 */
838 	manage_extensions_nonsecure(0, ctx);
839 
840 	/*
841 	 * Set the NS bit to be able to access the ICC_SRE_EL2
842 	 * register when restoring context.
843 	 */
844 	write_scr_el3(read_scr_el3() | SCR_NS_BIT);
845 
846 	/* Restore EL2 and EL1 sysreg contexts */
847 	cm_el2_sysregs_context_restore(NON_SECURE);
848 	cm_el1_sysregs_context_restore(NON_SECURE);
849 	cm_set_next_eret_context(NON_SECURE);
850 #else
851 	cm_prepare_el3_exit(NON_SECURE);
852 #endif /* CTX_INCLUDE_EL2_REGS */
853 }
854 
855 /*******************************************************************************
856  * The next four functions are used by runtime services to save and restore
857  * EL1 context on the 'cpu_context' structure for the specified security
858  * state.
859  ******************************************************************************/
860 void cm_el1_sysregs_context_save(uint32_t security_state)
861 {
862 	cpu_context_t *ctx;
863 
864 	ctx = cm_get_context(security_state);
865 	assert(ctx != NULL);
866 
867 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
868 
869 #if IMAGE_BL31
870 	if (security_state == SECURE)
871 		PUBLISH_EVENT(cm_exited_secure_world);
872 	else
873 		PUBLISH_EVENT(cm_exited_normal_world);
874 #endif
875 }
876 
877 void cm_el1_sysregs_context_restore(uint32_t security_state)
878 {
879 	cpu_context_t *ctx;
880 
881 	ctx = cm_get_context(security_state);
882 	assert(ctx != NULL);
883 
884 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
885 
886 #if IMAGE_BL31
887 	if (security_state == SECURE)
888 		PUBLISH_EVENT(cm_entering_secure_world);
889 	else
890 		PUBLISH_EVENT(cm_entering_normal_world);
891 #endif
892 }
893 
894 /*******************************************************************************
895  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
896  * given security state with the given entrypoint
897  ******************************************************************************/
898 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
899 {
900 	cpu_context_t *ctx;
901 	el3_state_t *state;
902 
903 	ctx = cm_get_context(security_state);
904 	assert(ctx != NULL);
905 
906 	/* Populate EL3 state so that ERET jumps to the correct entry */
907 	state = get_el3state_ctx(ctx);
908 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
909 }
910 
911 /*******************************************************************************
912  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
913  * pertaining to the given security state
914  ******************************************************************************/
915 void cm_set_elr_spsr_el3(uint32_t security_state,
916 			uintptr_t entrypoint, uint32_t spsr)
917 {
918 	cpu_context_t *ctx;
919 	el3_state_t *state;
920 
921 	ctx = cm_get_context(security_state);
922 	assert(ctx != NULL);
923 
924 	/* Populate EL3 state so that ERET jumps to the correct entry */
925 	state = get_el3state_ctx(ctx);
926 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
927 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
928 }
929 
930 /*******************************************************************************
931  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
932  * pertaining to the given security state using the value and bit position
933  * specified in the parameters. It preserves all other bits.
934  ******************************************************************************/
935 void cm_write_scr_el3_bit(uint32_t security_state,
936 			  uint32_t bit_pos,
937 			  uint32_t value)
938 {
939 	cpu_context_t *ctx;
940 	el3_state_t *state;
941 	u_register_t scr_el3;
942 
943 	ctx = cm_get_context(security_state);
944 	assert(ctx != NULL);
945 
946 	/* Ensure that the bit position is a valid one */
947 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
948 
949 	/* Ensure that the 'value' is only a bit wide */
950 	assert(value <= 1U);
951 
952 	/*
953 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
954 	 * and set it to its new value.
955 	 */
956 	state = get_el3state_ctx(ctx);
957 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
958 	scr_el3 &= ~(1UL << bit_pos);
959 	scr_el3 |= (u_register_t)value << bit_pos;
960 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
961 }
962 
963 /*******************************************************************************
964  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
965  * given security state.
966  ******************************************************************************/
967 u_register_t cm_get_scr_el3(uint32_t security_state)
968 {
969 	cpu_context_t *ctx;
970 	el3_state_t *state;
971 
972 	ctx = cm_get_context(security_state);
973 	assert(ctx != NULL);
974 
975 	/* Populate EL3 state so that ERET jumps to the correct entry */
976 	state = get_el3state_ctx(ctx);
977 	return read_ctx_reg(state, CTX_SCR_EL3);
978 }
979 
980 /*******************************************************************************
981  * This function is used to program the context that's used for exception
982  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
983  * the required security state
984  ******************************************************************************/
985 void cm_set_next_eret_context(uint32_t security_state)
986 {
987 	cpu_context_t *ctx;
988 
989 	ctx = cm_get_context(security_state);
990 	assert(ctx != NULL);
991 
992 	cm_set_next_context(ctx);
993 }
994