xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 5c52d7e54068aab619975b81683d5abc4ad5dc73)
1 /*
2  * Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/pubsub_events.h>
24 #include <lib/extensions/amu.h>
25 #include <lib/extensions/brbe.h>
26 #include <lib/extensions/mpam.h>
27 #include <lib/extensions/pmuv3.h>
28 #include <lib/extensions/sme.h>
29 #include <lib/extensions/spe.h>
30 #include <lib/extensions/sve.h>
31 #include <lib/extensions/sys_reg_trace.h>
32 #include <lib/extensions/trbe.h>
33 #include <lib/extensions/trf.h>
34 #include <lib/utils.h>
35 
36 #if ENABLE_FEAT_TWED
37 /* Make sure delay value fits within the range(0-15) */
38 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
39 #endif /* ENABLE_FEAT_TWED */
40 
41 static void manage_extensions_nonsecure(cpu_context_t *ctx);
42 static void manage_extensions_secure(cpu_context_t *ctx);
43 
44 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
45 {
46 	u_register_t sctlr_elx, actlr_elx;
47 
48 	/*
49 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
50 	 * execution state setting all fields rather than relying on the hw.
51 	 * Some fields have architecturally UNKNOWN reset values and these are
52 	 * set to zero.
53 	 *
54 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
55 	 *
56 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
57 	 * required by PSCI specification)
58 	 */
59 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
60 	if (GET_RW(ep->spsr) == MODE_RW_64) {
61 		sctlr_elx |= SCTLR_EL1_RES1;
62 	} else {
63 		/*
64 		 * If the target execution state is AArch32 then the following
65 		 * fields need to be set.
66 		 *
67 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
68 		 *  instructions are not trapped to EL1.
69 		 *
70 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
71 		 *  instructions are not trapped to EL1.
72 		 *
73 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
74 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
75 		 */
76 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
77 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
78 	}
79 
80 #if ERRATA_A75_764081
81 	/*
82 	 * If workaround of errata 764081 for Cortex-A75 is used then set
83 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
84 	 */
85 	sctlr_elx |= SCTLR_IESB_BIT;
86 #endif
87 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
88 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
89 
90 	/*
91 	 * Base the context ACTLR_EL1 on the current value, as it is
92 	 * implementation defined. The context restore process will write
93 	 * the value from the context to the actual register and can cause
94 	 * problems for processor cores that don't expect certain bits to
95 	 * be zero.
96 	 */
97 	actlr_elx = read_actlr_el1();
98 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
99 }
100 
101 /******************************************************************************
102  * This function performs initializations that are specific to SECURE state
103  * and updates the cpu context specified by 'ctx'.
104  *****************************************************************************/
105 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
106 {
107 	u_register_t scr_el3;
108 	el3_state_t *state;
109 
110 	state = get_el3state_ctx(ctx);
111 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
112 
113 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
114 	/*
115 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
116 	 * indicated by the interrupt routing model for BL31.
117 	 */
118 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
119 #endif
120 
121 #if !CTX_INCLUDE_MTE_REGS || ENABLE_ASSERTIONS
122 	/* Get Memory Tagging Extension support level */
123 	unsigned int mte = get_armv8_5_mte_support();
124 #endif
125 	/*
126 	 * Allow access to Allocation Tags when CTX_INCLUDE_MTE_REGS
127 	 * is set, or when MTE is only implemented at EL0.
128 	 */
129 #if CTX_INCLUDE_MTE_REGS
130 	assert((mte == MTE_IMPLEMENTED_ELX) || (mte == MTE_IMPLEMENTED_ASY));
131 	scr_el3 |= SCR_ATA_BIT;
132 #else
133 	if (mte == MTE_IMPLEMENTED_EL0) {
134 		scr_el3 |= SCR_ATA_BIT;
135 	}
136 #endif /* CTX_INCLUDE_MTE_REGS */
137 
138 	/* Enable S-EL2 if the next EL is EL2 and S-EL2 is present */
139 	if ((GET_EL(ep->spsr) == MODE_EL2) && is_feat_sel2_supported()) {
140 		if (GET_RW(ep->spsr) != MODE_RW_64) {
141 			ERROR("S-EL2 can not be used in AArch32\n.");
142 			panic();
143 		}
144 
145 		scr_el3 |= SCR_EEL2_BIT;
146 	}
147 
148 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
149 
150 	/*
151 	 * Initialize EL1 context registers unless SPMC is running
152 	 * at S-EL2.
153 	 */
154 #if !SPMD_SPM_AT_SEL2
155 	setup_el1_context(ctx, ep);
156 #endif
157 
158 	manage_extensions_secure(ctx);
159 }
160 
161 #if ENABLE_RME
162 /******************************************************************************
163  * This function performs initializations that are specific to REALM state
164  * and updates the cpu context specified by 'ctx'.
165  *****************************************************************************/
166 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
167 {
168 	u_register_t scr_el3;
169 	el3_state_t *state;
170 
171 	state = get_el3state_ctx(ctx);
172 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
173 
174 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
175 
176 	if (is_feat_csv2_2_supported()) {
177 		/* Enable access to the SCXTNUM_ELx registers. */
178 		scr_el3 |= SCR_EnSCXT_BIT;
179 	}
180 
181 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
182 }
183 #endif /* ENABLE_RME */
184 
185 /******************************************************************************
186  * This function performs initializations that are specific to NON-SECURE state
187  * and updates the cpu context specified by 'ctx'.
188  *****************************************************************************/
189 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
190 {
191 	u_register_t scr_el3;
192 	el3_state_t *state;
193 
194 	state = get_el3state_ctx(ctx);
195 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
196 
197 	/* SCR_NS: Set the NS bit */
198 	scr_el3 |= SCR_NS_BIT;
199 
200 	/* Allow access to Allocation Tags when MTE is implemented. */
201 	scr_el3 |= SCR_ATA_BIT;
202 
203 #if !CTX_INCLUDE_PAUTH_REGS
204 	/*
205 	 * Pointer Authentication feature, if present, is always enabled by default
206 	 * for Non secure lower exception levels. We do not have an explicit
207 	 * flag to set it.
208 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
209 	 * exception levels of secure and realm worlds.
210 	 *
211 	 * To prevent the leakage between the worlds during world switch,
212 	 * we enable it only for the non-secure world.
213 	 *
214 	 * If the Secure/realm world wants to use pointer authentication,
215 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
216 	 * it will be enabled globally for all the contexts.
217 	 *
218 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
219 	 *  other than EL3
220 	 *
221 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
222 	 *  than EL3
223 	 */
224 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
225 
226 #endif /* CTX_INCLUDE_PAUTH_REGS */
227 
228 #if HANDLE_EA_EL3_FIRST_NS
229 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
230 	scr_el3 |= SCR_EA_BIT;
231 #endif
232 
233 #if RAS_TRAP_NS_ERR_REC_ACCESS
234 	/*
235 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
236 	 * and RAS ERX registers from EL1 and EL2(from any security state)
237 	 * are trapped to EL3.
238 	 * Set here to trap only for NS EL1/EL2
239 	 *
240 	 */
241 	scr_el3 |= SCR_TERR_BIT;
242 #endif
243 
244 	if (is_feat_csv2_2_supported()) {
245 		/* Enable access to the SCXTNUM_ELx registers. */
246 		scr_el3 |= SCR_EnSCXT_BIT;
247 	}
248 
249 #ifdef IMAGE_BL31
250 	/*
251 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
252 	 *  indicated by the interrupt routing model for BL31.
253 	 */
254 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
255 #endif
256 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
257 
258 	/* Initialize EL1 context registers */
259 	setup_el1_context(ctx, ep);
260 
261 	/* Initialize EL2 context registers */
262 #if CTX_INCLUDE_EL2_REGS
263 
264 	/*
265 	 * Initialize SCTLR_EL2 context register using Endianness value
266 	 * taken from the entrypoint attribute.
267 	 */
268 	u_register_t sctlr_el2 = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
269 	sctlr_el2 |= SCTLR_EL2_RES1;
270 	write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_SCTLR_EL2,
271 			sctlr_el2);
272 
273 	if (is_feat_hcx_supported()) {
274 		/*
275 		 * Initialize register HCRX_EL2 with its init value.
276 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
277 		 * chance that this can lead to unexpected behavior in lower
278 		 * ELs that have not been updated since the introduction of
279 		 * this feature if not properly initialized, especially when
280 		 * it comes to those bits that enable/disable traps.
281 		 */
282 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HCRX_EL2,
283 			HCRX_EL2_INIT_VAL);
284 	}
285 
286 	if (is_feat_fgt_supported()) {
287 		/*
288 		 * Initialize HFG*_EL2 registers with a default value so legacy
289 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
290 		 * of initialization for this feature.
291 		 */
292 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGITR_EL2,
293 			HFGITR_EL2_INIT_VAL);
294 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGRTR_EL2,
295 			HFGRTR_EL2_INIT_VAL);
296 		write_ctx_reg(get_el2_sysregs_ctx(ctx), CTX_HFGWTR_EL2,
297 			HFGWTR_EL2_INIT_VAL);
298 	}
299 #endif /* CTX_INCLUDE_EL2_REGS */
300 
301 	manage_extensions_nonsecure(ctx);
302 }
303 
304 /*******************************************************************************
305  * The following function performs initialization of the cpu_context 'ctx'
306  * for first use that is common to all security states, and sets the
307  * initial entrypoint state as specified by the entry_point_info structure.
308  *
309  * The EE and ST attributes are used to configure the endianness and secure
310  * timer availability for the new execution context.
311  ******************************************************************************/
312 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
313 {
314 	u_register_t cptr_el3;
315 	u_register_t scr_el3;
316 	el3_state_t *state;
317 	gp_regs_t *gp_regs;
318 
319 	state = get_el3state_ctx(ctx);
320 
321 	/* Clear any residual register values from the context */
322 	zeromem(ctx, sizeof(*ctx));
323 
324 	/*
325 	 * The lower-EL context is zeroed so that no stale values leak to a world.
326 	 * It is assumed that an all-zero lower-EL context is good enough for it
327 	 * to boot correctly. However, there are very few registers where this
328 	 * is not true and some values need to be recreated.
329 	 */
330 #if CTX_INCLUDE_EL2_REGS
331 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
332 
333 	/*
334 	 * These bits are set in the gicv3 driver. Losing them (especially the
335 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
336 	 */
337 	u_register_t icc_sre_el2 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
338 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
339 	write_ctx_reg(el2_ctx, CTX_ICC_SRE_EL2, icc_sre_el2);
340 #endif /* CTX_INCLUDE_EL2_REGS */
341 
342 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
343 	scr_el3 = SCR_RESET_VAL;
344 
345 	/*
346 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
347 	 *  EL2, EL1 and EL0 are not trapped to EL3.
348 	 *
349 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
350 	 *  EL2, EL1 and EL0 are not trapped to EL3.
351 	 *
352 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
353 	 *  both Security states and both Execution states.
354 	 *
355 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
356 	 *  Non-secure memory.
357 	 */
358 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
359 
360 	scr_el3 |= SCR_SIF_BIT;
361 
362 	/*
363 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
364 	 *  Exception level as specified by SPSR.
365 	 */
366 	if (GET_RW(ep->spsr) == MODE_RW_64) {
367 		scr_el3 |= SCR_RW_BIT;
368 	}
369 
370 	/*
371 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
372 	 * Secure timer registers to EL3, from AArch64 state only, if specified
373 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
374 	 * bit always behaves as 1 (i.e. secure physical timer register access
375 	 * is not trapped)
376 	 */
377 	if (EP_GET_ST(ep->h.attr) != 0U) {
378 		scr_el3 |= SCR_ST_BIT;
379 	}
380 
381 	/*
382 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
383 	 * SCR_EL3.HXEn.
384 	 */
385 	if (is_feat_hcx_supported()) {
386 		scr_el3 |= SCR_HXEn_BIT;
387 	}
388 
389 	/*
390 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
391 	 * registers are trapped to EL3.
392 	 */
393 #if ENABLE_FEAT_RNG_TRAP
394 	scr_el3 |= SCR_TRNDR_BIT;
395 #endif
396 
397 #if FAULT_INJECTION_SUPPORT
398 	/* Enable fault injection from lower ELs */
399 	scr_el3 |= SCR_FIEN_BIT;
400 #endif
401 
402 #if CTX_INCLUDE_PAUTH_REGS
403 	/*
404 	 * Enable Pointer Authentication globally for all the worlds.
405 	 *
406 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
407 	 *  other than EL3
408 	 *
409 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
410 	 *  than EL3
411 	 */
412 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
413 #endif /* CTX_INCLUDE_PAUTH_REGS */
414 
415 	/*
416 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
417 	 */
418 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
419 		scr_el3 |= SCR_TCR2EN_BIT;
420 	}
421 
422 	/*
423 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
424 	 * registers for AArch64 if present.
425 	 */
426 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
427 		scr_el3 |= SCR_PIEN_BIT;
428 	}
429 
430 	/*
431 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
432 	 */
433 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
434 		scr_el3 |= SCR_GCSEn_BIT;
435 	}
436 
437 	/*
438 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
439 	 * All fields are architecturally UNKNOWN on reset.
440 	 *
441 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
442 	 *  by Advanced SIMD, floating-point or SVE instructions (if
443 	 *  implemented) do not trap to EL3.
444 	 *
445 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
446 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
447 	 */
448 	cptr_el3 = CPTR_EL3_RESET_VAL & ~(TFP_BIT | TCPAC_BIT);
449 
450 	write_ctx_reg(state, CTX_CPTR_EL3, cptr_el3);
451 
452 	/*
453 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
454 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
455 	 * next mode is Hyp.
456 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
457 	 * same conditions as HVC instructions and when the processor supports
458 	 * ARMv8.6-FGT.
459 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
460 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
461 	 * and when the processor supports ECV.
462 	 */
463 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
464 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
465 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
466 		scr_el3 |= SCR_HCE_BIT;
467 
468 		if (is_feat_fgt_supported()) {
469 			scr_el3 |= SCR_FGTEN_BIT;
470 		}
471 
472 		if (is_feat_ecv_supported()) {
473 			scr_el3 |= SCR_ECVEN_BIT;
474 		}
475 	}
476 
477 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
478 	if (is_feat_twed_supported()) {
479 		/* Set delay in SCR_EL3 */
480 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
481 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
482 				<< SCR_TWEDEL_SHIFT);
483 
484 		/* Enable WFE delay */
485 		scr_el3 |= SCR_TWEDEn_BIT;
486 	}
487 
488 	/*
489 	 * Populate EL3 state so that we've the right context
490 	 * before doing ERET
491 	 */
492 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
493 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
494 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
495 
496 	/*
497 	 * Store the X0-X7 value from the entrypoint into the context
498 	 * Use memcpy as we are in control of the layout of the structures
499 	 */
500 	gp_regs = get_gpregs_ctx(ctx);
501 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
502 }
503 
504 /*******************************************************************************
505  * Context management library initialization routine. This library is used by
506  * runtime services to share pointers to 'cpu_context' structures for secure
507  * non-secure and realm states. Management of the structures and their associated
508  * memory is not done by the context management library e.g. the PSCI service
509  * manages the cpu context used for entry from and exit to the non-secure state.
510  * The Secure payload dispatcher service manages the context(s) corresponding to
511  * the secure state. It also uses this library to get access to the non-secure
512  * state cpu context pointers.
513  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
514  * which will be used for programming an entry into a lower EL. The same context
515  * will be used to save state upon exception entry from that EL.
516  ******************************************************************************/
517 void __init cm_init(void)
518 {
519 	/*
520 	 * The context management library has only global data to initialize, but
521 	 * that will be done when the BSS is zeroed out.
522 	 */
523 }
524 
525 /*******************************************************************************
526  * This is the high-level function used to initialize the cpu_context 'ctx' for
527  * first use. It performs initializations that are common to all security states
528  * and initializations specific to the security state specified in 'ep'
529  ******************************************************************************/
530 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
531 {
532 	unsigned int security_state;
533 
534 	assert(ctx != NULL);
535 
536 	/*
537 	 * Perform initializations that are common
538 	 * to all security states
539 	 */
540 	setup_context_common(ctx, ep);
541 
542 	security_state = GET_SECURITY_STATE(ep->h.attr);
543 
544 	/* Perform security state specific initializations */
545 	switch (security_state) {
546 	case SECURE:
547 		setup_secure_context(ctx, ep);
548 		break;
549 #if ENABLE_RME
550 	case REALM:
551 		setup_realm_context(ctx, ep);
552 		break;
553 #endif
554 	case NON_SECURE:
555 		setup_ns_context(ctx, ep);
556 		break;
557 	default:
558 		ERROR("Invalid security state\n");
559 		panic();
560 		break;
561 	}
562 }
563 
564 /*******************************************************************************
565  * Enable architecture extensions for EL3 execution. This function only updates
566  * registers in-place which are expected to either never change or be
567  * overwritten by el3_exit.
568  ******************************************************************************/
569 #if IMAGE_BL31
570 void cm_manage_extensions_el3(void)
571 {
572 	if (is_feat_spe_supported()) {
573 		spe_init_el3();
574 	}
575 
576 	if (is_feat_amu_supported()) {
577 		amu_init_el3();
578 	}
579 
580 	if (is_feat_sme_supported()) {
581 		sme_init_el3();
582 	}
583 
584 	if (is_feat_mpam_supported()) {
585 		mpam_init_el3();
586 	}
587 
588 	if (is_feat_trbe_supported()) {
589 		trbe_init_el3();
590 	}
591 
592 	if (is_feat_brbe_supported()) {
593 		brbe_init_el3();
594 	}
595 
596 	if (is_feat_trf_supported()) {
597 		trf_init_el3();
598 	}
599 
600 	pmuv3_init_el3();
601 }
602 #endif /* IMAGE_BL31 */
603 
604 /*******************************************************************************
605  * Enable architecture extensions on first entry to Non-secure world.
606  ******************************************************************************/
607 static void manage_extensions_nonsecure(cpu_context_t *ctx)
608 {
609 #if IMAGE_BL31
610 	if (is_feat_amu_supported()) {
611 		amu_enable(ctx);
612 	}
613 
614 	/* Enable SVE and FPU/SIMD */
615 	if (is_feat_sve_supported()) {
616 		sve_enable(ctx);
617 	}
618 
619 	if (is_feat_sme_supported()) {
620 		sme_enable(ctx);
621 	}
622 
623 	if (is_feat_sys_reg_trace_supported()) {
624 		sys_reg_trace_enable(ctx);
625 	}
626 
627 	pmuv3_enable(ctx);
628 #endif /* IMAGE_BL31 */
629 }
630 
631 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
632 static __unused void enable_pauth_el2(void)
633 {
634 	u_register_t hcr_el2 = read_hcr_el2();
635 	/*
636 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
637 	 *  accessing key registers or using pointer authentication instructions
638 	 *  from lower ELs.
639 	 */
640 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
641 
642 	write_hcr_el2(hcr_el2);
643 }
644 
645 /*******************************************************************************
646  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
647  * world when EL2 is empty and unused.
648  ******************************************************************************/
649 static void manage_extensions_nonsecure_el2_unused(void)
650 {
651 #if IMAGE_BL31
652 	if (is_feat_spe_supported()) {
653 		spe_init_el2_unused();
654 	}
655 
656 	if (is_feat_amu_supported()) {
657 		amu_init_el2_unused();
658 	}
659 
660 	if (is_feat_mpam_supported()) {
661 		mpam_init_el2_unused();
662 	}
663 
664 	if (is_feat_trbe_supported()) {
665 		trbe_init_el2_unused();
666 	}
667 
668 	if (is_feat_sys_reg_trace_supported()) {
669 		sys_reg_trace_init_el2_unused();
670 	}
671 
672 	if (is_feat_trf_supported()) {
673 		trf_init_el2_unused();
674 	}
675 
676 	pmuv3_init_el2_unused();
677 
678 	if (is_feat_sve_supported()) {
679 		sve_init_el2_unused();
680 	}
681 
682 	if (is_feat_sme_supported()) {
683 		sme_init_el2_unused();
684 	}
685 
686 #if ENABLE_PAUTH
687 	enable_pauth_el2();
688 #endif /* ENABLE_PAUTH */
689 #endif /* IMAGE_BL31 */
690 }
691 
692 /*******************************************************************************
693  * Enable architecture extensions on first entry to Secure world.
694  ******************************************************************************/
695 static void manage_extensions_secure(cpu_context_t *ctx)
696 {
697 #if IMAGE_BL31
698 	if (is_feat_sve_supported()) {
699 		if (ENABLE_SVE_FOR_SWD) {
700 		/*
701 		 * Enable SVE and FPU in secure context, secure manager must
702 		 * ensure that the SVE and FPU register contexts are properly
703 		 * managed.
704 		 */
705 			sve_enable(ctx);
706 		} else {
707 		/*
708 		 * Disable SVE and FPU in secure context so non-secure world
709 		 * can safely use them.
710 		 */
711 			sve_disable(ctx);
712 		}
713 	}
714 
715 	if (is_feat_sme_supported()) {
716 		if (ENABLE_SME_FOR_SWD) {
717 		/*
718 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
719 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
720 		 */
721 			sme_init_el3();
722 			sme_enable(ctx);
723 		} else {
724 		/*
725 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
726 		 * world can safely use the associated registers.
727 		 */
728 			sme_disable(ctx);
729 		}
730 	}
731 
732 	/* NS can access this but Secure shouldn't */
733 	if (is_feat_sys_reg_trace_supported()) {
734 		sys_reg_trace_disable(ctx);
735 	}
736 #endif /* IMAGE_BL31 */
737 }
738 
739 /*******************************************************************************
740  * The following function initializes the cpu_context for a CPU specified by
741  * its `cpu_idx` for first use, and sets the initial entrypoint state as
742  * specified by the entry_point_info structure.
743  ******************************************************************************/
744 void cm_init_context_by_index(unsigned int cpu_idx,
745 			      const entry_point_info_t *ep)
746 {
747 	cpu_context_t *ctx;
748 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
749 	cm_setup_context(ctx, ep);
750 }
751 
752 /*******************************************************************************
753  * The following function initializes the cpu_context for the current CPU
754  * for first use, and sets the initial entrypoint state as specified by the
755  * entry_point_info structure.
756  ******************************************************************************/
757 void cm_init_my_context(const entry_point_info_t *ep)
758 {
759 	cpu_context_t *ctx;
760 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
761 	cm_setup_context(ctx, ep);
762 }
763 
764 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
765 static __unused void init_nonsecure_el2_unused(cpu_context_t *ctx)
766 {
767 	u_register_t hcr_el2 = HCR_RESET_VAL;
768 	u_register_t mdcr_el2;
769 	u_register_t scr_el3;
770 
771 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
772 
773 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
774 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
775 		hcr_el2 |= HCR_RW_BIT;
776 	}
777 
778 	write_hcr_el2(hcr_el2);
779 
780 	/*
781 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
782 	 * All fields have architecturally UNKNOWN reset values.
783 	 */
784 	write_cptr_el2(CPTR_EL2_RESET_VAL);
785 
786 	/*
787 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
788 	 * reset and are set to zero except for field(s) listed below.
789 	 *
790 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
791 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
792 	 *
793 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
794 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
795 	 */
796 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
797 
798 	/*
799 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
800 	 * UNKNOWN value.
801 	 */
802 	write_cntvoff_el2(0);
803 
804 	/*
805 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
806 	 * respectively.
807 	 */
808 	write_vpidr_el2(read_midr_el1());
809 	write_vmpidr_el2(read_mpidr_el1());
810 
811 	/*
812 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
813 	 *
814 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
815 	 * translation is disabled, cache maintenance operations depend on the
816 	 * VMID.
817 	 *
818 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
819 	 * disabled.
820 	 */
821 	write_vttbr_el2(VTTBR_RESET_VAL &
822 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
823 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
824 
825 	/*
826 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
827 	 * Some fields are architecturally UNKNOWN on reset.
828 	 *
829 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
830 	 * register accesses to the Debug ROM registers are not trapped to EL2.
831 	 *
832 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
833 	 * accesses to the powerdown debug registers are not trapped to EL2.
834 	 *
835 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
836 	 * debug registers do not trap to EL2.
837 	 *
838 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
839 	 * EL2.
840 	 */
841 	mdcr_el2 = MDCR_EL2_RESET_VAL &
842 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
843 		   MDCR_EL2_TDE_BIT);
844 
845 	write_mdcr_el2(mdcr_el2);
846 
847 	/*
848 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
849 	 *
850 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
851 	 * EL1 accesses to System registers do not trap to EL2.
852 	 */
853 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
854 
855 	/*
856 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
857 	 * reset.
858 	 *
859 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
860 	 * and prevent timer interrupts.
861 	 */
862 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
863 
864 	manage_extensions_nonsecure_el2_unused();
865 }
866 
867 /*******************************************************************************
868  * Prepare the CPU system registers for first entry into realm, secure, or
869  * normal world.
870  *
871  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
872  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
873  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
874  * For all entries, the EL1 registers are initialized from the cpu_context
875  ******************************************************************************/
876 void cm_prepare_el3_exit(uint32_t security_state)
877 {
878 	u_register_t sctlr_elx, scr_el3;
879 	cpu_context_t *ctx = cm_get_context(security_state);
880 
881 	assert(ctx != NULL);
882 
883 	if (security_state == NON_SECURE) {
884 		uint64_t el2_implemented = el_implemented(2);
885 
886 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
887 						 CTX_SCR_EL3);
888 
889 		if (((scr_el3 & SCR_HCE_BIT) != 0U)
890 			|| (el2_implemented != EL_IMPL_NONE)) {
891 			/*
892 			 * If context is not being used for EL2, initialize
893 			 * HCRX_EL2 with its init value here.
894 			 */
895 			if (is_feat_hcx_supported()) {
896 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
897 			}
898 
899 			/*
900 			 * Initialize Fine-grained trap registers introduced
901 			 * by FEAT_FGT so all traps are initially disabled when
902 			 * switching to EL2 or a lower EL, preventing undesired
903 			 * behavior.
904 			 */
905 			if (is_feat_fgt_supported()) {
906 				/*
907 				 * Initialize HFG*_EL2 registers with a default
908 				 * value so legacy systems unaware of FEAT_FGT
909 				 * do not get trapped due to their lack of
910 				 * initialization for this feature.
911 				 */
912 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
913 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
914 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
915 			}
916 		}
917 
918 
919 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
920 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
921 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
922 							   CTX_SCTLR_EL1);
923 			sctlr_elx &= SCTLR_EE_BIT;
924 			sctlr_elx |= SCTLR_EL2_RES1;
925 #if ERRATA_A75_764081
926 			/*
927 			 * If workaround of errata 764081 for Cortex-A75 is used
928 			 * then set SCTLR_EL2.IESB to enable Implicit Error
929 			 * Synchronization Barrier.
930 			 */
931 			sctlr_elx |= SCTLR_IESB_BIT;
932 #endif
933 			write_sctlr_el2(sctlr_elx);
934 		} else if (el2_implemented != EL_IMPL_NONE) {
935 			init_nonsecure_el2_unused(ctx);
936 		}
937 	}
938 
939 	cm_el1_sysregs_context_restore(security_state);
940 	cm_set_next_eret_context(security_state);
941 }
942 
943 #if CTX_INCLUDE_EL2_REGS
944 
945 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
946 {
947 	write_ctx_reg(ctx, CTX_HDFGRTR_EL2, read_hdfgrtr_el2());
948 	if (is_feat_amu_supported()) {
949 		write_ctx_reg(ctx, CTX_HAFGRTR_EL2, read_hafgrtr_el2());
950 	}
951 	write_ctx_reg(ctx, CTX_HDFGWTR_EL2, read_hdfgwtr_el2());
952 	write_ctx_reg(ctx, CTX_HFGITR_EL2, read_hfgitr_el2());
953 	write_ctx_reg(ctx, CTX_HFGRTR_EL2, read_hfgrtr_el2());
954 	write_ctx_reg(ctx, CTX_HFGWTR_EL2, read_hfgwtr_el2());
955 }
956 
957 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
958 {
959 	write_hdfgrtr_el2(read_ctx_reg(ctx, CTX_HDFGRTR_EL2));
960 	if (is_feat_amu_supported()) {
961 		write_hafgrtr_el2(read_ctx_reg(ctx, CTX_HAFGRTR_EL2));
962 	}
963 	write_hdfgwtr_el2(read_ctx_reg(ctx, CTX_HDFGWTR_EL2));
964 	write_hfgitr_el2(read_ctx_reg(ctx, CTX_HFGITR_EL2));
965 	write_hfgrtr_el2(read_ctx_reg(ctx, CTX_HFGRTR_EL2));
966 	write_hfgwtr_el2(read_ctx_reg(ctx, CTX_HFGWTR_EL2));
967 }
968 
969 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
970 {
971 	u_register_t mpam_idr = read_mpamidr_el1();
972 
973 	write_ctx_reg(ctx, CTX_MPAM2_EL2, read_mpam2_el2());
974 
975 	/*
976 	 * The context registers that we intend to save would be part of the
977 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
978 	 */
979 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
980 		return;
981 	}
982 
983 	/*
984 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
985 	 * MPAMIDR_HAS_HCR_BIT == 1.
986 	 */
987 	write_ctx_reg(ctx, CTX_MPAMHCR_EL2, read_mpamhcr_el2());
988 	write_ctx_reg(ctx, CTX_MPAMVPM0_EL2, read_mpamvpm0_el2());
989 	write_ctx_reg(ctx, CTX_MPAMVPMV_EL2, read_mpamvpmv_el2());
990 
991 	/*
992 	 * The number of MPAMVPM registers is implementation defined, their
993 	 * number is stored in the MPAMIDR_EL1 register.
994 	 */
995 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
996 	case 7:
997 		write_ctx_reg(ctx, CTX_MPAMVPM7_EL2, read_mpamvpm7_el2());
998 		__fallthrough;
999 	case 6:
1000 		write_ctx_reg(ctx, CTX_MPAMVPM6_EL2, read_mpamvpm6_el2());
1001 		__fallthrough;
1002 	case 5:
1003 		write_ctx_reg(ctx, CTX_MPAMVPM5_EL2, read_mpamvpm5_el2());
1004 		__fallthrough;
1005 	case 4:
1006 		write_ctx_reg(ctx, CTX_MPAMVPM4_EL2, read_mpamvpm4_el2());
1007 		__fallthrough;
1008 	case 3:
1009 		write_ctx_reg(ctx, CTX_MPAMVPM3_EL2, read_mpamvpm3_el2());
1010 		__fallthrough;
1011 	case 2:
1012 		write_ctx_reg(ctx, CTX_MPAMVPM2_EL2, read_mpamvpm2_el2());
1013 		__fallthrough;
1014 	case 1:
1015 		write_ctx_reg(ctx, CTX_MPAMVPM1_EL2, read_mpamvpm1_el2());
1016 		break;
1017 	}
1018 }
1019 
1020 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1021 {
1022 	u_register_t mpam_idr = read_mpamidr_el1();
1023 
1024 	write_mpam2_el2(read_ctx_reg(ctx, CTX_MPAM2_EL2));
1025 
1026 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1027 		return;
1028 	}
1029 
1030 	write_mpamhcr_el2(read_ctx_reg(ctx, CTX_MPAMHCR_EL2));
1031 	write_mpamvpm0_el2(read_ctx_reg(ctx, CTX_MPAMVPM0_EL2));
1032 	write_mpamvpmv_el2(read_ctx_reg(ctx, CTX_MPAMVPMV_EL2));
1033 
1034 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1035 	case 7:
1036 		write_mpamvpm7_el2(read_ctx_reg(ctx, CTX_MPAMVPM7_EL2));
1037 		__fallthrough;
1038 	case 6:
1039 		write_mpamvpm6_el2(read_ctx_reg(ctx, CTX_MPAMVPM6_EL2));
1040 		__fallthrough;
1041 	case 5:
1042 		write_mpamvpm5_el2(read_ctx_reg(ctx, CTX_MPAMVPM5_EL2));
1043 		__fallthrough;
1044 	case 4:
1045 		write_mpamvpm4_el2(read_ctx_reg(ctx, CTX_MPAMVPM4_EL2));
1046 		__fallthrough;
1047 	case 3:
1048 		write_mpamvpm3_el2(read_ctx_reg(ctx, CTX_MPAMVPM3_EL2));
1049 		__fallthrough;
1050 	case 2:
1051 		write_mpamvpm2_el2(read_ctx_reg(ctx, CTX_MPAMVPM2_EL2));
1052 		__fallthrough;
1053 	case 1:
1054 		write_mpamvpm1_el2(read_ctx_reg(ctx, CTX_MPAMVPM1_EL2));
1055 		break;
1056 	}
1057 }
1058 
1059 /* -----------------------------------------------------
1060  * The following registers are not added:
1061  * AMEVCNTVOFF0<n>_EL2
1062  * AMEVCNTVOFF1<n>_EL2
1063  * ICH_AP0R<n>_EL2
1064  * ICH_AP1R<n>_EL2
1065  * ICH_LR<n>_EL2
1066  * -----------------------------------------------------
1067  */
1068 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1069 {
1070 	write_ctx_reg(ctx, CTX_ACTLR_EL2, read_actlr_el2());
1071 	write_ctx_reg(ctx, CTX_AFSR0_EL2, read_afsr0_el2());
1072 	write_ctx_reg(ctx, CTX_AFSR1_EL2, read_afsr1_el2());
1073 	write_ctx_reg(ctx, CTX_AMAIR_EL2, read_amair_el2());
1074 	write_ctx_reg(ctx, CTX_CNTHCTL_EL2, read_cnthctl_el2());
1075 	write_ctx_reg(ctx, CTX_CNTVOFF_EL2, read_cntvoff_el2());
1076 	write_ctx_reg(ctx, CTX_CPTR_EL2, read_cptr_el2());
1077 	if (CTX_INCLUDE_AARCH32_REGS) {
1078 		write_ctx_reg(ctx, CTX_DBGVCR32_EL2, read_dbgvcr32_el2());
1079 	}
1080 	write_ctx_reg(ctx, CTX_ELR_EL2, read_elr_el2());
1081 	write_ctx_reg(ctx, CTX_ESR_EL2, read_esr_el2());
1082 	write_ctx_reg(ctx, CTX_FAR_EL2, read_far_el2());
1083 	write_ctx_reg(ctx, CTX_HACR_EL2, read_hacr_el2());
1084 	write_ctx_reg(ctx, CTX_HCR_EL2, read_hcr_el2());
1085 	write_ctx_reg(ctx, CTX_HPFAR_EL2, read_hpfar_el2());
1086 	write_ctx_reg(ctx, CTX_HSTR_EL2, read_hstr_el2());
1087 
1088 	/*
1089 	 * Set the NS bit to be able to access the ICC_SRE_EL2 register
1090 	 * TODO: remove with root context
1091 	 */
1092 	u_register_t scr_el3 = read_scr_el3();
1093 
1094 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1095 	isb();
1096 	write_ctx_reg(ctx, CTX_ICC_SRE_EL2, read_icc_sre_el2());
1097 
1098 	write_scr_el3(scr_el3);
1099 	isb();
1100 
1101 	write_ctx_reg(ctx, CTX_ICH_HCR_EL2, read_ich_hcr_el2());
1102 	write_ctx_reg(ctx, CTX_ICH_VMCR_EL2, read_ich_vmcr_el2());
1103 	write_ctx_reg(ctx, CTX_MAIR_EL2, read_mair_el2());
1104 	write_ctx_reg(ctx, CTX_MDCR_EL2, read_mdcr_el2());
1105 	write_ctx_reg(ctx, CTX_SCTLR_EL2, read_sctlr_el2());
1106 	write_ctx_reg(ctx, CTX_SPSR_EL2, read_spsr_el2());
1107 	write_ctx_reg(ctx, CTX_SP_EL2, read_sp_el2());
1108 	write_ctx_reg(ctx, CTX_TCR_EL2, read_tcr_el2());
1109 	write_ctx_reg(ctx, CTX_TPIDR_EL2, read_tpidr_el2());
1110 	write_ctx_reg(ctx, CTX_TTBR0_EL2, read_ttbr0_el2());
1111 	write_ctx_reg(ctx, CTX_VBAR_EL2, read_vbar_el2());
1112 	write_ctx_reg(ctx, CTX_VMPIDR_EL2, read_vmpidr_el2());
1113 	write_ctx_reg(ctx, CTX_VPIDR_EL2, read_vpidr_el2());
1114 	write_ctx_reg(ctx, CTX_VTCR_EL2, read_vtcr_el2());
1115 	write_ctx_reg(ctx, CTX_VTTBR_EL2, read_vttbr_el2());
1116 }
1117 
1118 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1119 {
1120 	write_actlr_el2(read_ctx_reg(ctx, CTX_ACTLR_EL2));
1121 	write_afsr0_el2(read_ctx_reg(ctx, CTX_AFSR0_EL2));
1122 	write_afsr1_el2(read_ctx_reg(ctx, CTX_AFSR1_EL2));
1123 	write_amair_el2(read_ctx_reg(ctx, CTX_AMAIR_EL2));
1124 	write_cnthctl_el2(read_ctx_reg(ctx, CTX_CNTHCTL_EL2));
1125 	write_cntvoff_el2(read_ctx_reg(ctx, CTX_CNTVOFF_EL2));
1126 	write_cptr_el2(read_ctx_reg(ctx, CTX_CPTR_EL2));
1127 	if (CTX_INCLUDE_AARCH32_REGS) {
1128 		write_dbgvcr32_el2(read_ctx_reg(ctx, CTX_DBGVCR32_EL2));
1129 	}
1130 	write_elr_el2(read_ctx_reg(ctx, CTX_ELR_EL2));
1131 	write_esr_el2(read_ctx_reg(ctx, CTX_ESR_EL2));
1132 	write_far_el2(read_ctx_reg(ctx, CTX_FAR_EL2));
1133 	write_hacr_el2(read_ctx_reg(ctx, CTX_HACR_EL2));
1134 	write_hcr_el2(read_ctx_reg(ctx, CTX_HCR_EL2));
1135 	write_hpfar_el2(read_ctx_reg(ctx, CTX_HPFAR_EL2));
1136 	write_hstr_el2(read_ctx_reg(ctx, CTX_HSTR_EL2));
1137 
1138 	/*
1139 	 * Set the NS bit to be able to access the ICC_SRE_EL2 register
1140 	 * TODO: remove with root context
1141 	 */
1142 	u_register_t scr_el3 = read_scr_el3();
1143 
1144 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1145 	isb();
1146 	write_icc_sre_el2(read_ctx_reg(ctx, CTX_ICC_SRE_EL2));
1147 
1148 	write_scr_el3(scr_el3);
1149 	isb();
1150 
1151 	write_ich_hcr_el2(read_ctx_reg(ctx, CTX_ICH_HCR_EL2));
1152 	write_ich_vmcr_el2(read_ctx_reg(ctx, CTX_ICH_VMCR_EL2));
1153 	write_mair_el2(read_ctx_reg(ctx, CTX_MAIR_EL2));
1154 	write_mdcr_el2(read_ctx_reg(ctx, CTX_MDCR_EL2));
1155 	write_sctlr_el2(read_ctx_reg(ctx, CTX_SCTLR_EL2));
1156 	write_spsr_el2(read_ctx_reg(ctx, CTX_SPSR_EL2));
1157 	write_sp_el2(read_ctx_reg(ctx, CTX_SP_EL2));
1158 	write_tcr_el2(read_ctx_reg(ctx, CTX_TCR_EL2));
1159 	write_tpidr_el2(read_ctx_reg(ctx, CTX_TPIDR_EL2));
1160 	write_ttbr0_el2(read_ctx_reg(ctx, CTX_TTBR0_EL2));
1161 	write_vbar_el2(read_ctx_reg(ctx, CTX_VBAR_EL2));
1162 	write_vmpidr_el2(read_ctx_reg(ctx, CTX_VMPIDR_EL2));
1163 	write_vpidr_el2(read_ctx_reg(ctx, CTX_VPIDR_EL2));
1164 	write_vtcr_el2(read_ctx_reg(ctx, CTX_VTCR_EL2));
1165 	write_vttbr_el2(read_ctx_reg(ctx, CTX_VTTBR_EL2));
1166 }
1167 
1168 /*******************************************************************************
1169  * Save EL2 sysreg context
1170  ******************************************************************************/
1171 void cm_el2_sysregs_context_save(uint32_t security_state)
1172 {
1173 	cpu_context_t *ctx;
1174 	el2_sysregs_t *el2_sysregs_ctx;
1175 
1176 	ctx = cm_get_context(security_state);
1177 	assert(ctx != NULL);
1178 
1179 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1180 
1181 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1182 #if CTX_INCLUDE_MTE_REGS
1183 	write_ctx_reg(el2_sysregs_ctx, CTX_TFSR_EL2, read_tfsr_el2());
1184 #endif
1185 	if (is_feat_mpam_supported()) {
1186 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1187 	}
1188 
1189 	if (is_feat_fgt_supported()) {
1190 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1191 	}
1192 
1193 	if (is_feat_ecv_v2_supported()) {
1194 		write_ctx_reg(el2_sysregs_ctx, CTX_CNTPOFF_EL2, read_cntpoff_el2());
1195 	}
1196 
1197 	if (is_feat_vhe_supported()) {
1198 		write_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2, read_contextidr_el2());
1199 		write_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2, read_ttbr1_el2());
1200 	}
1201 
1202 	if (is_feat_ras_supported()) {
1203 		write_ctx_reg(el2_sysregs_ctx, CTX_VDISR_EL2, read_vdisr_el2());
1204 		write_ctx_reg(el2_sysregs_ctx, CTX_VSESR_EL2, read_vsesr_el2());
1205 	}
1206 
1207 	if (is_feat_nv2_supported()) {
1208 		write_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2, read_vncr_el2());
1209 	}
1210 
1211 	if (is_feat_trf_supported()) {
1212 		write_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2, read_trfcr_el2());
1213 	}
1214 
1215 	if (is_feat_csv2_2_supported()) {
1216 		write_ctx_reg(el2_sysregs_ctx, CTX_SCXTNUM_EL2, read_scxtnum_el2());
1217 	}
1218 
1219 	if (is_feat_hcx_supported()) {
1220 		write_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2, read_hcrx_el2());
1221 	}
1222 	if (is_feat_tcr2_supported()) {
1223 		write_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2, read_tcr2_el2());
1224 	}
1225 	if (is_feat_sxpie_supported()) {
1226 		write_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2, read_pire0_el2());
1227 		write_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2, read_pir_el2());
1228 	}
1229 	if (is_feat_s2pie_supported()) {
1230 		write_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2, read_s2pir_el2());
1231 	}
1232 	if (is_feat_sxpoe_supported()) {
1233 		write_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2, read_por_el2());
1234 	}
1235 	if (is_feat_gcs_supported()) {
1236 		write_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2, read_gcspr_el2());
1237 		write_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2, read_gcscr_el2());
1238 	}
1239 }
1240 
1241 /*******************************************************************************
1242  * Restore EL2 sysreg context
1243  ******************************************************************************/
1244 void cm_el2_sysregs_context_restore(uint32_t security_state)
1245 {
1246 	cpu_context_t *ctx;
1247 	el2_sysregs_t *el2_sysregs_ctx;
1248 
1249 	ctx = cm_get_context(security_state);
1250 	assert(ctx != NULL);
1251 
1252 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1253 
1254 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1255 #if CTX_INCLUDE_MTE_REGS
1256 	write_tfsr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TFSR_EL2));
1257 #endif
1258 	if (is_feat_mpam_supported()) {
1259 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1260 	}
1261 
1262 	if (is_feat_fgt_supported()) {
1263 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1264 	}
1265 
1266 	if (is_feat_ecv_v2_supported()) {
1267 		write_cntpoff_el2(read_ctx_reg(el2_sysregs_ctx, CTX_CNTPOFF_EL2));
1268 	}
1269 
1270 	if (is_feat_vhe_supported()) {
1271 		write_contextidr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_CONTEXTIDR_EL2));
1272 		write_ttbr1_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TTBR1_EL2));
1273 	}
1274 
1275 	if (is_feat_ras_supported()) {
1276 		write_vdisr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VDISR_EL2));
1277 		write_vsesr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VSESR_EL2));
1278 	}
1279 
1280 	if (is_feat_nv2_supported()) {
1281 		write_vncr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_VNCR_EL2));
1282 	}
1283 	if (is_feat_trf_supported()) {
1284 		write_trfcr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TRFCR_EL2));
1285 	}
1286 
1287 	if (is_feat_csv2_2_supported()) {
1288 		write_scxtnum_el2(read_ctx_reg(el2_sysregs_ctx, CTX_SCXTNUM_EL2));
1289 	}
1290 
1291 	if (is_feat_hcx_supported()) {
1292 		write_hcrx_el2(read_ctx_reg(el2_sysregs_ctx, CTX_HCRX_EL2));
1293 	}
1294 	if (is_feat_tcr2_supported()) {
1295 		write_tcr2_el2(read_ctx_reg(el2_sysregs_ctx, CTX_TCR2_EL2));
1296 	}
1297 	if (is_feat_sxpie_supported()) {
1298 		write_pire0_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIRE0_EL2));
1299 		write_pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_PIR_EL2));
1300 	}
1301 	if (is_feat_s2pie_supported()) {
1302 		write_s2pir_el2(read_ctx_reg(el2_sysregs_ctx, CTX_S2PIR_EL2));
1303 	}
1304 	if (is_feat_sxpoe_supported()) {
1305 		write_por_el2(read_ctx_reg(el2_sysregs_ctx, CTX_POR_EL2));
1306 	}
1307 	if (is_feat_gcs_supported()) {
1308 		write_gcscr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSCR_EL2));
1309 		write_gcspr_el2(read_ctx_reg(el2_sysregs_ctx, CTX_GCSPR_EL2));
1310 	}
1311 }
1312 #endif /* CTX_INCLUDE_EL2_REGS */
1313 
1314 /*******************************************************************************
1315  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1316  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1317  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1318  * cm_prepare_el3_exit function.
1319  ******************************************************************************/
1320 void cm_prepare_el3_exit_ns(void)
1321 {
1322 #if CTX_INCLUDE_EL2_REGS
1323 #if ENABLE_ASSERTIONS
1324 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1325 	assert(ctx != NULL);
1326 
1327 	/* Assert that EL2 is used. */
1328 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1329 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1330 			(el_implemented(2U) != EL_IMPL_NONE));
1331 #endif /* ENABLE_ASSERTIONS */
1332 
1333 	/* Restore EL2 and EL1 sysreg contexts */
1334 	cm_el2_sysregs_context_restore(NON_SECURE);
1335 	cm_el1_sysregs_context_restore(NON_SECURE);
1336 	cm_set_next_eret_context(NON_SECURE);
1337 #else
1338 	cm_prepare_el3_exit(NON_SECURE);
1339 #endif /* CTX_INCLUDE_EL2_REGS */
1340 }
1341 
1342 /*******************************************************************************
1343  * The next four functions are used by runtime services to save and restore
1344  * EL1 context on the 'cpu_context' structure for the specified security
1345  * state.
1346  ******************************************************************************/
1347 void cm_el1_sysregs_context_save(uint32_t security_state)
1348 {
1349 	cpu_context_t *ctx;
1350 
1351 	ctx = cm_get_context(security_state);
1352 	assert(ctx != NULL);
1353 
1354 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1355 
1356 #if IMAGE_BL31
1357 	if (security_state == SECURE)
1358 		PUBLISH_EVENT(cm_exited_secure_world);
1359 	else
1360 		PUBLISH_EVENT(cm_exited_normal_world);
1361 #endif
1362 }
1363 
1364 void cm_el1_sysregs_context_restore(uint32_t security_state)
1365 {
1366 	cpu_context_t *ctx;
1367 
1368 	ctx = cm_get_context(security_state);
1369 	assert(ctx != NULL);
1370 
1371 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1372 
1373 #if IMAGE_BL31
1374 	if (security_state == SECURE)
1375 		PUBLISH_EVENT(cm_entering_secure_world);
1376 	else
1377 		PUBLISH_EVENT(cm_entering_normal_world);
1378 #endif
1379 }
1380 
1381 /*******************************************************************************
1382  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1383  * given security state with the given entrypoint
1384  ******************************************************************************/
1385 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1386 {
1387 	cpu_context_t *ctx;
1388 	el3_state_t *state;
1389 
1390 	ctx = cm_get_context(security_state);
1391 	assert(ctx != NULL);
1392 
1393 	/* Populate EL3 state so that ERET jumps to the correct entry */
1394 	state = get_el3state_ctx(ctx);
1395 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1396 }
1397 
1398 /*******************************************************************************
1399  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1400  * pertaining to the given security state
1401  ******************************************************************************/
1402 void cm_set_elr_spsr_el3(uint32_t security_state,
1403 			uintptr_t entrypoint, uint32_t spsr)
1404 {
1405 	cpu_context_t *ctx;
1406 	el3_state_t *state;
1407 
1408 	ctx = cm_get_context(security_state);
1409 	assert(ctx != NULL);
1410 
1411 	/* Populate EL3 state so that ERET jumps to the correct entry */
1412 	state = get_el3state_ctx(ctx);
1413 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1414 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1415 }
1416 
1417 /*******************************************************************************
1418  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1419  * pertaining to the given security state using the value and bit position
1420  * specified in the parameters. It preserves all other bits.
1421  ******************************************************************************/
1422 void cm_write_scr_el3_bit(uint32_t security_state,
1423 			  uint32_t bit_pos,
1424 			  uint32_t value)
1425 {
1426 	cpu_context_t *ctx;
1427 	el3_state_t *state;
1428 	u_register_t scr_el3;
1429 
1430 	ctx = cm_get_context(security_state);
1431 	assert(ctx != NULL);
1432 
1433 	/* Ensure that the bit position is a valid one */
1434 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1435 
1436 	/* Ensure that the 'value' is only a bit wide */
1437 	assert(value <= 1U);
1438 
1439 	/*
1440 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1441 	 * and set it to its new value.
1442 	 */
1443 	state = get_el3state_ctx(ctx);
1444 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1445 	scr_el3 &= ~(1UL << bit_pos);
1446 	scr_el3 |= (u_register_t)value << bit_pos;
1447 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1448 }
1449 
1450 /*******************************************************************************
1451  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1452  * given security state.
1453  ******************************************************************************/
1454 u_register_t cm_get_scr_el3(uint32_t security_state)
1455 {
1456 	cpu_context_t *ctx;
1457 	el3_state_t *state;
1458 
1459 	ctx = cm_get_context(security_state);
1460 	assert(ctx != NULL);
1461 
1462 	/* Populate EL3 state so that ERET jumps to the correct entry */
1463 	state = get_el3state_ctx(ctx);
1464 	return read_ctx_reg(state, CTX_SCR_EL3);
1465 }
1466 
1467 /*******************************************************************************
1468  * This function is used to program the context that's used for exception
1469  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1470  * the required security state
1471  ******************************************************************************/
1472 void cm_set_next_eret_context(uint32_t security_state)
1473 {
1474 	cpu_context_t *ctx;
1475 
1476 	ctx = cm_get_context(security_state);
1477 	assert(ctx != NULL);
1478 
1479 	cm_set_next_context(ctx);
1480 }
1481