xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 5be66449a98c341493b3cb70bde171399912abd9)
1 /*
2  * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/cpus/cpu_ops.h>
23 #include <lib/cpus/errata.h>
24 #include <lib/el3_runtime/context_mgmt.h>
25 #include <lib/el3_runtime/cpu_data.h>
26 #include <lib/el3_runtime/pubsub_events.h>
27 #include <lib/extensions/amu.h>
28 #include <lib/extensions/brbe.h>
29 #include <lib/extensions/cpa2.h>
30 #include <lib/extensions/debug_v8p9.h>
31 #include <lib/extensions/fgt2.h>
32 #include <lib/extensions/fpmr.h>
33 #include <lib/extensions/mpam.h>
34 #include <lib/extensions/pauth.h>
35 #include <lib/extensions/pmuv3.h>
36 #include <lib/extensions/sme.h>
37 #include <lib/extensions/spe.h>
38 #include <lib/extensions/sve.h>
39 #include <lib/extensions/sysreg128.h>
40 #include <lib/extensions/sys_reg_trace.h>
41 #include <lib/extensions/tcr2.h>
42 #include <lib/extensions/trbe.h>
43 #include <lib/extensions/trf.h>
44 #include <lib/utils.h>
45 
46 #if ENABLE_FEAT_TWED
47 /* Make sure delay value fits within the range(0-15) */
48 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
49 #endif /* ENABLE_FEAT_TWED */
50 
51 per_world_context_t per_world_context[CPU_CONTEXT_NUM];
52 
53 static void manage_extensions_nonsecure(cpu_context_t *ctx);
54 static void manage_extensions_secure(cpu_context_t *ctx);
55 
56 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
57 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
58 {
59 	u_register_t sctlr_elx, actlr_elx;
60 
61 	/*
62 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
63 	 * execution state setting all fields rather than relying on the hw.
64 	 * Some fields have architecturally UNKNOWN reset values and these are
65 	 * set to zero.
66 	 *
67 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
68 	 *
69 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
70 	 * required by PSCI specification)
71 	 */
72 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
73 	if (GET_RW(ep->spsr) == MODE_RW_64) {
74 		sctlr_elx |= SCTLR_EL1_RES1;
75 	} else {
76 		/*
77 		 * If the target execution state is AArch32 then the following
78 		 * fields need to be set.
79 		 *
80 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
81 		 *  instructions are not trapped to EL1.
82 		 *
83 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
84 		 *  instructions are not trapped to EL1.
85 		 *
86 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
87 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
88 		 */
89 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
90 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
91 	}
92 
93 	/*
94 	 * If workaround of errata 764081 for Cortex-A75 is used then set
95 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
96 	 */
97 	if (errata_a75_764081_applies()) {
98 		sctlr_elx |= SCTLR_IESB_BIT;
99 	}
100 
101 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
102 	write_ctx_sctlr_el1_reg_errata(ctx, sctlr_elx);
103 
104 	/*
105 	 * Base the context ACTLR_EL1 on the current value, as it is
106 	 * implementation defined. The context restore process will write
107 	 * the value from the context to the actual register and can cause
108 	 * problems for processor cores that don't expect certain bits to
109 	 * be zero.
110 	 */
111 	actlr_elx = read_actlr_el1();
112 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx);
113 }
114 #endif /* (IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)) */
115 
116 /******************************************************************************
117  * This function performs initializations that are specific to SECURE state
118  * and updates the cpu context specified by 'ctx'.
119  *****************************************************************************/
120 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
121 {
122 	u_register_t scr_el3;
123 	el3_state_t *state;
124 
125 	state = get_el3state_ctx(ctx);
126 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
127 
128 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
129 	/*
130 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
131 	 * indicated by the interrupt routing model for BL31.
132 	 */
133 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
134 #endif
135 
136 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
137 	if (is_feat_mte2_supported()) {
138 		scr_el3 |= SCR_ATA_BIT;
139 	}
140 
141 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
142 
143 	/*
144 	 * Initialize EL1 context registers unless SPMC is running
145 	 * at S-EL2.
146 	 */
147 #if (!SPMD_SPM_AT_SEL2)
148 	setup_el1_context(ctx, ep);
149 #endif
150 
151 	manage_extensions_secure(ctx);
152 }
153 
154 #if ENABLE_RME && IMAGE_BL31
155 /******************************************************************************
156  * This function performs initializations that are specific to REALM state
157  * and updates the cpu context specified by 'ctx'.
158  *
159  * NOTE: any changes to this function must be verified by an RMMD maintainer.
160  *****************************************************************************/
161 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
162 {
163 	u_register_t scr_el3;
164 	el3_state_t *state;
165 	el2_sysregs_t *el2_ctx;
166 
167 	state = get_el3state_ctx(ctx);
168 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
169 	el2_ctx = get_el2_sysregs_ctx(ctx);
170 
171 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
172 
173 	write_el2_ctx_common(el2_ctx, spsr_el2, SPSR_EL2_REALM);
174 
175 	/* CSV2 version 2 and above */
176 	if (is_feat_csv2_2_supported()) {
177 		/* Enable access to the SCXTNUM_ELx registers. */
178 		scr_el3 |= SCR_EnSCXT_BIT;
179 	}
180 
181 	if (is_feat_sctlr2_supported()) {
182 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
183 		 * SCTLR2_ELx registers.
184 		 */
185 		scr_el3 |= SCR_SCTLR2En_BIT;
186 	}
187 
188 	if (is_feat_d128_supported()) {
189 		/*
190 		 * Set the D128En bit in SCR_EL3 to enable access to 128-bit
191 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
192 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
193 		 */
194 		scr_el3 |= SCR_D128En_BIT;
195 	}
196 
197 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
198 
199 	if (is_feat_fgt2_supported()) {
200 		fgt2_enable(ctx);
201 	}
202 
203 	if (is_feat_debugv8p9_supported()) {
204 		debugv8p9_extended_bp_wp_enable(ctx);
205 	}
206 
207 	if (is_feat_brbe_supported()) {
208 		brbe_enable(ctx);
209 	}
210 
211 	/*
212 	 * Enable access to TPIDR2_EL0 if SME/SME2 is enabled for Non Secure world.
213 	 */
214 	if (is_feat_sme_supported()) {
215 		sme_enable(ctx);
216 	}
217 
218 	if (is_feat_spe_supported()) {
219 		spe_disable_realm(ctx);
220 	}
221 
222 	if (is_feat_trbe_supported()) {
223 		trbe_disable_realm(ctx);
224 	}
225 }
226 #endif /* ENABLE_RME && IMAGE_BL31 */
227 
228 /******************************************************************************
229  * This function performs initializations that are specific to NON-SECURE state
230  * and updates the cpu context specified by 'ctx'.
231  *****************************************************************************/
232 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
233 {
234 	u_register_t scr_el3;
235 	el3_state_t *state;
236 
237 	state = get_el3state_ctx(ctx);
238 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
239 
240 	/* SCR_NS: Set the NS bit */
241 	scr_el3 |= SCR_NS_BIT;
242 
243 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
244 	if (is_feat_mte2_supported()) {
245 		scr_el3 |= SCR_ATA_BIT;
246 	}
247 
248 	/*
249 	 * Pointer Authentication feature, if present, is always enabled by
250 	 * default for Non secure lower exception levels. We do not have an
251 	 * explicit flag to set it. To prevent the leakage between the worlds
252 	 * during world switch, we enable it only for the non-secure world.
253 	 *
254 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
255 	 * exception levels of secure and realm worlds.
256 	 *
257 	 * If the Secure/realm world wants to use pointer authentication,
258 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
259 	 * it will be enabled globally for all the contexts.
260 	 *
261 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
262 	 *  other than EL3
263 	 *
264 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
265 	 *  than EL3
266 	 */
267 	if (!is_ctx_pauth_supported()) {
268 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
269 	}
270 
271 #if HANDLE_EA_EL3_FIRST_NS
272 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
273 	scr_el3 |= SCR_EA_BIT;
274 #endif
275 
276 #if RAS_TRAP_NS_ERR_REC_ACCESS
277 	/*
278 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
279 	 * and RAS ERX registers from EL1 and EL2(from any security state)
280 	 * are trapped to EL3.
281 	 * Set here to trap only for NS EL1/EL2
282 	 */
283 	scr_el3 |= SCR_TERR_BIT;
284 #endif
285 
286 	/* CSV2 version 2 and above */
287 	if (is_feat_csv2_2_supported()) {
288 		/* Enable access to the SCXTNUM_ELx registers. */
289 		scr_el3 |= SCR_EnSCXT_BIT;
290 	}
291 
292 #ifdef IMAGE_BL31
293 	/*
294 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
295 	 *  indicated by the interrupt routing model for BL31.
296 	 */
297 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
298 #endif
299 
300 	if (is_feat_the_supported()) {
301 		/* Set the RCWMASKEn bit in SCR_EL3 to enable access to
302 		 * RCWMASK_EL1 and RCWSMASK_EL1 registers.
303 		 */
304 		scr_el3 |= SCR_RCWMASKEn_BIT;
305 	}
306 
307 	if (is_feat_sctlr2_supported()) {
308 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
309 		 * SCTLR2_ELx registers.
310 		 */
311 		scr_el3 |= SCR_SCTLR2En_BIT;
312 	}
313 
314 	if (is_feat_d128_supported()) {
315 		/* Set the D128En bit in SCR_EL3 to enable access to 128-bit
316 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
317 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
318 		 */
319 		scr_el3 |= SCR_D128En_BIT;
320 	}
321 
322 	if (is_feat_fpmr_supported()) {
323 		/* Set the EnFPM bit in SCR_EL3 to enable access to FPMR
324 		 * register.
325 		 */
326 		scr_el3 |= SCR_EnFPM_BIT;
327 	}
328 
329 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
330 
331 	/* Initialize EL2 context registers */
332 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
333 	if (is_feat_hcx_supported()) {
334 		/*
335 		 * Initialize register HCRX_EL2 with its init value.
336 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
337 		 * chance that this can lead to unexpected behavior in lower
338 		 * ELs that have not been updated since the introduction of
339 		 * this feature if not properly initialized, especially when
340 		 * it comes to those bits that enable/disable traps.
341 		 */
342 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
343 			HCRX_EL2_INIT_VAL);
344 	}
345 
346 	if (is_feat_fgt_supported()) {
347 		/*
348 		 * Initialize HFG*_EL2 registers with a default value so legacy
349 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
350 		 * of initialization for this feature.
351 		 */
352 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
353 			HFGITR_EL2_INIT_VAL);
354 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
355 			HFGRTR_EL2_INIT_VAL);
356 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
357 			HFGWTR_EL2_INIT_VAL);
358 	}
359 #else
360 	/* Initialize EL1 context registers */
361 	setup_el1_context(ctx, ep);
362 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
363 
364 	manage_extensions_nonsecure(ctx);
365 }
366 
367 /*******************************************************************************
368  * The following function performs initialization of the cpu_context 'ctx'
369  * for first use that is common to all security states, and sets the
370  * initial entrypoint state as specified by the entry_point_info structure.
371  *
372  * The EE and ST attributes are used to configure the endianness and secure
373  * timer availability for the new execution context.
374  ******************************************************************************/
375 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
376 {
377 	u_register_t scr_el3;
378 	u_register_t mdcr_el3;
379 	el3_state_t *state;
380 	gp_regs_t *gp_regs;
381 
382 	state = get_el3state_ctx(ctx);
383 
384 	/* Clear any residual register values from the context */
385 	zeromem(ctx, sizeof(*ctx));
386 
387 	/*
388 	 * The lower-EL context is zeroed so that no stale values leak to a world.
389 	 * It is assumed that an all-zero lower-EL context is good enough for it
390 	 * to boot correctly. However, there are very few registers where this
391 	 * is not true and some values need to be recreated.
392 	 */
393 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
394 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
395 
396 	/*
397 	 * These bits are set in the gicv3 driver. Losing them (especially the
398 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
399 	 */
400 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
401 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
402 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
403 
404 	/*
405 	 * The actlr_el2 register can be initialized in platform's reset handler
406 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
407 	 */
408 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
409 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
410 
411 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
412 	scr_el3 = SCR_RESET_VAL;
413 
414 	/*
415 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
416 	 *  EL2, EL1 and EL0 are not trapped to EL3.
417 	 *
418 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
419 	 *  EL2, EL1 and EL0 are not trapped to EL3.
420 	 *
421 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
422 	 *  both Security states and both Execution states.
423 	 *
424 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
425 	 *  Non-secure memory.
426 	 */
427 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
428 
429 	scr_el3 |= SCR_SIF_BIT;
430 
431 	/*
432 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
433 	 *  Exception level as specified by SPSR.
434 	 */
435 	if (GET_RW(ep->spsr) == MODE_RW_64) {
436 		scr_el3 |= SCR_RW_BIT;
437 	}
438 
439 	/*
440 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
441 	 * Secure timer registers to EL3, from AArch64 state only, if specified
442 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
443 	 * bit always behaves as 1 (i.e. secure physical timer register access
444 	 * is not trapped)
445 	 */
446 	if (EP_GET_ST(ep->h.attr) != 0U) {
447 		scr_el3 |= SCR_ST_BIT;
448 	}
449 
450 	/*
451 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
452 	 * SCR_EL3.HXEn.
453 	 */
454 	if (is_feat_hcx_supported()) {
455 		scr_el3 |= SCR_HXEn_BIT;
456 	}
457 
458 	/*
459 	 * If FEAT_LS64_ACCDATA is enabled, enable access to ACCDATA_EL1 by
460 	 * setting SCR_EL3.ADEn and allow the ST64BV0 instruction by setting
461 	 * SCR_EL3.EnAS0.
462 	 */
463 	if (is_feat_ls64_accdata_supported()) {
464 		scr_el3 |= SCR_ADEn_BIT | SCR_EnAS0_BIT;
465 	}
466 
467 	/*
468 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
469 	 * registers are trapped to EL3.
470 	 */
471 	if (is_feat_rng_trap_supported()) {
472 		scr_el3 |= SCR_TRNDR_BIT;
473 	}
474 
475 #if FAULT_INJECTION_SUPPORT
476 	/* Enable fault injection from lower ELs */
477 	scr_el3 |= SCR_FIEN_BIT;
478 #endif
479 
480 	/*
481 	 * Enable Pointer Authentication globally for all the worlds.
482 	 *
483 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
484 	 *  other than EL3
485 	 *
486 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
487 	 *  than EL3
488 	 */
489 	if (is_ctx_pauth_supported()) {
490 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
491 	}
492 
493 	/*
494 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
495 	 * registers for AArch64 if present.
496 	 */
497 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
498 		scr_el3 |= SCR_PIEN_BIT;
499 	}
500 
501 	/*
502 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
503 	 */
504 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
505 		scr_el3 |= SCR_GCSEn_BIT;
506 	}
507 
508 	/*
509 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
510 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
511 	 * next mode is Hyp.
512 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
513 	 * same conditions as HVC instructions and when the processor supports
514 	 * ARMv8.6-FGT.
515 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
516 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
517 	 * and when the processor supports ECV.
518 	 */
519 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
520 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
521 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
522 		scr_el3 |= SCR_HCE_BIT;
523 
524 		if (is_feat_fgt_supported()) {
525 			scr_el3 |= SCR_FGTEN_BIT;
526 		}
527 
528 		if (is_feat_ecv_supported()) {
529 			scr_el3 |= SCR_ECVEN_BIT;
530 		}
531 	}
532 
533 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
534 	if (is_feat_twed_supported()) {
535 		/* Set delay in SCR_EL3 */
536 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
537 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
538 				<< SCR_TWEDEL_SHIFT);
539 
540 		/* Enable WFE delay */
541 		scr_el3 |= SCR_TWEDEn_BIT;
542 	}
543 
544 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
545 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
546 	if (is_feat_sel2_supported()) {
547 		scr_el3 |= SCR_EEL2_BIT;
548 	}
549 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
550 
551 	if (is_feat_mec_supported()) {
552 		scr_el3 |= SCR_MECEn_BIT;
553 	}
554 
555 	/*
556 	 * Populate EL3 state so that we've the right context
557 	 * before doing ERET
558 	 */
559 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
560 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
561 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
562 
563 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
564 	mdcr_el3 = MDCR_EL3_RESET_VAL;
565 
566 	/* ---------------------------------------------------------------------
567 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
568 	 * Some fields are architecturally UNKNOWN on reset.
569 	 *
570 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
571 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
572 	 *  disabled from all ELs in Secure state.
573 	 *
574 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
575 	 *  privileged debug from S-EL1.
576 	 *
577 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
578 	 *  access to the powerdown debug registers do not trap to EL3.
579 	 *
580 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
581 	 *  debug registers, other than those registers that are controlled by
582 	 *  MDCR_EL3.TDOSA.
583 	 */
584 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
585 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
586 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
587 
588 #if IMAGE_BL31
589 	/* Enable FEAT_TRF for Non-Secure and prohibit for Secure state. */
590 	if (is_feat_trf_supported()) {
591 		trf_enable(ctx);
592 	}
593 
594 	if (is_feat_tcr2_supported()) {
595 		tcr2_enable(ctx);
596 	}
597 
598 	pmuv3_enable(ctx);
599 
600 #if CTX_INCLUDE_EL2_REGS
601 	/*
602 	 * Initialize SCTLR_EL2 context register with reset value.
603 	 */
604 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
605 #endif /* CTX_INCLUDE_EL2_REGS */
606 #endif /* IMAGE_BL31 */
607 
608 	/*
609 	 * Store the X0-X7 value from the entrypoint into the context
610 	 * Use memcpy as we are in control of the layout of the structures
611 	 */
612 	gp_regs = get_gpregs_ctx(ctx);
613 	memcpy((void *)gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
614 }
615 
616 /*******************************************************************************
617  * Context management library initialization routine. This library is used by
618  * runtime services to share pointers to 'cpu_context' structures for secure
619  * non-secure and realm states. Management of the structures and their associated
620  * memory is not done by the context management library e.g. the PSCI service
621  * manages the cpu context used for entry from and exit to the non-secure state.
622  * The Secure payload dispatcher service manages the context(s) corresponding to
623  * the secure state. It also uses this library to get access to the non-secure
624  * state cpu context pointers.
625  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
626  * which will be used for programming an entry into a lower EL. The same context
627  * will be used to save state upon exception entry from that EL.
628  ******************************************************************************/
629 void __init cm_init(void)
630 {
631 	/*
632 	 * The context management library has only global data to initialize, but
633 	 * that will be done when the BSS is zeroed out.
634 	 */
635 }
636 
637 /*******************************************************************************
638  * This is the high-level function used to initialize the cpu_context 'ctx' for
639  * first use. It performs initializations that are common to all security states
640  * and initializations specific to the security state specified in 'ep'
641  ******************************************************************************/
642 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
643 {
644 	size_t security_state;
645 
646 	assert(ctx != NULL);
647 
648 	/*
649 	 * Perform initializations that are common
650 	 * to all security states
651 	 */
652 	setup_context_common(ctx, ep);
653 
654 	security_state = GET_SECURITY_STATE(ep->h.attr);
655 
656 	/* Perform security state specific initializations */
657 	switch (security_state) {
658 	case SECURE:
659 		setup_secure_context(ctx, ep);
660 		break;
661 #if ENABLE_RME && IMAGE_BL31
662 	case REALM:
663 		setup_realm_context(ctx, ep);
664 		break;
665 #endif
666 	case NON_SECURE:
667 		setup_ns_context(ctx, ep);
668 		break;
669 	default:
670 		ERROR("Invalid security state\n");
671 		panic();
672 		break;
673 	}
674 }
675 
676 /*******************************************************************************
677  * Enable architecture extensions for EL3 execution. This function only updates
678  * registers in-place which are expected to either never change or be
679  * overwritten by el3_exit. Expects the core_pos of the current core as argument.
680  ******************************************************************************/
681 #if IMAGE_BL31
682 void __no_pauth cm_manage_extensions_el3(unsigned int my_idx)
683 {
684 	if (is_feat_pauth_supported()) {
685 		pauth_init_enable_el3();
686 	}
687 
688 	if (is_feat_sve_supported()) {
689 		sve_init_el3();
690 	}
691 
692 	if (is_feat_amu_supported()) {
693 		amu_init_el3(my_idx);
694 	}
695 
696 	if (is_feat_sme_supported()) {
697 		sme_init_el3();
698 	}
699 
700 	if (is_feat_fgwte3_supported()) {
701 		write_fgwte3_el3(FGWTE3_EL3_EARLY_INIT_VAL);
702 	}
703 
704 	if (is_feat_mpam_supported()) {
705 		mpam_init_el3();
706 	}
707 
708 	if (is_feat_cpa2_supported()) {
709 		cpa2_enable_el3();
710 	}
711 
712 	pmuv3_init_el3();
713 }
714 
715 /******************************************************************************
716  * Function to initialise the registers with the RESET values in the context
717  * memory, which are maintained per world.
718  ******************************************************************************/
719 static void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
720 {
721 	/*
722 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
723 	 *
724 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
725 	 *  by Advanced SIMD, floating-point or SVE instructions (if
726 	 *  implemented) do not trap to EL3.
727 	 *
728 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
729 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
730 	 */
731 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
732 
733 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
734 
735 	/*
736 	 * Initialize MPAM3_EL3 to its default reset value
737 	 *
738 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
739 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
740 	 */
741 
742 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
743 }
744 
745 /*******************************************************************************
746  * Initialise per_world_context for Non-Secure world.
747  * This function enables the architecture extensions, which have same value
748  * across the cores for the non-secure world.
749  ******************************************************************************/
750 static void manage_extensions_nonsecure_per_world(void)
751 {
752 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
753 
754 	if (is_feat_sme_supported()) {
755 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
756 	}
757 
758 	if (is_feat_sve_supported()) {
759 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
760 	}
761 
762 	if (is_feat_amu_supported()) {
763 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
764 	}
765 
766 	if (is_feat_sys_reg_trace_supported()) {
767 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
768 	}
769 
770 	if (is_feat_mpam_supported()) {
771 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
772 	}
773 
774 	if (is_feat_fpmr_supported()) {
775 		fpmr_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
776 	}
777 }
778 
779 /*******************************************************************************
780  * Initialise per_world_context for Secure world.
781  * This function enables the architecture extensions, which have same value
782  * across the cores for the secure world.
783  ******************************************************************************/
784 static void manage_extensions_secure_per_world(void)
785 {
786 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
787 
788 	if (is_feat_sme_supported()) {
789 
790 		if (ENABLE_SME_FOR_SWD) {
791 		/*
792 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
793 		 * SME, SVE, and FPU/SIMD context properly managed.
794 		 */
795 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
796 		} else {
797 		/*
798 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
799 		 * world can safely use the associated registers.
800 		 */
801 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
802 		}
803 	}
804 	if (is_feat_sve_supported()) {
805 		if (ENABLE_SVE_FOR_SWD) {
806 		/*
807 		 * Enable SVE and FPU in secure context, SPM must ensure
808 		 * that the SVE and FPU register contexts are properly managed.
809 		 */
810 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
811 		} else {
812 		/*
813 		 * Disable SVE and FPU in secure context so non-secure world
814 		 * can safely use them.
815 		 */
816 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
817 		}
818 	}
819 
820 	/* NS can access this but Secure shouldn't */
821 	if (is_feat_sys_reg_trace_supported()) {
822 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
823 	}
824 }
825 
826 static void manage_extensions_realm_per_world(void)
827 {
828 #if ENABLE_RME
829 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_REALM]);
830 
831 	if (is_feat_sve_supported()) {
832 	/*
833 	 * Enable SVE and FPU in realm context when it is enabled for NS.
834 	 * Realm manager must ensure that the SVE and FPU register
835 	 * contexts are properly managed.
836 	 */
837 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
838 	}
839 
840 	/* NS can access this but Realm shouldn't */
841 	if (is_feat_sys_reg_trace_supported()) {
842 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
843 	}
844 
845 	/*
846 	 * If SME/SME2 is supported and enabled for NS world, then disable trapping
847 	 * of SME instructions for Realm world. RMM will save/restore required
848 	 * registers that are shared with SVE/FPU so that Realm can use FPU or SVE.
849 	 */
850 	if (is_feat_sme_supported()) {
851 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
852 	}
853 
854 	/*
855 	 * If FEAT_MPAM is supported and enabled, then disable trapping access
856 	 * to the MPAM registers for Realm world. Instead, RMM will configure
857 	 * the access to be trapped by itself so it can inject undefined aborts
858 	 * back to the Realm.
859 	 */
860 	if (is_feat_mpam_supported()) {
861 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
862 	}
863 #endif /* ENABLE_RME */
864 }
865 
866 void cm_manage_extensions_per_world(void)
867 {
868 	manage_extensions_nonsecure_per_world();
869 	manage_extensions_secure_per_world();
870 	manage_extensions_realm_per_world();
871 }
872 #endif /* IMAGE_BL31 */
873 
874 /*******************************************************************************
875  * Enable architecture extensions on first entry to Non-secure world.
876  ******************************************************************************/
877 static void manage_extensions_nonsecure(cpu_context_t *ctx)
878 {
879 #if IMAGE_BL31
880 	/* NOTE: registers are not context switched */
881 	if (is_feat_amu_supported()) {
882 		amu_enable(ctx);
883 	}
884 
885 	if (is_feat_sme_supported()) {
886 		sme_enable(ctx);
887 	}
888 
889 	if (is_feat_fgt2_supported()) {
890 		fgt2_enable(ctx);
891 	}
892 
893 	if (is_feat_debugv8p9_supported()) {
894 		debugv8p9_extended_bp_wp_enable(ctx);
895 	}
896 
897 	if (is_feat_spe_supported()) {
898 		spe_enable_ns(ctx);
899 	}
900 
901 	if (is_feat_trbe_supported()) {
902 		if (check_if_trbe_disable_affected_core()) {
903 			trbe_disable_ns(ctx);
904 		} else {
905 			trbe_enable_ns(ctx);
906 		}
907 	}
908 
909 	if (is_feat_brbe_supported()) {
910 		brbe_enable(ctx);
911 	}
912 #endif /* IMAGE_BL31 */
913 }
914 
915 #if INIT_UNUSED_NS_EL2
916 /*******************************************************************************
917  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
918  * world when EL2 is empty and unused.
919  ******************************************************************************/
920 static void manage_extensions_nonsecure_el2_unused(void)
921 {
922 #if IMAGE_BL31
923 	if (is_feat_spe_supported()) {
924 		spe_init_el2_unused();
925 	}
926 
927 	if (is_feat_amu_supported()) {
928 		amu_init_el2_unused();
929 	}
930 
931 	if (is_feat_mpam_supported()) {
932 		mpam_init_el2_unused();
933 	}
934 
935 	if (is_feat_trbe_supported()) {
936 		trbe_init_el2_unused();
937 	}
938 
939 	if (is_feat_sys_reg_trace_supported()) {
940 		sys_reg_trace_init_el2_unused();
941 	}
942 
943 	if (is_feat_trf_supported()) {
944 		trf_init_el2_unused();
945 	}
946 
947 	pmuv3_init_el2_unused();
948 
949 	if (is_feat_sve_supported()) {
950 		sve_init_el2_unused();
951 	}
952 
953 	if (is_feat_sme_supported()) {
954 		sme_init_el2_unused();
955 	}
956 
957 	if (is_feat_mops_supported() && is_feat_hcx_supported()) {
958 		write_hcrx_el2(read_hcrx_el2() | HCRX_EL2_MSCEn_BIT);
959 	}
960 
961 	if (is_feat_pauth_supported()) {
962 		pauth_enable_el2();
963 	}
964 #endif /* IMAGE_BL31 */
965 }
966 #endif /* INIT_UNUSED_NS_EL2 */
967 
968 /*******************************************************************************
969  * Enable architecture extensions on first entry to Secure world.
970  ******************************************************************************/
971 static void manage_extensions_secure(cpu_context_t *ctx)
972 {
973 #if IMAGE_BL31
974 	if (is_feat_sme_supported()) {
975 		if (ENABLE_SME_FOR_SWD) {
976 		/*
977 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
978 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
979 		 */
980 			sme_init_el3();
981 			sme_enable(ctx);
982 		} else {
983 		/*
984 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
985 		 * world can safely use the associated registers.
986 		 */
987 			sme_disable(ctx);
988 		}
989 	}
990 
991 	if (is_feat_spe_supported()) {
992 		spe_disable_secure(ctx);
993 	}
994 
995 	if (is_feat_trbe_supported()) {
996 		trbe_disable_secure(ctx);
997 	}
998 #endif /* IMAGE_BL31 */
999 }
1000 
1001 /*******************************************************************************
1002  * The following function initializes the cpu_context for the current CPU
1003  * for first use, and sets the initial entrypoint state as specified by the
1004  * entry_point_info structure.
1005  ******************************************************************************/
1006 void cm_init_my_context(const entry_point_info_t *ep)
1007 {
1008 	cpu_context_t *ctx;
1009 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
1010 	cm_setup_context(ctx, ep);
1011 }
1012 
1013 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
1014 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
1015 {
1016 #if INIT_UNUSED_NS_EL2
1017 	u_register_t hcr_el2 = HCR_RESET_VAL;
1018 	u_register_t mdcr_el2;
1019 	u_register_t scr_el3;
1020 
1021 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1022 
1023 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
1024 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
1025 		hcr_el2 |= HCR_RW_BIT;
1026 	}
1027 
1028 	write_hcr_el2(hcr_el2);
1029 
1030 	/*
1031 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
1032 	 * All fields have architecturally UNKNOWN reset values.
1033 	 */
1034 	write_cptr_el2(CPTR_EL2_RESET_VAL);
1035 
1036 	/*
1037 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
1038 	 * reset and are set to zero except for field(s) listed below.
1039 	 *
1040 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
1041 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
1042 	 *
1043 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
1044 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
1045 	 */
1046 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
1047 
1048 	/*
1049 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
1050 	 * UNKNOWN value.
1051 	 */
1052 	write_cntvoff_el2(0);
1053 
1054 	/*
1055 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
1056 	 * respectively.
1057 	 */
1058 	write_vpidr_el2(read_midr_el1());
1059 	write_vmpidr_el2(read_mpidr_el1());
1060 
1061 	/*
1062 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
1063 	 *
1064 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
1065 	 * translation is disabled, cache maintenance operations depend on the
1066 	 * VMID.
1067 	 *
1068 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
1069 	 * disabled.
1070 	 */
1071 	write_vttbr_el2(VTTBR_RESET_VAL &
1072 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
1073 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
1074 
1075 	/*
1076 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
1077 	 * Some fields are architecturally UNKNOWN on reset.
1078 	 *
1079 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
1080 	 * register accesses to the Debug ROM registers are not trapped to EL2.
1081 	 *
1082 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
1083 	 * accesses to the powerdown debug registers are not trapped to EL2.
1084 	 *
1085 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
1086 	 * debug registers do not trap to EL2.
1087 	 *
1088 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
1089 	 * EL2.
1090 	 */
1091 	mdcr_el2 = MDCR_EL2_RESET_VAL &
1092 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
1093 		   MDCR_EL2_TDE_BIT);
1094 
1095 	write_mdcr_el2(mdcr_el2);
1096 
1097 	/*
1098 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
1099 	 *
1100 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
1101 	 * EL1 accesses to System registers do not trap to EL2.
1102 	 */
1103 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
1104 
1105 	/*
1106 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
1107 	 * reset.
1108 	 *
1109 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1110 	 * and prevent timer interrupts.
1111 	 */
1112 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1113 
1114 	manage_extensions_nonsecure_el2_unused();
1115 #endif /* INIT_UNUSED_NS_EL2 */
1116 }
1117 
1118 /*******************************************************************************
1119  * Prepare the CPU system registers for first entry into realm, secure, or
1120  * normal world.
1121  *
1122  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1123  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1124  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1125  * For all entries, the EL1 registers are initialized from the cpu_context
1126  ******************************************************************************/
1127 void cm_prepare_el3_exit(size_t security_state)
1128 {
1129 	u_register_t sctlr_el2, scr_el3;
1130 	cpu_context_t *ctx = cm_get_context(security_state);
1131 
1132 	assert(ctx != NULL);
1133 
1134 	if (security_state == NON_SECURE) {
1135 		uint64_t el2_implemented = el_implemented(2);
1136 
1137 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1138 						 CTX_SCR_EL3);
1139 
1140 		if (el2_implemented != EL_IMPL_NONE) {
1141 
1142 			/*
1143 			 * If context is not being used for EL2, initialize
1144 			 * HCRX_EL2 with its init value here.
1145 			 */
1146 			if (is_feat_hcx_supported()) {
1147 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1148 			}
1149 
1150 			/*
1151 			 * Initialize Fine-grained trap registers introduced
1152 			 * by FEAT_FGT so all traps are initially disabled when
1153 			 * switching to EL2 or a lower EL, preventing undesired
1154 			 * behavior.
1155 			 */
1156 			if (is_feat_fgt_supported()) {
1157 				/*
1158 				 * Initialize HFG*_EL2 registers with a default
1159 				 * value so legacy systems unaware of FEAT_FGT
1160 				 * do not get trapped due to their lack of
1161 				 * initialization for this feature.
1162 				 */
1163 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1164 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1165 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1166 			}
1167 
1168 			/* Condition to ensure EL2 is being used. */
1169 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1170 				/* Initialize SCTLR_EL2 register with reset value. */
1171 				sctlr_el2 = SCTLR_EL2_RES1;
1172 
1173 				/*
1174 				 * If workaround of errata 764081 for Cortex-A75
1175 				 * is used then set SCTLR_EL2.IESB to enable
1176 				 * Implicit Error Synchronization Barrier.
1177 				 */
1178 				if (errata_a75_764081_applies()) {
1179 					sctlr_el2 |= SCTLR_IESB_BIT;
1180 				}
1181 
1182 				write_sctlr_el2(sctlr_el2);
1183 			} else {
1184 				/*
1185 				 * (scr_el3 & SCR_HCE_BIT==0)
1186 				 * EL2 implemented but unused.
1187 				 */
1188 				init_nonsecure_el2_unused(ctx);
1189 			}
1190 		}
1191 
1192 		if (is_feat_fgwte3_supported()) {
1193 			/*
1194 			 * TCR_EL3 and ACTLR_EL3 could be overwritten
1195 			 * by platforms and hence is locked a bit late.
1196 			 */
1197 			write_fgwte3_el3(FGWTE3_EL3_LATE_INIT_VAL);
1198 		}
1199 	}
1200 #if (!CTX_INCLUDE_EL2_REGS)
1201 	/* Restore EL1 system registers, only when CTX_INCLUDE_EL2_REGS=0 */
1202 	cm_el1_sysregs_context_restore(security_state);
1203 #endif
1204 	cm_set_next_eret_context(security_state);
1205 }
1206 
1207 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1208 
1209 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1210 {
1211 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1212 	if (is_feat_amu_supported()) {
1213 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1214 	}
1215 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1216 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1217 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1218 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1219 }
1220 
1221 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1222 {
1223 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1224 	if (is_feat_amu_supported()) {
1225 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1226 	}
1227 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1228 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1229 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1230 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1231 }
1232 
1233 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1234 {
1235 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1236 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1237 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1238 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1239 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1240 }
1241 
1242 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1243 {
1244 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1245 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1246 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1247 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1248 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1249 }
1250 
1251 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1252 {
1253 	u_register_t mpam_idr = read_mpamidr_el1();
1254 
1255 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1256 
1257 	/*
1258 	 * The context registers that we intend to save would be part of the
1259 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1260 	 */
1261 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1262 		return;
1263 	}
1264 
1265 	/*
1266 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1267 	 * MPAMIDR_HAS_HCR_BIT == 1.
1268 	 */
1269 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1270 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1271 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1272 
1273 	/*
1274 	 * The number of MPAMVPM registers is implementation defined, their
1275 	 * number is stored in the MPAMIDR_EL1 register.
1276 	 */
1277 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1278 	case 7:
1279 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1280 		__fallthrough;
1281 	case 6:
1282 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1283 		__fallthrough;
1284 	case 5:
1285 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1286 		__fallthrough;
1287 	case 4:
1288 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1289 		__fallthrough;
1290 	case 3:
1291 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1292 		__fallthrough;
1293 	case 2:
1294 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1295 		__fallthrough;
1296 	case 1:
1297 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1298 		break;
1299 	}
1300 }
1301 
1302 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1303 {
1304 	u_register_t mpam_idr = read_mpamidr_el1();
1305 
1306 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1307 
1308 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1309 		return;
1310 	}
1311 
1312 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1313 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1314 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1315 
1316 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1317 	case 7:
1318 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1319 		__fallthrough;
1320 	case 6:
1321 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1322 		__fallthrough;
1323 	case 5:
1324 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1325 		__fallthrough;
1326 	case 4:
1327 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1328 		__fallthrough;
1329 	case 3:
1330 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1331 		__fallthrough;
1332 	case 2:
1333 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1334 		__fallthrough;
1335 	case 1:
1336 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1337 		break;
1338 	}
1339 }
1340 
1341 /* ---------------------------------------------------------------------------
1342  * The following registers are not added:
1343  * ICH_AP0R<n>_EL2
1344  * ICH_AP1R<n>_EL2
1345  * ICH_LR<n>_EL2
1346  *
1347  * NOTE: For a system with S-EL2 present but not enabled, accessing
1348  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1349  * SCR_EL3.NS = 1 before accessing this register.
1350  * ---------------------------------------------------------------------------
1351  */
1352 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx, uint32_t security_state)
1353 {
1354 	u_register_t scr_el3 = read_scr_el3();
1355 
1356 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1357 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1358 #else
1359 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1360 	isb();
1361 
1362 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1363 
1364 	write_scr_el3(scr_el3);
1365 	isb();
1366 #endif
1367 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1368 
1369 	if (errata_ich_vmcr_el2_applies()) {
1370 		if (security_state == SECURE) {
1371 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1372 		} else {
1373 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1374 		}
1375 		isb();
1376 	}
1377 
1378 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1379 
1380 	if (errata_ich_vmcr_el2_applies()) {
1381 		write_scr_el3(scr_el3);
1382 		isb();
1383 	}
1384 }
1385 
1386 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx, uint32_t security_state)
1387 {
1388 	u_register_t scr_el3 = read_scr_el3();
1389 
1390 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1391 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1392 #else
1393 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1394 	isb();
1395 
1396 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1397 
1398 	write_scr_el3(scr_el3);
1399 	isb();
1400 #endif
1401 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1402 
1403 	if (errata_ich_vmcr_el2_applies()) {
1404 		if (security_state == SECURE) {
1405 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1406 		} else {
1407 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1408 		}
1409 		isb();
1410 	}
1411 
1412 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1413 
1414 	if (errata_ich_vmcr_el2_applies()) {
1415 		write_scr_el3(scr_el3);
1416 		isb();
1417 	}
1418 }
1419 
1420 /* -----------------------------------------------------
1421  * The following registers are not added:
1422  * AMEVCNTVOFF0<n>_EL2
1423  * AMEVCNTVOFF1<n>_EL2
1424  * -----------------------------------------------------
1425  */
1426 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1427 {
1428 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1429 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1430 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1431 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1432 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1433 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1434 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1435 	if (CTX_INCLUDE_AARCH32_REGS) {
1436 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1437 	}
1438 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1439 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1440 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1441 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1442 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1443 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1444 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1445 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1446 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1447 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1448 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1449 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1450 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1451 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1452 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1453 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1454 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1455 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1456 
1457 	write_el2_ctx_common_sysreg128(ctx, ttbr0_el2, read_ttbr0_el2());
1458 	write_el2_ctx_common_sysreg128(ctx, vttbr_el2, read_vttbr_el2());
1459 }
1460 
1461 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1462 {
1463 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1464 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1465 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1466 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1467 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1468 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1469 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1470 	if (CTX_INCLUDE_AARCH32_REGS) {
1471 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1472 	}
1473 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1474 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1475 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1476 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1477 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1478 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1479 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1480 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1481 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1482 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1483 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1484 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1485 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1486 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1487 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1488 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1489 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1490 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1491 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1492 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1493 }
1494 
1495 /*******************************************************************************
1496  * Save EL2 sysreg context
1497  ******************************************************************************/
1498 void cm_el2_sysregs_context_save(uint32_t security_state)
1499 {
1500 	cpu_context_t *ctx;
1501 	el2_sysregs_t *el2_sysregs_ctx;
1502 
1503 	ctx = cm_get_context(security_state);
1504 	assert(ctx != NULL);
1505 
1506 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1507 
1508 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1509 	el2_sysregs_context_save_gic(el2_sysregs_ctx, security_state);
1510 
1511 	if (is_feat_mte2_supported()) {
1512 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1513 	}
1514 
1515 	if (is_feat_mpam_supported()) {
1516 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1517 	}
1518 
1519 	if (is_feat_fgt_supported()) {
1520 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1521 	}
1522 
1523 	if (is_feat_fgt2_supported()) {
1524 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1525 	}
1526 
1527 	if (is_feat_ecv_v2_supported()) {
1528 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1529 	}
1530 
1531 	if (is_feat_vhe_supported()) {
1532 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1533 					read_contextidr_el2());
1534 		write_el2_ctx_vhe_sysreg128(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1535 	}
1536 
1537 	if (is_feat_ras_supported()) {
1538 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1539 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1540 	}
1541 
1542 	if (is_feat_nv2_supported()) {
1543 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1544 	}
1545 
1546 	if (is_feat_trf_supported()) {
1547 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1548 	}
1549 
1550 	if (is_feat_csv2_2_supported()) {
1551 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1552 					read_scxtnum_el2());
1553 	}
1554 
1555 	if (is_feat_hcx_supported()) {
1556 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1557 	}
1558 
1559 	if (is_feat_tcr2_supported()) {
1560 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1561 	}
1562 
1563 	if (is_feat_sxpie_supported()) {
1564 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1565 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1566 	}
1567 
1568 	if (is_feat_sxpoe_supported()) {
1569 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1570 	}
1571 
1572 	if (is_feat_brbe_supported()) {
1573 		write_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2, read_brbcr_el2());
1574 	}
1575 
1576 	if (is_feat_s2pie_supported()) {
1577 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1578 	}
1579 
1580 	if (is_feat_gcs_supported()) {
1581 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1582 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1583 	}
1584 
1585 	if (is_feat_sctlr2_supported()) {
1586 		write_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2, read_sctlr2_el2());
1587 	}
1588 }
1589 
1590 /*******************************************************************************
1591  * Restore EL2 sysreg context
1592  ******************************************************************************/
1593 void cm_el2_sysregs_context_restore(uint32_t security_state)
1594 {
1595 	cpu_context_t *ctx;
1596 	el2_sysregs_t *el2_sysregs_ctx;
1597 
1598 	ctx = cm_get_context(security_state);
1599 	assert(ctx != NULL);
1600 
1601 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1602 
1603 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1604 	el2_sysregs_context_restore_gic(el2_sysregs_ctx, security_state);
1605 
1606 	if (is_feat_mte2_supported()) {
1607 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1608 	}
1609 
1610 	if (is_feat_mpam_supported()) {
1611 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1612 	}
1613 
1614 	if (is_feat_fgt_supported()) {
1615 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1616 	}
1617 
1618 	if (is_feat_fgt2_supported()) {
1619 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1620 	}
1621 
1622 	if (is_feat_ecv_v2_supported()) {
1623 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1624 	}
1625 
1626 	if (is_feat_vhe_supported()) {
1627 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1628 					contextidr_el2));
1629 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1630 	}
1631 
1632 	if (is_feat_ras_supported()) {
1633 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1634 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1635 	}
1636 
1637 	if (is_feat_nv2_supported()) {
1638 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1639 	}
1640 
1641 	if (is_feat_trf_supported()) {
1642 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1643 	}
1644 
1645 	if (is_feat_csv2_2_supported()) {
1646 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1647 					scxtnum_el2));
1648 	}
1649 
1650 	if (is_feat_hcx_supported()) {
1651 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1652 	}
1653 
1654 	if (is_feat_tcr2_supported()) {
1655 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1656 	}
1657 
1658 	if (is_feat_sxpie_supported()) {
1659 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1660 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1661 	}
1662 
1663 	if (is_feat_sxpoe_supported()) {
1664 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1665 	}
1666 
1667 	if (is_feat_s2pie_supported()) {
1668 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1669 	}
1670 
1671 	if (is_feat_gcs_supported()) {
1672 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1673 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1674 	}
1675 
1676 	if (is_feat_sctlr2_supported()) {
1677 		write_sctlr2_el2(read_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2));
1678 	}
1679 
1680 	if (is_feat_brbe_supported()) {
1681 		write_brbcr_el2(read_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2));
1682 	}
1683 }
1684 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1685 
1686 /*******************************************************************************
1687  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1688  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1689  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1690  * cm_prepare_el3_exit function.
1691  ******************************************************************************/
1692 void cm_prepare_el3_exit_ns(void)
1693 {
1694 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1695 #if ENABLE_ASSERTIONS
1696 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1697 	assert(ctx != NULL);
1698 
1699 	/* Assert that EL2 is used. */
1700 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1701 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1702 			(el_implemented(2U) != EL_IMPL_NONE));
1703 #endif /* ENABLE_ASSERTIONS */
1704 
1705 	/* Restore EL2 sysreg contexts */
1706 	cm_el2_sysregs_context_restore(NON_SECURE);
1707 	cm_set_next_eret_context(NON_SECURE);
1708 #else
1709 	cm_prepare_el3_exit(NON_SECURE);
1710 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1711 }
1712 
1713 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
1714 /*******************************************************************************
1715  * The next set of six functions are used by runtime services to save and restore
1716  * EL1 context on the 'cpu_context' structure for the specified security state.
1717  ******************************************************************************/
1718 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1719 {
1720 	write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1());
1721 	write_el1_ctx_common(ctx, elr_el1, read_elr_el1());
1722 
1723 #if (!ERRATA_SPECULATIVE_AT)
1724 	write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1());
1725 	write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1());
1726 #endif /* (!ERRATA_SPECULATIVE_AT) */
1727 
1728 	write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1());
1729 	write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1());
1730 	write_el1_ctx_common(ctx, sp_el1, read_sp_el1());
1731 	write_el1_ctx_common(ctx, esr_el1, read_esr_el1());
1732 	write_el1_ctx_common(ctx, mair_el1, read_mair_el1());
1733 	write_el1_ctx_common(ctx, amair_el1, read_amair_el1());
1734 	write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1());
1735 	write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1());
1736 	write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0());
1737 	write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0());
1738 	write_el1_ctx_common(ctx, far_el1, read_far_el1());
1739 	write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1());
1740 	write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1());
1741 	write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1());
1742 	write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1());
1743 	write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1());
1744 	write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1());
1745 
1746 	write_el1_ctx_common_sysreg128(ctx, par_el1, read_par_el1());
1747 	write_el1_ctx_common_sysreg128(ctx, ttbr0_el1, read_ttbr0_el1());
1748 	write_el1_ctx_common_sysreg128(ctx, ttbr1_el1, read_ttbr1_el1());
1749 
1750 	if (CTX_INCLUDE_AARCH32_REGS) {
1751 		/* Save Aarch32 registers */
1752 		write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt());
1753 		write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und());
1754 		write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq());
1755 		write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq());
1756 		write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2());
1757 		write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2());
1758 	}
1759 
1760 	/* Save counter-timer kernel control register */
1761 	write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1());
1762 #if NS_TIMER_SWITCH
1763 	/* Save NS Timer registers */
1764 	write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0());
1765 	write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0());
1766 	write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0());
1767 	write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0());
1768 #endif
1769 
1770 	if (is_feat_mte2_supported()) {
1771 		write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1());
1772 		write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1());
1773 		write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1());
1774 		write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1());
1775 	}
1776 
1777 	if (is_feat_ras_supported()) {
1778 		write_el1_ctx_ras(ctx, disr_el1, read_disr_el1());
1779 	}
1780 
1781 	if (is_feat_s1pie_supported()) {
1782 		write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1());
1783 		write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1());
1784 	}
1785 
1786 	if (is_feat_s1poe_supported()) {
1787 		write_el1_ctx_s1poe(ctx, por_el1, read_por_el1());
1788 	}
1789 
1790 	if (is_feat_s2poe_supported()) {
1791 		write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1());
1792 	}
1793 
1794 	if (is_feat_tcr2_supported()) {
1795 		write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1());
1796 	}
1797 
1798 	if (is_feat_trf_supported()) {
1799 		write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1());
1800 	}
1801 
1802 	if (is_feat_csv2_2_supported()) {
1803 		write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0());
1804 		write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1());
1805 	}
1806 
1807 	if (is_feat_gcs_supported()) {
1808 		write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1());
1809 		write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1());
1810 		write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1());
1811 		write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0());
1812 	}
1813 
1814 	if (is_feat_the_supported()) {
1815 		write_el1_ctx_the_sysreg128(ctx, rcwmask_el1, read_rcwmask_el1());
1816 		write_el1_ctx_the_sysreg128(ctx, rcwsmask_el1, read_rcwsmask_el1());
1817 	}
1818 
1819 	if (is_feat_sctlr2_supported()) {
1820 		write_el1_ctx_sctlr2(ctx, sctlr2_el1, read_sctlr2_el1());
1821 	}
1822 
1823 	if (is_feat_ls64_accdata_supported()) {
1824 		write_el1_ctx_ls64(ctx, accdata_el1, read_accdata_el1());
1825 	}
1826 }
1827 
1828 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1829 {
1830 	write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1));
1831 	write_elr_el1(read_el1_ctx_common(ctx, elr_el1));
1832 
1833 #if (!ERRATA_SPECULATIVE_AT)
1834 	write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1));
1835 	write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1));
1836 #endif /* (!ERRATA_SPECULATIVE_AT) */
1837 
1838 	write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1));
1839 	write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1));
1840 	write_sp_el1(read_el1_ctx_common(ctx, sp_el1));
1841 	write_esr_el1(read_el1_ctx_common(ctx, esr_el1));
1842 	write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1));
1843 	write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1));
1844 	write_mair_el1(read_el1_ctx_common(ctx, mair_el1));
1845 	write_amair_el1(read_el1_ctx_common(ctx, amair_el1));
1846 	write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1));
1847 	write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1));
1848 	write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0));
1849 	write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0));
1850 	write_par_el1(read_el1_ctx_common(ctx, par_el1));
1851 	write_far_el1(read_el1_ctx_common(ctx, far_el1));
1852 	write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1));
1853 	write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1));
1854 	write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1));
1855 	write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1));
1856 	write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1));
1857 	write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1));
1858 
1859 	if (CTX_INCLUDE_AARCH32_REGS) {
1860 		/* Restore Aarch32 registers */
1861 		write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt));
1862 		write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und));
1863 		write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq));
1864 		write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq));
1865 		write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2));
1866 		write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2));
1867 	}
1868 
1869 	/* Restore counter-timer kernel control register */
1870 	write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1));
1871 #if NS_TIMER_SWITCH
1872 	/* Restore NS Timer registers */
1873 	write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0));
1874 	write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0));
1875 	write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0));
1876 	write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0));
1877 #endif
1878 
1879 	if (is_feat_mte2_supported()) {
1880 		write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1));
1881 		write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1));
1882 		write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1));
1883 		write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1));
1884 	}
1885 
1886 	if (is_feat_ras_supported()) {
1887 		write_disr_el1(read_el1_ctx_ras(ctx, disr_el1));
1888 	}
1889 
1890 	if (is_feat_s1pie_supported()) {
1891 		write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1));
1892 		write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1));
1893 	}
1894 
1895 	if (is_feat_s1poe_supported()) {
1896 		write_por_el1(read_el1_ctx_s1poe(ctx, por_el1));
1897 	}
1898 
1899 	if (is_feat_s2poe_supported()) {
1900 		write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1));
1901 	}
1902 
1903 	if (is_feat_tcr2_supported()) {
1904 		write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1));
1905 	}
1906 
1907 	if (is_feat_trf_supported()) {
1908 		write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1));
1909 	}
1910 
1911 	if (is_feat_csv2_2_supported()) {
1912 		write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0));
1913 		write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1));
1914 	}
1915 
1916 	if (is_feat_gcs_supported()) {
1917 		write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1));
1918 		write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1));
1919 		write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1));
1920 		write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0));
1921 	}
1922 
1923 	if (is_feat_the_supported()) {
1924 		write_rcwmask_el1(read_el1_ctx_the(ctx, rcwmask_el1));
1925 		write_rcwsmask_el1(read_el1_ctx_the(ctx, rcwsmask_el1));
1926 	}
1927 
1928 	if (is_feat_sctlr2_supported()) {
1929 		write_sctlr2_el1(read_el1_ctx_sctlr2(ctx, sctlr2_el1));
1930 	}
1931 
1932 	if (is_feat_ls64_accdata_supported()) {
1933 		write_accdata_el1(read_el1_ctx_ls64(ctx, accdata_el1));
1934 	}
1935 }
1936 
1937 /*******************************************************************************
1938  * The next couple of functions are used by runtime services to save and restore
1939  * EL1 context on the 'cpu_context' structure for the specified security state.
1940  ******************************************************************************/
1941 void cm_el1_sysregs_context_save(uint32_t security_state)
1942 {
1943 	cpu_context_t *ctx;
1944 
1945 	ctx = cm_get_context(security_state);
1946 	assert(ctx != NULL);
1947 
1948 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1949 
1950 #if IMAGE_BL31
1951 	if (security_state == SECURE) {
1952 		PUBLISH_EVENT(cm_exited_secure_world);
1953 	} else {
1954 		PUBLISH_EVENT(cm_exited_normal_world);
1955 	}
1956 #endif
1957 }
1958 
1959 void cm_el1_sysregs_context_restore(uint32_t security_state)
1960 {
1961 	cpu_context_t *ctx;
1962 
1963 	ctx = cm_get_context(security_state);
1964 	assert(ctx != NULL);
1965 
1966 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1967 
1968 #if IMAGE_BL31
1969 	if (security_state == SECURE) {
1970 		PUBLISH_EVENT(cm_entering_secure_world);
1971 	} else {
1972 		PUBLISH_EVENT(cm_entering_normal_world);
1973 	}
1974 #endif
1975 }
1976 
1977 #endif /* ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) */
1978 
1979 /*******************************************************************************
1980  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1981  * given security state with the given entrypoint
1982  ******************************************************************************/
1983 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1984 {
1985 	cpu_context_t *ctx;
1986 	el3_state_t *state;
1987 
1988 	ctx = cm_get_context(security_state);
1989 	assert(ctx != NULL);
1990 
1991 	/* Populate EL3 state so that ERET jumps to the correct entry */
1992 	state = get_el3state_ctx(ctx);
1993 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1994 }
1995 
1996 /*******************************************************************************
1997  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1998  * pertaining to the given security state
1999  ******************************************************************************/
2000 void cm_set_elr_spsr_el3(uint32_t security_state,
2001 			uintptr_t entrypoint, uint32_t spsr)
2002 {
2003 	cpu_context_t *ctx;
2004 	el3_state_t *state;
2005 
2006 	ctx = cm_get_context(security_state);
2007 	assert(ctx != NULL);
2008 
2009 	/* Populate EL3 state so that ERET jumps to the correct entry */
2010 	state = get_el3state_ctx(ctx);
2011 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
2012 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
2013 }
2014 
2015 /*******************************************************************************
2016  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
2017  * pertaining to the given security state using the value and bit position
2018  * specified in the parameters. It preserves all other bits.
2019  ******************************************************************************/
2020 void cm_write_scr_el3_bit(uint32_t security_state,
2021 			  uint32_t bit_pos,
2022 			  uint32_t value)
2023 {
2024 	cpu_context_t *ctx;
2025 	el3_state_t *state;
2026 	u_register_t scr_el3;
2027 
2028 	ctx = cm_get_context(security_state);
2029 	assert(ctx != NULL);
2030 
2031 	/* Ensure that the bit position is a valid one */
2032 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
2033 
2034 	/* Ensure that the 'value' is only a bit wide */
2035 	assert(value <= 1U);
2036 
2037 	/*
2038 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
2039 	 * and set it to its new value.
2040 	 */
2041 	state = get_el3state_ctx(ctx);
2042 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
2043 	scr_el3 &= ~(1UL << bit_pos);
2044 	scr_el3 |= (u_register_t)value << bit_pos;
2045 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
2046 }
2047 
2048 /*******************************************************************************
2049  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
2050  * given security state.
2051  ******************************************************************************/
2052 u_register_t cm_get_scr_el3(uint32_t security_state)
2053 {
2054 	const cpu_context_t *ctx;
2055 	const el3_state_t *state;
2056 
2057 	ctx = cm_get_context(security_state);
2058 	assert(ctx != NULL);
2059 
2060 	/* Populate EL3 state so that ERET jumps to the correct entry */
2061 	state = get_el3state_ctx(ctx);
2062 	return read_ctx_reg(state, CTX_SCR_EL3);
2063 }
2064 
2065 /*******************************************************************************
2066  * This function is used to program the context that's used for exception
2067  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
2068  * the required security state
2069  ******************************************************************************/
2070 void cm_set_next_eret_context(uint32_t security_state)
2071 {
2072 	cpu_context_t *ctx;
2073 
2074 	ctx = cm_get_context(security_state);
2075 	assert(ctx != NULL);
2076 
2077 	cm_set_next_context(ctx);
2078 }
2079