xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 532ed6183868036e4a4f83cd7a71b93266a3bdb7)
1 /*
2  * Copyright (c) 2013-2016, ARM Limited and Contributors. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * Redistributions of source code must retain the above copyright notice, this
8  * list of conditions and the following disclaimer.
9  *
10  * Redistributions in binary form must reproduce the above copyright notice,
11  * this list of conditions and the following disclaimer in the documentation
12  * and/or other materials provided with the distribution.
13  *
14  * Neither the name of ARM nor the names of its contributors may be used
15  * to endorse or promote products derived from this software without specific
16  * prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <arch.h>
32 #include <arch_helpers.h>
33 #include <assert.h>
34 #include <bl_common.h>
35 #include <context.h>
36 #include <context_mgmt.h>
37 #include <interrupt_mgmt.h>
38 #include <platform.h>
39 #include <platform_def.h>
40 #include <smcc_helpers.h>
41 #include <string.h>
42 
43 
44 /*******************************************************************************
45  * Context management library initialisation routine. This library is used by
46  * runtime services to share pointers to 'cpu_context' structures for the secure
47  * and non-secure states. Management of the structures and their associated
48  * memory is not done by the context management library e.g. the PSCI service
49  * manages the cpu context used for entry from and exit to the non-secure state.
50  * The Secure payload dispatcher service manages the context(s) corresponding to
51  * the secure state. It also uses this library to get access to the non-secure
52  * state cpu context pointers.
53  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
54  * which will used for programming an entry into a lower EL. The same context
55  * will used to save state upon exception entry from that EL.
56  ******************************************************************************/
57 void cm_init(void)
58 {
59 	/*
60 	 * The context management library has only global data to intialize, but
61 	 * that will be done when the BSS is zeroed out
62 	 */
63 }
64 
65 /*******************************************************************************
66  * The following function initializes the cpu_context 'ctx' for
67  * first use, and sets the initial entrypoint state as specified by the
68  * entry_point_info structure.
69  *
70  * The security state to initialize is determined by the SECURE attribute
71  * of the entry_point_info. The function returns a pointer to the initialized
72  * context and sets this as the next context to return to.
73  *
74  * The EE and ST attributes are used to configure the endianess and secure
75  * timer availability for the new execution context.
76  *
77  * To prepare the register state for entry call cm_prepare_el3_exit() and
78  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
79  * cm_e1_sysreg_context_restore().
80  ******************************************************************************/
81 static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
82 {
83 	unsigned int security_state;
84 	uint32_t scr_el3;
85 	el3_state_t *state;
86 	gp_regs_t *gp_regs;
87 	unsigned long sctlr_elx;
88 
89 	assert(ctx);
90 
91 	security_state = GET_SECURITY_STATE(ep->h.attr);
92 
93 	/* Clear any residual register values from the context */
94 	memset(ctx, 0, sizeof(*ctx));
95 
96 	/*
97 	 * Base the context SCR on the current value, adjust for entry point
98 	 * specific requirements and set trap bits from the IMF
99 	 * TODO: provide the base/global SCR bits using another mechanism?
100 	 */
101 	scr_el3 = read_scr();
102 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
103 			SCR_ST_BIT | SCR_HCE_BIT);
104 
105 	if (security_state != SECURE)
106 		scr_el3 |= SCR_NS_BIT;
107 
108 	if (GET_RW(ep->spsr) == MODE_RW_64)
109 		scr_el3 |= SCR_RW_BIT;
110 
111 	if (EP_GET_ST(ep->h.attr))
112 		scr_el3 |= SCR_ST_BIT;
113 
114 #ifndef HANDLE_EA_EL3_FIRST
115 	/* Explicitly stop to trap aborts from lower exception levels. */
116 	scr_el3 &= ~SCR_EA_BIT;
117 #endif
118 
119 #if IMAGE_BL31
120 	/*
121 	 * IRQ/FIQ bits only need setting if interrupt routing
122 	 * model has been set up for BL31.
123 	 */
124 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
125 #endif
126 
127 	/*
128 	 * Set up SCTLR_ELx for the target exception level:
129 	 * EE bit is taken from the entrypoint attributes
130 	 * M, C and I bits must be zero (as required by PSCI specification)
131 	 *
132 	 * The target exception level is based on the spsr mode requested.
133 	 * If execution is requested to EL2 or hyp mode, HVC is enabled
134 	 * via SCR_EL3.HCE.
135 	 *
136 	 * Always compute the SCTLR_EL1 value and save in the cpu_context
137 	 * - the EL2 registers are set up by cm_preapre_ns_entry() as they
138 	 * are not part of the stored cpu_context
139 	 *
140 	 * TODO: In debug builds the spsr should be validated and checked
141 	 * against the CPU support, security state, endianess and pc
142 	 */
143 	sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
144 	if (GET_RW(ep->spsr) == MODE_RW_64)
145 		sctlr_elx |= SCTLR_EL1_RES1;
146 	else
147 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1;
148 	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
149 
150 	if ((GET_RW(ep->spsr) == MODE_RW_64
151 	     && GET_EL(ep->spsr) == MODE_EL2)
152 	    || (GET_RW(ep->spsr) != MODE_RW_64
153 		&& GET_M32(ep->spsr) == MODE32_hyp)) {
154 		scr_el3 |= SCR_HCE_BIT;
155 	}
156 
157 	/* Populate EL3 state so that we've the right context before doing ERET */
158 	state = get_el3state_ctx(ctx);
159 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
160 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
161 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
162 
163 	/*
164 	 * Store the X0-X7 value from the entrypoint into the context
165 	 * Use memcpy as we are in control of the layout of the structures
166 	 */
167 	gp_regs = get_gpregs_ctx(ctx);
168 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
169 }
170 
171 /*******************************************************************************
172  * The following function initializes the cpu_context for a CPU specified by
173  * its `cpu_idx` for first use, and sets the initial entrypoint state as
174  * specified by the entry_point_info structure.
175  ******************************************************************************/
176 void cm_init_context_by_index(unsigned int cpu_idx,
177 			      const entry_point_info_t *ep)
178 {
179 	cpu_context_t *ctx;
180 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
181 	cm_init_context_common(ctx, ep);
182 }
183 
184 /*******************************************************************************
185  * The following function initializes the cpu_context for the current CPU
186  * for first use, and sets the initial entrypoint state as specified by the
187  * entry_point_info structure.
188  ******************************************************************************/
189 void cm_init_my_context(const entry_point_info_t *ep)
190 {
191 	cpu_context_t *ctx;
192 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
193 	cm_init_context_common(ctx, ep);
194 }
195 
196 /*******************************************************************************
197  * Prepare the CPU system registers for first entry into secure or normal world
198  *
199  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
200  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
201  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
202  * For all entries, the EL1 registers are initialized from the cpu_context
203  ******************************************************************************/
204 void cm_prepare_el3_exit(uint32_t security_state)
205 {
206 	uint32_t sctlr_elx, scr_el3, cptr_el2;
207 	cpu_context_t *ctx = cm_get_context(security_state);
208 
209 	assert(ctx);
210 
211 	if (security_state == NON_SECURE) {
212 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
213 		if (scr_el3 & SCR_HCE_BIT) {
214 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
215 			sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
216 						 CTX_SCTLR_EL1);
217 			sctlr_elx &= ~SCTLR_EE_BIT;
218 			sctlr_elx |= SCTLR_EL2_RES1;
219 			write_sctlr_el2(sctlr_elx);
220 		} else if (read_id_aa64pfr0_el1() &
221 			   (ID_AA64PFR0_ELX_MASK << ID_AA64PFR0_EL2_SHIFT)) {
222 			/* EL2 present but unused, need to disable safely */
223 
224 			/* HCR_EL2 = 0, except RW bit set to match SCR_EL3 */
225 			write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);
226 
227 			/* SCTLR_EL2 : can be ignored when bypassing */
228 
229 			/* CPTR_EL2 : disable all traps TCPAC, TTA, TFP */
230 			cptr_el2 = read_cptr_el2();
231 			cptr_el2 &= ~(TCPAC_BIT | TTA_BIT | TFP_BIT);
232 			write_cptr_el2(cptr_el2);
233 
234 			/* Enable EL1 access to timer */
235 			write_cnthctl_el2(EL1PCEN_BIT | EL1PCTEN_BIT);
236 
237 			/* Reset CNTVOFF_EL2 */
238 			write_cntvoff_el2(0);
239 
240 			/* Set VPIDR, VMPIDR to match MIDR, MPIDR */
241 			write_vpidr_el2(read_midr_el1());
242 			write_vmpidr_el2(read_mpidr_el1());
243 
244 			/*
245 			 * Reset VTTBR_EL2.
246 			 * Needed because cache maintenance operations depend on
247 			 * the VMID even when non-secure EL1&0 stage 2 address
248 			 * translation are disabled.
249 			 */
250 			write_vttbr_el2(0);
251 		}
252 	}
253 
254 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
255 
256 	cm_set_next_context(ctx);
257 }
258 
259 /*******************************************************************************
260  * The next four functions are used by runtime services to save and restore
261  * EL1 context on the 'cpu_context' structure for the specified security
262  * state.
263  ******************************************************************************/
264 void cm_el1_sysregs_context_save(uint32_t security_state)
265 {
266 	cpu_context_t *ctx;
267 
268 	ctx = cm_get_context(security_state);
269 	assert(ctx);
270 
271 	el1_sysregs_context_save(get_sysregs_ctx(ctx));
272 }
273 
274 void cm_el1_sysregs_context_restore(uint32_t security_state)
275 {
276 	cpu_context_t *ctx;
277 
278 	ctx = cm_get_context(security_state);
279 	assert(ctx);
280 
281 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
282 }
283 
284 /*******************************************************************************
285  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
286  * given security state with the given entrypoint
287  ******************************************************************************/
288 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
289 {
290 	cpu_context_t *ctx;
291 	el3_state_t *state;
292 
293 	ctx = cm_get_context(security_state);
294 	assert(ctx);
295 
296 	/* Populate EL3 state so that ERET jumps to the correct entry */
297 	state = get_el3state_ctx(ctx);
298 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
299 }
300 
301 /*******************************************************************************
302  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
303  * pertaining to the given security state
304  ******************************************************************************/
305 void cm_set_elr_spsr_el3(uint32_t security_state,
306 			uintptr_t entrypoint, uint32_t spsr)
307 {
308 	cpu_context_t *ctx;
309 	el3_state_t *state;
310 
311 	ctx = cm_get_context(security_state);
312 	assert(ctx);
313 
314 	/* Populate EL3 state so that ERET jumps to the correct entry */
315 	state = get_el3state_ctx(ctx);
316 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
317 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
318 }
319 
320 /*******************************************************************************
321  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
322  * pertaining to the given security state using the value and bit position
323  * specified in the parameters. It preserves all other bits.
324  ******************************************************************************/
325 void cm_write_scr_el3_bit(uint32_t security_state,
326 			  uint32_t bit_pos,
327 			  uint32_t value)
328 {
329 	cpu_context_t *ctx;
330 	el3_state_t *state;
331 	uint32_t scr_el3;
332 
333 	ctx = cm_get_context(security_state);
334 	assert(ctx);
335 
336 	/* Ensure that the bit position is a valid one */
337 	assert((1 << bit_pos) & SCR_VALID_BIT_MASK);
338 
339 	/* Ensure that the 'value' is only a bit wide */
340 	assert(value <= 1);
341 
342 	/*
343 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
344 	 * and set it to its new value.
345 	 */
346 	state = get_el3state_ctx(ctx);
347 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
348 	scr_el3 &= ~(1 << bit_pos);
349 	scr_el3 |= value << bit_pos;
350 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
351 }
352 
353 /*******************************************************************************
354  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
355  * given security state.
356  ******************************************************************************/
357 uint32_t cm_get_scr_el3(uint32_t security_state)
358 {
359 	cpu_context_t *ctx;
360 	el3_state_t *state;
361 
362 	ctx = cm_get_context(security_state);
363 	assert(ctx);
364 
365 	/* Populate EL3 state so that ERET jumps to the correct entry */
366 	state = get_el3state_ctx(ctx);
367 	return read_ctx_reg(state, CTX_SCR_EL3);
368 }
369 
370 /*******************************************************************************
371  * This function is used to program the context that's used for exception
372  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
373  * the required security state
374  ******************************************************************************/
375 void cm_set_next_eret_context(uint32_t security_state)
376 {
377 	cpu_context_t *ctx;
378 
379 	ctx = cm_get_context(security_state);
380 	assert(ctx);
381 
382 	cm_set_next_context(ctx);
383 }
384