xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 5cae337337a4a487f46c74a2ccfe235fa772bf60)
1 /*
2  * Copyright (c) 2013-2022, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_helpers.h>
15 #include <arch_features.h>
16 #include <bl31/interrupt_mgmt.h>
17 #include <common/bl_common.h>
18 #include <context.h>
19 #include <drivers/arm/gicv3.h>
20 #include <lib/el3_runtime/context_mgmt.h>
21 #include <lib/el3_runtime/pubsub_events.h>
22 #include <lib/extensions/amu.h>
23 #include <lib/extensions/mpam.h>
24 #include <lib/extensions/sme.h>
25 #include <lib/extensions/spe.h>
26 #include <lib/extensions/sve.h>
27 #include <lib/extensions/sys_reg_trace.h>
28 #include <lib/extensions/trbe.h>
29 #include <lib/extensions/trf.h>
30 #include <lib/extensions/twed.h>
31 #include <lib/utils.h>
32 
33 static void manage_extensions_secure(cpu_context_t *ctx);
34 
35 /******************************************************************************
36  * This function performs initializations that are specific to SECURE state
37  * and updates the cpu context specified by 'ctx'.
38  *****************************************************************************/
39 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
40 {
41 	u_register_t scr_el3;
42 	el3_state_t *state;
43 
44 	state = get_el3state_ctx(ctx);
45 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
46 
47 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
48 	/*
49 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
50 	 * indicated by the interrupt routing model for BL31.
51 	 */
52 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
53 #endif
54 
55 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
56 	/* Get Memory Tagging Extension support level */
57 	unsigned int mte = get_armv8_5_mte_support();
58 #endif
59 	/*
60 	 * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS
61 	 * is set, or when MTE is only implemented at EL0.
62 	 */
63 #if CTX_INCLUDE_MTE_REGS
64 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
65 	scr_el3 |= SCR_ATA_BIT;
66 #else
67 	if (mte == MTE_IMPLEMENTED_EL0) {
68 		scr_el3 |= SCR_ATA_BIT;
69 	}
70 #endif /* CTX_INCLUDE_MTE_REGS */
71 
72 	/* Enable S-EL2 if the next EL is EL2 and S-EL2 is present */
73 	if ((GET_EL(ep->spsr) == MODE_EL2) && is_armv8_4_sel2_present()) {
74 		if (GET_RW(ep->spsr) != MODE_RW_64) {
75 			ERROR("S-EL2 can not be used in AArch32\n.");
76 			panic();
77 		}
78 
79 		scr_el3 |= SCR_EEL2_BIT;
80 	}
81 
82 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
83 
84 	manage_extensions_secure(ctx);
85 }
86 
87 #if ENABLE_RME
88 /******************************************************************************
89  * This function performs initializations that are specific to REALM state
90  * and updates the cpu context specified by 'ctx'.
91  *****************************************************************************/
92 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
93 {
94 	u_register_t scr_el3;
95 	el3_state_t *state;
96 
97 	state = get_el3state_ctx(ctx);
98 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
99 
100 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT | SCR_EnSCXT_BIT;
101 
102 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
103 }
104 #endif /* ENABLE_RME */
105 
106 /******************************************************************************
107  * This function performs initializations that are specific to NON-SECURE state
108  * and updates the cpu context specified by 'ctx'.
109  *****************************************************************************/
110 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
111 {
112 	u_register_t scr_el3;
113 	el3_state_t *state;
114 
115 	state = get_el3state_ctx(ctx);
116 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
117 
118 	/* SCR_NS: Set the NS bit */
119 	scr_el3 |= SCR_NS_BIT;
120 
121 #if !CTX_INCLUDE_PAUTH_REGS
122 	/*
123 	 * If the pointer authentication registers aren't saved during world
124 	 * switches the value of the registers can be leaked from the Secure to
125 	 * the Non-secure world. To prevent this, rather than enabling pointer
126 	 * authentication everywhere, we only enable it in the Non-secure world.
127 	 *
128 	 * If the Secure world wants to use pointer authentication,
129 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
130 	 */
131 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
132 #endif /* !CTX_INCLUDE_PAUTH_REGS */
133 
134 	/* Allow access to Allocation Tags when MTE is implemented. */
135 	scr_el3 |= SCR_ATA_BIT;
136 
137 #ifdef IMAGE_BL31
138 	/*
139 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
140 	 *  indicated by the interrupt routing model for BL31.
141 	 */
142 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
143 #endif
144 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
145 
146 	/* Initialize EL2 context registers */
147 #if CTX_INCLUDE_EL2_REGS
148 
149 	/*
150 	 * Initialize SCTLR_EL2 context register using Endianness value
151 	 * taken from the entrypoint attribute.
152 	 */
153 	u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
154 	sctlr_el2 |= SCTLR_EL2_RES1;
155 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2,
156 			sctlr_el2);
157 
158 	/*
159 	 * The GICv3 driver initializes the ICC_SRE_EL2 register during
160 	 * platform setup. Use the same setting for the corresponding
161 	 * context register to make sure the correct bits are set when
162 	 * restoring NS context.
163 	 */
164 	u_register_t icc_sre_el2 = read_icc_sre_el2();
165 	icc_sre_el2 |= (ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT);
166 	icc_sre_el2 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
167 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_ICC_SRE_EL2,
168 			icc_sre_el2);
169 #endif /* CTX_INCLUDE_EL2_REGS */
170 }
171 
172 /*******************************************************************************
173  * The following function performs initialization of the cpu_context 'ctx'
174  * for first use that is common to all security states, and sets the
175  * initial entrypoint state as specified by the entry_point_info structure.
176  *
177  * The EE and ST attributes are used to configure the endianness and secure
178  * timer availability for the new execution context.
179  ******************************************************************************/
180 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
181 {
182 	u_register_t scr_el3;
183 	el3_state_t *state;
184 	gp_regs_t *gp_regs;
185 	u_register_t sctlr_elx, actlr_elx;
186 
187 	/* Clear any residual register values from the context */
188 	zeromem(ctx, sizeof(*ctx));
189 
190 	/*
191 	 * SCR_EL3 was initialised during reset sequence in macro
192 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
193 	 * affect the next EL.
194 	 *
195 	 * The following fields are initially set to zero and then updated to
196 	 * the required value depending on the state of the SPSR_EL3 and the
197 	 * Security state and entrypoint attributes of the next EL.
198 	 */
199 	scr_el3 = read_scr();
200 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
201 			SCR_ST_BIT | SCR_HCE_BIT | SCR_NSE_BIT);
202 
203 	/*
204 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
205 	 *  Exception level as specified by SPSR.
206 	 */
207 	if (GET_RW(ep->spsr) == MODE_RW_64) {
208 		scr_el3 |= SCR_RW_BIT;
209 	}
210 
211 	/*
212 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
213 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
214 	 *  by the entrypoint attributes.
215 	 */
216 	if (EP_GET_ST(ep->h.attr) != 0U) {
217 		scr_el3 |= SCR_ST_BIT;
218 	}
219 
220 	/*
221 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
222 	 * SCR_EL3.HXEn.
223 	 */
224 #if ENABLE_FEAT_HCX
225 	scr_el3 |= SCR_HXEn_BIT;
226 #endif
227 
228 #if RAS_TRAP_LOWER_EL_ERR_ACCESS
229 	/*
230 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
231 	 * and RAS ERX registers from EL1 and EL2 are trapped to EL3.
232 	 */
233 	scr_el3 |= SCR_TERR_BIT;
234 #endif
235 
236 #if !HANDLE_EA_EL3_FIRST
237 	/*
238 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
239 	 * to EL3 when executing at a lower EL. When executing at EL3, External
240 	 * Aborts are taken to EL3.
241 	 */
242 	scr_el3 &= ~SCR_EA_BIT;
243 #endif
244 
245 #if FAULT_INJECTION_SUPPORT
246 	/* Enable fault injection from lower ELs */
247 	scr_el3 |= SCR_FIEN_BIT;
248 #endif
249 
250 	/*
251 	 * CPTR_EL3 was initialized out of reset, copy that value to the
252 	 * context register.
253 	 */
254 	write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, read_cptr_el3());
255 
256 	/*
257 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
258 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
259 	 * next mode is Hyp.
260 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
261 	 * same conditions as HVC instructions and when the processor supports
262 	 * ARMv8.6-FGT.
263 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
264 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
265 	 * and when the processor supports ECV.
266 	 */
267 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
268 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
269 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
270 		scr_el3 |= SCR_HCE_BIT;
271 
272 		if (is_armv8_6_fgt_present()) {
273 			scr_el3 |= SCR_FGTEN_BIT;
274 		}
275 
276 		if (get_armv8_6_ecv_support()
277 		    == ID_AA64MMFR0_EL1_ECV_SELF_SYNCH) {
278 			scr_el3 |= SCR_ECVEN_BIT;
279 		}
280 	}
281 
282 	/*
283 	 * FEAT_AMUv1p1 virtual offset registers are only accessible from EL3
284 	 * and EL2, when clear, this bit traps accesses from EL2 so we set it
285 	 * to 1 when EL2 is present.
286 	 */
287 	if (is_armv8_6_feat_amuv1p1_present() &&
288 		(el_implemented(2) != EL_IMPL_NONE)) {
289 		scr_el3 |= SCR_AMVOFFEN_BIT;
290 	}
291 
292 	/*
293 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
294 	 * execution state setting all fields rather than relying of the hw.
295 	 * Some fields have architecturally UNKNOWN reset values and these are
296 	 * set to zero.
297 	 *
298 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
299 	 *
300 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
301 	 *  required by PSCI specification)
302 	 */
303 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
304 	if (GET_RW(ep->spsr) == MODE_RW_64) {
305 		sctlr_elx |= SCTLR_EL1_RES1;
306 	} else {
307 		/*
308 		 * If the target execution state is AArch32 then the following
309 		 * fields need to be set.
310 		 *
311 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
312 		 *  instructions are not trapped to EL1.
313 		 *
314 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
315 		 *  instructions are not trapped to EL1.
316 		 *
317 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
318 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
319 		 */
320 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
321 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
322 	}
323 
324 #if ERRATA_A75_764081
325 	/*
326 	 * If workaround of errata 764081 for Cortex-A75 is used then set
327 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
328 	 */
329 	sctlr_elx |= SCTLR_IESB_BIT;
330 #endif
331 
332 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
333 	if (is_armv8_6_twed_present()) {
334 		uint32_t delay = plat_arm_set_twedel_scr_el3();
335 
336 		if (delay != TWED_DISABLED) {
337 			/* Make sure delay value fits */
338 			assert((delay & ~SCR_TWEDEL_MASK) == 0U);
339 
340 			/* Set delay in SCR_EL3 */
341 			scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
342 			scr_el3 |= ((delay & SCR_TWEDEL_MASK)
343 					<< SCR_TWEDEL_SHIFT);
344 
345 			/* Enable WFE delay */
346 			scr_el3 |= SCR_TWEDEn_BIT;
347 		}
348 	}
349 
350 	/*
351 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
352 	 * and other EL2 registers are set up by cm_prepare_el3_exit() as they
353 	 * are not part of the stored cpu_context.
354 	 */
355 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
356 
357 	/*
358 	 * Base the context ACTLR_EL1 on the current value, as it is
359 	 * implementation defined. The context restore process will write
360 	 * the value from the context to the actual register and can cause
361 	 * problems for processor cores that don't expect certain bits to
362 	 * be zero.
363 	 */
364 	actlr_elx = read_actlr_el1();
365 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
366 
367 	/*
368 	 * Populate EL3 state so that we've the right context
369 	 * before doing ERET
370 	 */
371 	state = get_el3state_ctx(ctx);
372 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
373 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
374 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
375 
376 	/*
377 	 * Store the X0-X7 value from the entrypoint into the context
378 	 * Use memcpy as we are in control of the layout of the structures
379 	 */
380 	gp_regs = get_gpregs_ctx(ctx);
381 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
382 }
383 
384 /*******************************************************************************
385  * Context management library initialization routine. This library is used by
386  * runtime services to share pointers to 'cpu_context' structures for secure
387  * non-secure and realm states. Management of the structures and their associated
388  * memory is not done by the context management library e.g. the PSCI service
389  * manages the cpu context used for entry from and exit to the non-secure state.
390  * The Secure payload dispatcher service manages the context(s) corresponding to
391  * the secure state. It also uses this library to get access to the non-secure
392  * state cpu context pointers.
393  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
394  * which will be used for programming an entry into a lower EL. The same context
395  * will be used to save state upon exception entry from that EL.
396  ******************************************************************************/
397 void __init cm_init(void)
398 {
399 	/*
400 	 * The context management library has only global data to intialize, but
401 	 * that will be done when the BSS is zeroed out.
402 	 */
403 }
404 
405 /*******************************************************************************
406  * This is the high-level function used to initialize the cpu_context 'ctx' for
407  * first use. It performs initializations that are common to all security states
408  * and initializations specific to the security state specified in 'ep'
409  ******************************************************************************/
410 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
411 {
412 	unsigned int security_state;
413 
414 	assert(ctx != NULL);
415 
416 	/*
417 	 * Perform initializations that are common
418 	 * to all security states
419 	 */
420 	setup_context_common(ctx, ep);
421 
422 	security_state = GET_SECURITY_STATE(ep->h.attr);
423 
424 	/* Perform security state specific initializations */
425 	switch (security_state) {
426 	case SECURE:
427 		setup_secure_context(ctx, ep);
428 		break;
429 #if ENABLE_RME
430 	case REALM:
431 		setup_realm_context(ctx, ep);
432 		break;
433 #endif
434 	case NON_SECURE:
435 		setup_ns_context(ctx, ep);
436 		break;
437 	default:
438 		ERROR("Invalid security state\n");
439 		panic();
440 		break;
441 	}
442 }
443 
444 /*******************************************************************************
445  * Enable architecture extensions on first entry to Non-secure world.
446  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
447  * it is zero.
448  ******************************************************************************/
449 static void manage_extensions_nonsecure(bool el2_unused, cpu_context_t *ctx)
450 {
451 #if IMAGE_BL31
452 #if ENABLE_SPE_FOR_LOWER_ELS
453 	spe_enable(el2_unused);
454 #endif
455 
456 #if ENABLE_AMU
457 	amu_enable(el2_unused, ctx);
458 #endif
459 
460 #if ENABLE_SME_FOR_NS
461 	/* Enable SME, SVE, and FPU/SIMD for non-secure world. */
462 	sme_enable(ctx);
463 #elif ENABLE_SVE_FOR_NS
464 	/* Enable SVE and FPU/SIMD for non-secure world. */
465 	sve_enable(ctx);
466 #endif
467 
468 #if ENABLE_MPAM_FOR_LOWER_ELS
469 	mpam_enable(el2_unused);
470 #endif
471 
472 #if ENABLE_TRBE_FOR_NS
473 	trbe_enable();
474 #endif /* ENABLE_TRBE_FOR_NS */
475 
476 #if ENABLE_SYS_REG_TRACE_FOR_NS
477 	sys_reg_trace_enable(ctx);
478 #endif /* ENABLE_SYS_REG_TRACE_FOR_NS */
479 
480 #if ENABLE_TRF_FOR_NS
481 	trf_enable();
482 #endif /* ENABLE_TRF_FOR_NS */
483 #endif
484 }
485 
486 /*******************************************************************************
487  * Enable architecture extensions on first entry to Secure world.
488  ******************************************************************************/
489 static void manage_extensions_secure(cpu_context_t *ctx)
490 {
491 #if IMAGE_BL31
492  #if ENABLE_SME_FOR_NS
493   #if ENABLE_SME_FOR_SWD
494 	/*
495 	 * Enable SME, SVE, FPU/SIMD in secure context, secure manager must
496 	 * ensure SME, SVE, and FPU/SIMD context properly managed.
497 	 */
498 	sme_enable(ctx);
499   #else /* ENABLE_SME_FOR_SWD */
500 	/*
501 	 * Disable SME, SVE, FPU/SIMD in secure context so non-secure world can
502 	 * safely use the associated registers.
503 	 */
504 	sme_disable(ctx);
505   #endif /* ENABLE_SME_FOR_SWD */
506  #elif ENABLE_SVE_FOR_NS
507   #if ENABLE_SVE_FOR_SWD
508 	/*
509 	 * Enable SVE and FPU in secure context, secure manager must ensure that
510 	 * the SVE and FPU register contexts are properly managed.
511 	 */
512 	sve_enable(ctx);
513  #else /* ENABLE_SVE_FOR_SWD */
514 	/*
515 	 * Disable SVE and FPU in secure context so non-secure world can safely
516 	 * use them.
517 	 */
518 	sve_disable(ctx);
519   #endif /* ENABLE_SVE_FOR_SWD */
520  #endif /* ENABLE_SVE_FOR_NS */
521 #endif /* IMAGE_BL31 */
522 }
523 
524 /*******************************************************************************
525  * The following function initializes the cpu_context for a CPU specified by
526  * its `cpu_idx` for first use, and sets the initial entrypoint state as
527  * specified by the entry_point_info structure.
528  ******************************************************************************/
529 void cm_init_context_by_index(unsigned int cpu_idx,
530 			      const entry_point_info_t *ep)
531 {
532 	cpu_context_t *ctx;
533 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
534 	cm_setup_context(ctx, ep);
535 }
536 
537 /*******************************************************************************
538  * The following function initializes the cpu_context for the current CPU
539  * for first use, and sets the initial entrypoint state as specified by the
540  * entry_point_info structure.
541  ******************************************************************************/
542 void cm_init_my_context(const entry_point_info_t *ep)
543 {
544 	cpu_context_t *ctx;
545 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
546 	cm_setup_context(ctx, ep);
547 }
548 
549 /*******************************************************************************
550  * Prepare the CPU system registers for first entry into realm, secure, or
551  * normal world.
552  *
553  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
554  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
555  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
556  * For all entries, the EL1 registers are initialized from the cpu_context
557  ******************************************************************************/
558 void cm_prepare_el3_exit(uint32_t security_state)
559 {
560 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
561 	cpu_context_t *ctx = cm_get_context(security_state);
562 	bool el2_unused = false;
563 	uint64_t hcr_el2 = 0U;
564 
565 	assert(ctx != NULL);
566 
567 	if (security_state == NON_SECURE) {
568 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
569 						 CTX_SCR_EL3);
570 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
571 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
572 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
573 							   CTX_SCTLR_EL1);
574 			sctlr_elx &= SCTLR_EE_BIT;
575 			sctlr_elx |= SCTLR_EL2_RES1;
576 #if ERRATA_A75_764081
577 			/*
578 			 * If workaround of errata 764081 for Cortex-A75 is used
579 			 * then set SCTLR_EL2.IESB to enable Implicit Error
580 			 * Synchronization Barrier.
581 			 */
582 			sctlr_elx |= SCTLR_IESB_BIT;
583 #endif
584 			write_sctlr_el2(sctlr_elx);
585 		} else if (el_implemented(2) != EL_IMPL_NONE) {
586 			el2_unused = true;
587 
588 			/*
589 			 * EL2 present but unused, need to disable safely.
590 			 * SCTLR_EL2 can be ignored in this case.
591 			 *
592 			 * Set EL2 register width appropriately: Set HCR_EL2
593 			 * field to match SCR_EL3.RW.
594 			 */
595 			if ((scr_el3 & SCR_RW_BIT) != 0U)
596 				hcr_el2 |= HCR_RW_BIT;
597 
598 			/*
599 			 * For Armv8.3 pointer authentication feature, disable
600 			 * traps to EL2 when accessing key registers or using
601 			 * pointer authentication instructions from lower ELs.
602 			 */
603 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
604 
605 			write_hcr_el2(hcr_el2);
606 
607 			/*
608 			 * Initialise CPTR_EL2 setting all fields rather than
609 			 * relying on the hw. All fields have architecturally
610 			 * UNKNOWN reset values.
611 			 *
612 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
613 			 *  accesses to the CPACR_EL1 or CPACR from both
614 			 *  Execution states do not trap to EL2.
615 			 *
616 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
617 			 *  register accesses to the trace registers from both
618 			 *  Execution states do not trap to EL2.
619 			 *  If PE trace unit System registers are not implemented
620 			 *  then this bit is reserved, and must be set to zero.
621 			 *
622 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
623 			 *  to SIMD and floating-point functionality from both
624 			 *  Execution states do not trap to EL2.
625 			 */
626 			write_cptr_el2(CPTR_EL2_RESET_VAL &
627 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
628 					| CPTR_EL2_TFP_BIT));
629 
630 			/*
631 			 * Initialise CNTHCTL_EL2. All fields are
632 			 * architecturally UNKNOWN on reset and are set to zero
633 			 * except for field(s) listed below.
634 			 *
635 			 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to
636 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
637 			 *  physical timer registers.
638 			 *
639 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
640 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
641 			 *  physical counter registers.
642 			 */
643 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
644 						EL1PCEN_BIT | EL1PCTEN_BIT);
645 
646 			/*
647 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
648 			 * architecturally UNKNOWN value.
649 			 */
650 			write_cntvoff_el2(0);
651 
652 			/*
653 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
654 			 * MPIDR_EL1 respectively.
655 			 */
656 			write_vpidr_el2(read_midr_el1());
657 			write_vmpidr_el2(read_mpidr_el1());
658 
659 			/*
660 			 * Initialise VTTBR_EL2. All fields are architecturally
661 			 * UNKNOWN on reset.
662 			 *
663 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
664 			 *  2 address translation is disabled, cache maintenance
665 			 *  operations depend on the VMID.
666 			 *
667 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
668 			 *  translation is disabled.
669 			 */
670 			write_vttbr_el2(VTTBR_RESET_VAL &
671 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
672 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
673 
674 			/*
675 			 * Initialise MDCR_EL2, setting all fields rather than
676 			 * relying on hw. Some fields are architecturally
677 			 * UNKNOWN on reset.
678 			 *
679 			 * MDCR_EL2.HLP: Set to one so that event counter
680 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
681 			 *  occurs on the increment that changes
682 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
683 			 *  implemented. This bit is RES0 in versions of the
684 			 *  architecture earlier than ARMv8.5, setting it to 1
685 			 *  doesn't have any effect on them.
686 			 *
687 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
688 			 *  Filter Control register TRFCR_EL1 at EL1 is not
689 			 *  trapped to EL2. This bit is RES0 in versions of
690 			 *  the architecture earlier than ARMv8.4.
691 			 *
692 			 * MDCR_EL2.HPMD: Set to one so that event counting is
693 			 *  prohibited at EL2. This bit is RES0 in versions of
694 			 *  the architecture earlier than ARMv8.1, setting it
695 			 *  to 1 doesn't have any effect on them.
696 			 *
697 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
698 			 *  Statistical Profiling control registers from EL1
699 			 *  do not trap to EL2. This bit is RES0 when SPE is
700 			 *  not implemented.
701 			 *
702 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
703 			 *  EL1 System register accesses to the Debug ROM
704 			 *  registers are not trapped to EL2.
705 			 *
706 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
707 			 *  System register accesses to the powerdown debug
708 			 *  registers are not trapped to EL2.
709 			 *
710 			 * MDCR_EL2.TDA: Set to zero so that System register
711 			 *  accesses to the debug registers do not trap to EL2.
712 			 *
713 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
714 			 *  are not routed to EL2.
715 			 *
716 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
717 			 *  Monitors.
718 			 *
719 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
720 			 *  EL1 accesses to all Performance Monitors registers
721 			 *  are not trapped to EL2.
722 			 *
723 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
724 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
725 			 *  trapped to EL2.
726 			 *
727 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
728 			 *  architecturally-defined reset value.
729 			 *
730 			 * MDCR_EL2.E2TB: Set to zero so that the trace Buffer
731 			 *  owning exception level is NS-EL1 and, tracing is
732 			 *  prohibited at NS-EL2. These bits are RES0 when
733 			 *  FEAT_TRBE is not implemented.
734 			 */
735 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
736 				     MDCR_EL2_HPMD) |
737 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
738 				   >> PMCR_EL0_N_SHIFT)) &
739 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
740 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
741 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
742 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
743 				     MDCR_EL2_TPMCR_BIT |
744 				     MDCR_EL2_E2TB(MDCR_EL2_E2TB_EL1));
745 
746 			write_mdcr_el2(mdcr_el2);
747 
748 			/*
749 			 * Initialise HSTR_EL2. All fields are architecturally
750 			 * UNKNOWN on reset.
751 			 *
752 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
753 			 *  Non-secure EL0 or EL1 accesses to System registers
754 			 *  do not trap to EL2.
755 			 */
756 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
757 			/*
758 			 * Initialise CNTHP_CTL_EL2. All fields are
759 			 * architecturally UNKNOWN on reset.
760 			 *
761 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
762 			 *  physical timer and prevent timer interrupts.
763 			 */
764 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
765 						~(CNTHP_CTL_ENABLE_BIT));
766 		}
767 		manage_extensions_nonsecure(el2_unused, ctx);
768 	}
769 
770 	cm_el1_sysregs_context_restore(security_state);
771 	cm_set_next_eret_context(security_state);
772 }
773 
774 #if CTX_INCLUDE_EL2_REGS
775 /*******************************************************************************
776  * Save EL2 sysreg context
777  ******************************************************************************/
778 void cm_el2_sysregs_context_save(uint32_t security_state)
779 {
780 	u_register_t scr_el3 = read_scr();
781 
782 	/*
783 	 * Always save the non-secure and realm EL2 context, only save the
784 	 * S-EL2 context if S-EL2 is enabled.
785 	 */
786 	if ((security_state != SECURE) ||
787 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
788 		cpu_context_t *ctx;
789 
790 		ctx = cm_get_context(security_state);
791 		assert(ctx != NULL);
792 
793 		el2_sysregs_context_save(get_el2_sysregs_ctx(ctx));
794 	}
795 }
796 
797 /*******************************************************************************
798  * Restore EL2 sysreg context
799  ******************************************************************************/
800 void cm_el2_sysregs_context_restore(uint32_t security_state)
801 {
802 	u_register_t scr_el3 = read_scr();
803 
804 	/*
805 	 * Always restore the non-secure and realm EL2 context, only restore the
806 	 * S-EL2 context if S-EL2 is enabled.
807 	 */
808 	if ((security_state != SECURE) ||
809 	    ((security_state == SECURE) && ((scr_el3 & SCR_EEL2_BIT) != 0U))) {
810 		cpu_context_t *ctx;
811 
812 		ctx = cm_get_context(security_state);
813 		assert(ctx != NULL);
814 
815 		el2_sysregs_context_restore(get_el2_sysregs_ctx(ctx));
816 	}
817 }
818 #endif /* CTX_INCLUDE_EL2_REGS */
819 
820 /*******************************************************************************
821  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
822  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
823  * updating EL1 and EL2 registers. Otherwise, it calls the generic
824  * cm_prepare_el3_exit function.
825  ******************************************************************************/
826 void cm_prepare_el3_exit_ns(void)
827 {
828 #if CTX_INCLUDE_EL2_REGS
829 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
830 	assert(ctx != NULL);
831 
832 	/*
833 	 * Currently some extensions are configured using
834 	 * direct register updates. Therefore, do this here
835 	 * instead of when setting up context.
836 	 */
837 	manage_extensions_nonsecure(0, ctx);
838 
839 	/*
840 	 * Set the NS bit to be able to access the ICC_SRE_EL2
841 	 * register when restoring context.
842 	 */
843 	write_scr_el3(read_scr_el3() | SCR_NS_BIT);
844 
845 	/* Restore EL2 and EL1 sysreg contexts */
846 	cm_el2_sysregs_context_restore(NON_SECURE);
847 	cm_el1_sysregs_context_restore(NON_SECURE);
848 	cm_set_next_eret_context(NON_SECURE);
849 #else
850 	cm_prepare_el3_exit(NON_SECURE);
851 #endif /* CTX_INCLUDE_EL2_REGS */
852 }
853 
854 /*******************************************************************************
855  * The next four functions are used by runtime services to save and restore
856  * EL1 context on the 'cpu_context' structure for the specified security
857  * state.
858  ******************************************************************************/
859 void cm_el1_sysregs_context_save(uint32_t security_state)
860 {
861 	cpu_context_t *ctx;
862 
863 	ctx = cm_get_context(security_state);
864 	assert(ctx != NULL);
865 
866 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
867 
868 #if IMAGE_BL31
869 	if (security_state == SECURE)
870 		PUBLISH_EVENT(cm_exited_secure_world);
871 	else
872 		PUBLISH_EVENT(cm_exited_normal_world);
873 #endif
874 }
875 
876 void cm_el1_sysregs_context_restore(uint32_t security_state)
877 {
878 	cpu_context_t *ctx;
879 
880 	ctx = cm_get_context(security_state);
881 	assert(ctx != NULL);
882 
883 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
884 
885 #if IMAGE_BL31
886 	if (security_state == SECURE)
887 		PUBLISH_EVENT(cm_entering_secure_world);
888 	else
889 		PUBLISH_EVENT(cm_entering_normal_world);
890 #endif
891 }
892 
893 /*******************************************************************************
894  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
895  * given security state with the given entrypoint
896  ******************************************************************************/
897 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
898 {
899 	cpu_context_t *ctx;
900 	el3_state_t *state;
901 
902 	ctx = cm_get_context(security_state);
903 	assert(ctx != NULL);
904 
905 	/* Populate EL3 state so that ERET jumps to the correct entry */
906 	state = get_el3state_ctx(ctx);
907 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
908 }
909 
910 /*******************************************************************************
911  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
912  * pertaining to the given security state
913  ******************************************************************************/
914 void cm_set_elr_spsr_el3(uint32_t security_state,
915 			uintptr_t entrypoint, uint32_t spsr)
916 {
917 	cpu_context_t *ctx;
918 	el3_state_t *state;
919 
920 	ctx = cm_get_context(security_state);
921 	assert(ctx != NULL);
922 
923 	/* Populate EL3 state so that ERET jumps to the correct entry */
924 	state = get_el3state_ctx(ctx);
925 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
926 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
927 }
928 
929 /*******************************************************************************
930  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
931  * pertaining to the given security state using the value and bit position
932  * specified in the parameters. It preserves all other bits.
933  ******************************************************************************/
934 void cm_write_scr_el3_bit(uint32_t security_state,
935 			  uint32_t bit_pos,
936 			  uint32_t value)
937 {
938 	cpu_context_t *ctx;
939 	el3_state_t *state;
940 	u_register_t scr_el3;
941 
942 	ctx = cm_get_context(security_state);
943 	assert(ctx != NULL);
944 
945 	/* Ensure that the bit position is a valid one */
946 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
947 
948 	/* Ensure that the 'value' is only a bit wide */
949 	assert(value <= 1U);
950 
951 	/*
952 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
953 	 * and set it to its new value.
954 	 */
955 	state = get_el3state_ctx(ctx);
956 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
957 	scr_el3 &= ~(1UL << bit_pos);
958 	scr_el3 |= (u_register_t)value << bit_pos;
959 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
960 }
961 
962 /*******************************************************************************
963  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
964  * given security state.
965  ******************************************************************************/
966 u_register_t cm_get_scr_el3(uint32_t security_state)
967 {
968 	cpu_context_t *ctx;
969 	el3_state_t *state;
970 
971 	ctx = cm_get_context(security_state);
972 	assert(ctx != NULL);
973 
974 	/* Populate EL3 state so that ERET jumps to the correct entry */
975 	state = get_el3state_ctx(ctx);
976 	return read_ctx_reg(state, CTX_SCR_EL3);
977 }
978 
979 /*******************************************************************************
980  * This function is used to program the context that's used for exception
981  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
982  * the required security state
983  ******************************************************************************/
984 void cm_set_next_eret_context(uint32_t security_state)
985 {
986 	cpu_context_t *ctx;
987 
988 	ctx = cm_get_context(security_state);
989 	assert(ctx != NULL);
990 
991 	cm_set_next_context(ctx);
992 }
993