xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 57b37e3717edc54194b73febfbb619d4747a9cf7)
1 /*
2  * Copyright (c) 2013-2019, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_helpers.h>
15 #include <arch_features.h>
16 #include <bl31/interrupt_mgmt.h>
17 #include <common/bl_common.h>
18 #include <context.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/el3_runtime/pubsub_events.h>
21 #include <lib/extensions/amu.h>
22 #include <lib/extensions/mpam.h>
23 #include <lib/extensions/spe.h>
24 #include <lib/extensions/sve.h>
25 #include <lib/utils.h>
26 #include <plat/common/platform.h>
27 #include <smccc_helpers.h>
28 
29 
30 /*******************************************************************************
31  * Context management library initialisation routine. This library is used by
32  * runtime services to share pointers to 'cpu_context' structures for the secure
33  * and non-secure states. Management of the structures and their associated
34  * memory is not done by the context management library e.g. the PSCI service
35  * manages the cpu context used for entry from and exit to the non-secure state.
36  * The Secure payload dispatcher service manages the context(s) corresponding to
37  * the secure state. It also uses this library to get access to the non-secure
38  * state cpu context pointers.
39  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
40  * which will used for programming an entry into a lower EL. The same context
41  * will used to save state upon exception entry from that EL.
42  ******************************************************************************/
43 void __init cm_init(void)
44 {
45 	/*
46 	 * The context management library has only global data to intialize, but
47 	 * that will be done when the BSS is zeroed out
48 	 */
49 }
50 
51 /*******************************************************************************
52  * The following function initializes the cpu_context 'ctx' for
53  * first use, and sets the initial entrypoint state as specified by the
54  * entry_point_info structure.
55  *
56  * The security state to initialize is determined by the SECURE attribute
57  * of the entry_point_info.
58  *
59  * The EE and ST attributes are used to configure the endianness and secure
60  * timer availability for the new execution context.
61  *
62  * To prepare the register state for entry call cm_prepare_el3_exit() and
63  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
64  * cm_e1_sysreg_context_restore().
65  ******************************************************************************/
66 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
67 {
68 	unsigned int security_state;
69 	uint32_t scr_el3, pmcr_el0;
70 	el3_state_t *state;
71 	gp_regs_t *gp_regs;
72 	unsigned long sctlr_elx, actlr_elx;
73 
74 	assert(ctx != NULL);
75 
76 	security_state = GET_SECURITY_STATE(ep->h.attr);
77 
78 	/* Clear any residual register values from the context */
79 	zeromem(ctx, sizeof(*ctx));
80 
81 	/*
82 	 * SCR_EL3 was initialised during reset sequence in macro
83 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
84 	 * affect the next EL.
85 	 *
86 	 * The following fields are initially set to zero and then updated to
87 	 * the required value depending on the state of the SPSR_EL3 and the
88 	 * Security state and entrypoint attributes of the next EL.
89 	 */
90 	scr_el3 = (uint32_t)read_scr();
91 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
92 			SCR_ST_BIT | SCR_HCE_BIT);
93 	/*
94 	 * SCR_NS: Set the security state of the next EL.
95 	 */
96 	if (security_state != SECURE)
97 		scr_el3 |= SCR_NS_BIT;
98 	/*
99 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
100 	 *  Exception level as specified by SPSR.
101 	 */
102 	if (GET_RW(ep->spsr) == MODE_RW_64)
103 		scr_el3 |= SCR_RW_BIT;
104 	/*
105 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
106 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
107 	 *  by the entrypoint attributes.
108 	 */
109 	if (EP_GET_ST(ep->h.attr) != 0U)
110 		scr_el3 |= SCR_ST_BIT;
111 
112 #if !HANDLE_EA_EL3_FIRST
113 	/*
114 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
115 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
116 	 *  Aborts are taken to EL3.
117 	 */
118 	scr_el3 &= ~SCR_EA_BIT;
119 #endif
120 
121 #if FAULT_INJECTION_SUPPORT
122 	/* Enable fault injection from lower ELs */
123 	scr_el3 |= SCR_FIEN_BIT;
124 #endif
125 
126 #if !CTX_INCLUDE_PAUTH_REGS
127 	/*
128 	 * If the pointer authentication registers aren't saved during world
129 	 * switches the value of the registers can be leaked from the Secure to
130 	 * the Non-secure world. To prevent this, rather than enabling pointer
131 	 * authentication everywhere, we only enable it in the Non-secure world.
132 	 *
133 	 * If the Secure world wants to use pointer authentication,
134 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
135 	 */
136 	if (security_state == NON_SECURE)
137 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
138 #endif /* !CTX_INCLUDE_PAUTH_REGS */
139 
140 	unsigned int mte = get_armv8_5_mte_support();
141 
142 	/*
143 	 * Enable MTE support unilaterally for normal world if the CPU supports
144 	 * it.
145 	 */
146 	if (mte != MTE_UNIMPLEMENTED) {
147 		if (security_state == NON_SECURE) {
148 			scr_el3 |= SCR_ATA_BIT;
149 		}
150 	}
151 
152 #ifdef IMAGE_BL31
153 	/*
154 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
155 	 *  indicated by the interrupt routing model for BL31.
156 	 */
157 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
158 #endif
159 
160 	/*
161 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
162 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
163 	 * next mode is Hyp.
164 	 */
165 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
166 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
167 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
168 		scr_el3 |= SCR_HCE_BIT;
169 	}
170 
171 	/*
172 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
173 	 * execution state setting all fields rather than relying of the hw.
174 	 * Some fields have architecturally UNKNOWN reset values and these are
175 	 * set to zero.
176 	 *
177 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
178 	 *
179 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
180 	 *  required by PSCI specification)
181 	 */
182 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
183 	if (GET_RW(ep->spsr) == MODE_RW_64)
184 		sctlr_elx |= SCTLR_EL1_RES1;
185 	else {
186 		/*
187 		 * If the target execution state is AArch32 then the following
188 		 * fields need to be set.
189 		 *
190 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
191 		 *  instructions are not trapped to EL1.
192 		 *
193 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
194 		 *  instructions are not trapped to EL1.
195 		 *
196 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
197 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
198 		 */
199 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
200 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
201 	}
202 
203 #if ERRATA_A75_764081
204 	/*
205 	 * If workaround of errata 764081 for Cortex-A75 is used then set
206 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
207 	 */
208 	sctlr_elx |= SCTLR_IESB_BIT;
209 #endif
210 
211 	/*
212 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
213 	 * and other EL2 registers are set up by cm_prepare_ns_entry() as they
214 	 * are not part of the stored cpu_context.
215 	 */
216 	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
217 
218 	/*
219 	 * Base the context ACTLR_EL1 on the current value, as it is
220 	 * implementation defined. The context restore process will write
221 	 * the value from the context to the actual register and can cause
222 	 * problems for processor cores that don't expect certain bits to
223 	 * be zero.
224 	 */
225 	actlr_elx = read_actlr_el1();
226 	write_ctx_reg((get_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
227 
228 	if (security_state == SECURE) {
229 		/*
230 		 * Initialise PMCR_EL0 for secure context only, setting all
231 		 * fields rather than relying on hw. Some fields are
232 		 * architecturally UNKNOWN on reset.
233 		 *
234 		 * PMCR_EL0.LC: Set to one so that cycle counter overflow, that
235 		 *  is recorded in PMOVSCLR_EL0[31], occurs on the increment
236 		 *  that changes PMCCNTR_EL0[63] from 1 to 0.
237 		 *
238 		 * PMCR_EL0.DP: Set to one so that the cycle counter,
239 		 *  PMCCNTR_EL0 does not count when event counting is prohibited.
240 		 *
241 		 * PMCR_EL0.X: Set to zero to disable export of events.
242 		 *
243 		 * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0
244 		 *  counts on every clock cycle.
245 		 */
246 		pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT
247 				| PMCR_EL0_DP_BIT)
248 				& ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT));
249 		write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0);
250 	}
251 
252 	/* Populate EL3 state so that we've the right context before doing ERET */
253 	state = get_el3state_ctx(ctx);
254 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
255 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
256 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
257 
258 	/*
259 	 * Store the X0-X7 value from the entrypoint into the context
260 	 * Use memcpy as we are in control of the layout of the structures
261 	 */
262 	gp_regs = get_gpregs_ctx(ctx);
263 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
264 }
265 
266 /*******************************************************************************
267  * Enable architecture extensions on first entry to Non-secure world.
268  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
269  * it is zero.
270  ******************************************************************************/
271 static void enable_extensions_nonsecure(bool el2_unused)
272 {
273 #if IMAGE_BL31
274 #if ENABLE_SPE_FOR_LOWER_ELS
275 	spe_enable(el2_unused);
276 #endif
277 
278 #if ENABLE_AMU
279 	amu_enable(el2_unused);
280 #endif
281 
282 #if ENABLE_SVE_FOR_NS
283 	sve_enable(el2_unused);
284 #endif
285 
286 #if ENABLE_MPAM_FOR_LOWER_ELS
287 	mpam_enable(el2_unused);
288 #endif
289 #endif
290 }
291 
292 /*******************************************************************************
293  * The following function initializes the cpu_context for a CPU specified by
294  * its `cpu_idx` for first use, and sets the initial entrypoint state as
295  * specified by the entry_point_info structure.
296  ******************************************************************************/
297 void cm_init_context_by_index(unsigned int cpu_idx,
298 			      const entry_point_info_t *ep)
299 {
300 	cpu_context_t *ctx;
301 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
302 	cm_setup_context(ctx, ep);
303 }
304 
305 /*******************************************************************************
306  * The following function initializes the cpu_context for the current CPU
307  * for first use, and sets the initial entrypoint state as specified by the
308  * entry_point_info structure.
309  ******************************************************************************/
310 void cm_init_my_context(const entry_point_info_t *ep)
311 {
312 	cpu_context_t *ctx;
313 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
314 	cm_setup_context(ctx, ep);
315 }
316 
317 /*******************************************************************************
318  * Prepare the CPU system registers for first entry into secure or normal world
319  *
320  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
321  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
322  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
323  * For all entries, the EL1 registers are initialized from the cpu_context
324  ******************************************************************************/
325 void cm_prepare_el3_exit(uint32_t security_state)
326 {
327 	uint32_t sctlr_elx, scr_el3, mdcr_el2;
328 	cpu_context_t *ctx = cm_get_context(security_state);
329 	bool el2_unused = false;
330 	uint64_t hcr_el2 = 0U;
331 
332 	assert(ctx != NULL);
333 
334 	if (security_state == NON_SECURE) {
335 		scr_el3 = (uint32_t)read_ctx_reg(get_el3state_ctx(ctx),
336 						 CTX_SCR_EL3);
337 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
338 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
339 			sctlr_elx = (uint32_t)read_ctx_reg(get_sysregs_ctx(ctx),
340 							   CTX_SCTLR_EL1);
341 			sctlr_elx &= SCTLR_EE_BIT;
342 			sctlr_elx |= SCTLR_EL2_RES1;
343 #if ERRATA_A75_764081
344 			/*
345 			 * If workaround of errata 764081 for Cortex-A75 is used
346 			 * then set SCTLR_EL2.IESB to enable Implicit Error
347 			 * Synchronization Barrier.
348 			 */
349 			sctlr_elx |= SCTLR_IESB_BIT;
350 #endif
351 			write_sctlr_el2(sctlr_elx);
352 		} else if (el_implemented(2) != EL_IMPL_NONE) {
353 			el2_unused = true;
354 
355 			/*
356 			 * EL2 present but unused, need to disable safely.
357 			 * SCTLR_EL2 can be ignored in this case.
358 			 *
359 			 * Set EL2 register width appropriately: Set HCR_EL2
360 			 * field to match SCR_EL3.RW.
361 			 */
362 			if ((scr_el3 & SCR_RW_BIT) != 0U)
363 				hcr_el2 |= HCR_RW_BIT;
364 
365 			/*
366 			 * For Armv8.3 pointer authentication feature, disable
367 			 * traps to EL2 when accessing key registers or using
368 			 * pointer authentication instructions from lower ELs.
369 			 */
370 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
371 
372 			write_hcr_el2(hcr_el2);
373 
374 			/*
375 			 * Initialise CPTR_EL2 setting all fields rather than
376 			 * relying on the hw. All fields have architecturally
377 			 * UNKNOWN reset values.
378 			 *
379 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
380 			 *  accesses to the CPACR_EL1 or CPACR from both
381 			 *  Execution states do not trap to EL2.
382 			 *
383 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
384 			 *  register accesses to the trace registers from both
385 			 *  Execution states do not trap to EL2.
386 			 *
387 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
388 			 *  to SIMD and floating-point functionality from both
389 			 *  Execution states do not trap to EL2.
390 			 */
391 			write_cptr_el2(CPTR_EL2_RESET_VAL &
392 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
393 					| CPTR_EL2_TFP_BIT));
394 
395 			/*
396 			 * Initialise CNTHCTL_EL2. All fields are
397 			 * architecturally UNKNOWN on reset and are set to zero
398 			 * except for field(s) listed below.
399 			 *
400 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
401 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
402 			 *  physical timer registers.
403 			 *
404 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
405 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
406 			 *  physical counter registers.
407 			 */
408 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
409 						EL1PCEN_BIT | EL1PCTEN_BIT);
410 
411 			/*
412 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
413 			 * architecturally UNKNOWN value.
414 			 */
415 			write_cntvoff_el2(0);
416 
417 			/*
418 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
419 			 * MPIDR_EL1 respectively.
420 			 */
421 			write_vpidr_el2(read_midr_el1());
422 			write_vmpidr_el2(read_mpidr_el1());
423 
424 			/*
425 			 * Initialise VTTBR_EL2. All fields are architecturally
426 			 * UNKNOWN on reset.
427 			 *
428 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
429 			 *  2 address translation is disabled, cache maintenance
430 			 *  operations depend on the VMID.
431 			 *
432 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
433 			 *  translation is disabled.
434 			 */
435 			write_vttbr_el2(VTTBR_RESET_VAL &
436 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
437 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
438 
439 			/*
440 			 * Initialise MDCR_EL2, setting all fields rather than
441 			 * relying on hw. Some fields are architecturally
442 			 * UNKNOWN on reset.
443 			 *
444 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
445 			 *  EL1 System register accesses to the Debug ROM
446 			 *  registers are not trapped to EL2.
447 			 *
448 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
449 			 *  System register accesses to the powerdown debug
450 			 *  registers are not trapped to EL2.
451 			 *
452 			 * MDCR_EL2.TDA: Set to zero so that System register
453 			 *  accesses to the debug registers do not trap to EL2.
454 			 *
455 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
456 			 *  are not routed to EL2.
457 			 *
458 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
459 			 *  Monitors.
460 			 *
461 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
462 			 *  EL1 accesses to all Performance Monitors registers
463 			 *  are not trapped to EL2.
464 			 *
465 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
466 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
467 			 *  trapped to EL2.
468 			 *
469 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
470 			 *  architecturally-defined reset value.
471 			 */
472 			mdcr_el2 = ((MDCR_EL2_RESET_VAL |
473 					((read_pmcr_el0() & PMCR_EL0_N_BITS)
474 					>> PMCR_EL0_N_SHIFT)) &
475 					~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT
476 					| MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT
477 					| MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT
478 					| MDCR_EL2_TPMCR_BIT));
479 
480 			write_mdcr_el2(mdcr_el2);
481 
482 			/*
483 			 * Initialise HSTR_EL2. All fields are architecturally
484 			 * UNKNOWN on reset.
485 			 *
486 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
487 			 *  Non-secure EL0 or EL1 accesses to System registers
488 			 *  do not trap to EL2.
489 			 */
490 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
491 			/*
492 			 * Initialise CNTHP_CTL_EL2. All fields are
493 			 * architecturally UNKNOWN on reset.
494 			 *
495 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
496 			 *  physical timer and prevent timer interrupts.
497 			 */
498 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
499 						~(CNTHP_CTL_ENABLE_BIT));
500 		}
501 		enable_extensions_nonsecure(el2_unused);
502 	}
503 
504 	cm_el1_sysregs_context_restore(security_state);
505 	cm_set_next_eret_context(security_state);
506 }
507 
508 /*******************************************************************************
509  * The next four functions are used by runtime services to save and restore
510  * EL1 context on the 'cpu_context' structure for the specified security
511  * state.
512  ******************************************************************************/
513 void cm_el1_sysregs_context_save(uint32_t security_state)
514 {
515 	cpu_context_t *ctx;
516 
517 	ctx = cm_get_context(security_state);
518 	assert(ctx != NULL);
519 
520 	el1_sysregs_context_save(get_sysregs_ctx(ctx));
521 
522 #if IMAGE_BL31
523 	if (security_state == SECURE)
524 		PUBLISH_EVENT(cm_exited_secure_world);
525 	else
526 		PUBLISH_EVENT(cm_exited_normal_world);
527 #endif
528 }
529 
530 void cm_el1_sysregs_context_restore(uint32_t security_state)
531 {
532 	cpu_context_t *ctx;
533 
534 	ctx = cm_get_context(security_state);
535 	assert(ctx != NULL);
536 
537 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
538 
539 #if IMAGE_BL31
540 	if (security_state == SECURE)
541 		PUBLISH_EVENT(cm_entering_secure_world);
542 	else
543 		PUBLISH_EVENT(cm_entering_normal_world);
544 #endif
545 }
546 
547 /*******************************************************************************
548  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
549  * given security state with the given entrypoint
550  ******************************************************************************/
551 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
552 {
553 	cpu_context_t *ctx;
554 	el3_state_t *state;
555 
556 	ctx = cm_get_context(security_state);
557 	assert(ctx != NULL);
558 
559 	/* Populate EL3 state so that ERET jumps to the correct entry */
560 	state = get_el3state_ctx(ctx);
561 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
562 }
563 
564 /*******************************************************************************
565  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
566  * pertaining to the given security state
567  ******************************************************************************/
568 void cm_set_elr_spsr_el3(uint32_t security_state,
569 			uintptr_t entrypoint, uint32_t spsr)
570 {
571 	cpu_context_t *ctx;
572 	el3_state_t *state;
573 
574 	ctx = cm_get_context(security_state);
575 	assert(ctx != NULL);
576 
577 	/* Populate EL3 state so that ERET jumps to the correct entry */
578 	state = get_el3state_ctx(ctx);
579 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
580 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
581 }
582 
583 /*******************************************************************************
584  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
585  * pertaining to the given security state using the value and bit position
586  * specified in the parameters. It preserves all other bits.
587  ******************************************************************************/
588 void cm_write_scr_el3_bit(uint32_t security_state,
589 			  uint32_t bit_pos,
590 			  uint32_t value)
591 {
592 	cpu_context_t *ctx;
593 	el3_state_t *state;
594 	uint32_t scr_el3;
595 
596 	ctx = cm_get_context(security_state);
597 	assert(ctx != NULL);
598 
599 	/* Ensure that the bit position is a valid one */
600 	assert(((1U << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
601 
602 	/* Ensure that the 'value' is only a bit wide */
603 	assert(value <= 1U);
604 
605 	/*
606 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
607 	 * and set it to its new value.
608 	 */
609 	state = get_el3state_ctx(ctx);
610 	scr_el3 = (uint32_t)read_ctx_reg(state, CTX_SCR_EL3);
611 	scr_el3 &= ~(1U << bit_pos);
612 	scr_el3 |= value << bit_pos;
613 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
614 }
615 
616 /*******************************************************************************
617  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
618  * given security state.
619  ******************************************************************************/
620 uint32_t cm_get_scr_el3(uint32_t security_state)
621 {
622 	cpu_context_t *ctx;
623 	el3_state_t *state;
624 
625 	ctx = cm_get_context(security_state);
626 	assert(ctx != NULL);
627 
628 	/* Populate EL3 state so that ERET jumps to the correct entry */
629 	state = get_el3state_ctx(ctx);
630 	return (uint32_t)read_ctx_reg(state, CTX_SCR_EL3);
631 }
632 
633 /*******************************************************************************
634  * This function is used to program the context that's used for exception
635  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
636  * the required security state
637  ******************************************************************************/
638 void cm_set_next_eret_context(uint32_t security_state)
639 {
640 	cpu_context_t *ctx;
641 
642 	ctx = cm_get_context(security_state);
643 	assert(ctx != NULL);
644 
645 	cm_set_next_context(ctx);
646 }
647