xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 51faada71a219a8b94cd8d8e423f0f22e9da4d8f)
1 /*
2  * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *
7  * Redistributions of source code must retain the above copyright notice, this
8  * list of conditions and the following disclaimer.
9  *
10  * Redistributions in binary form must reproduce the above copyright notice,
11  * this list of conditions and the following disclaimer in the documentation
12  * and/or other materials provided with the distribution.
13  *
14  * Neither the name of ARM nor the names of its contributors may be used
15  * to endorse or promote products derived from this software without specific
16  * prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #include <arch.h>
32 #include <arch_helpers.h>
33 #include <assert.h>
34 #include <bl_common.h>
35 #include <context.h>
36 #include <context_mgmt.h>
37 #include <interrupt_mgmt.h>
38 #include <platform.h>
39 #include <platform_def.h>
40 #include <smcc_helpers.h>
41 #include <string.h>
42 #include <utils.h>
43 
44 
45 /*******************************************************************************
46  * Context management library initialisation routine. This library is used by
47  * runtime services to share pointers to 'cpu_context' structures for the secure
48  * and non-secure states. Management of the structures and their associated
49  * memory is not done by the context management library e.g. the PSCI service
50  * manages the cpu context used for entry from and exit to the non-secure state.
51  * The Secure payload dispatcher service manages the context(s) corresponding to
52  * the secure state. It also uses this library to get access to the non-secure
53  * state cpu context pointers.
54  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
55  * which will used for programming an entry into a lower EL. The same context
56  * will used to save state upon exception entry from that EL.
57  ******************************************************************************/
58 void cm_init(void)
59 {
60 	/*
61 	 * The context management library has only global data to intialize, but
62 	 * that will be done when the BSS is zeroed out
63 	 */
64 }
65 
66 /*******************************************************************************
67  * The following function initializes the cpu_context 'ctx' for
68  * first use, and sets the initial entrypoint state as specified by the
69  * entry_point_info structure.
70  *
71  * The security state to initialize is determined by the SECURE attribute
72  * of the entry_point_info. The function returns a pointer to the initialized
73  * context and sets this as the next context to return to.
74  *
75  * The EE and ST attributes are used to configure the endianess and secure
76  * timer availability for the new execution context.
77  *
78  * To prepare the register state for entry call cm_prepare_el3_exit() and
79  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
80  * cm_e1_sysreg_context_restore().
81  ******************************************************************************/
82 static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
83 {
84 	unsigned int security_state;
85 	uint32_t scr_el3;
86 	el3_state_t *state;
87 	gp_regs_t *gp_regs;
88 	unsigned long sctlr_elx;
89 
90 	assert(ctx);
91 
92 	security_state = GET_SECURITY_STATE(ep->h.attr);
93 
94 	/* Clear any residual register values from the context */
95 	zeromem(ctx, sizeof(*ctx));
96 
97 	/*
98 	 * Base the context SCR on the current value, adjust for entry point
99 	 * specific requirements and set trap bits from the IMF
100 	 * TODO: provide the base/global SCR bits using another mechanism?
101 	 */
102 	scr_el3 = read_scr();
103 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
104 			SCR_ST_BIT | SCR_HCE_BIT);
105 
106 	if (security_state != SECURE)
107 		scr_el3 |= SCR_NS_BIT;
108 
109 	if (GET_RW(ep->spsr) == MODE_RW_64)
110 		scr_el3 |= SCR_RW_BIT;
111 
112 	if (EP_GET_ST(ep->h.attr))
113 		scr_el3 |= SCR_ST_BIT;
114 
115 #ifndef HANDLE_EA_EL3_FIRST
116 	/* Explicitly stop to trap aborts from lower exception levels. */
117 	scr_el3 &= ~SCR_EA_BIT;
118 #endif
119 
120 #ifdef IMAGE_BL31
121 	/*
122 	 * IRQ/FIQ bits only need setting if interrupt routing
123 	 * model has been set up for BL31.
124 	 */
125 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
126 #endif
127 
128 	/*
129 	 * Set up SCTLR_ELx for the target exception level:
130 	 * EE bit is taken from the entrypoint attributes
131 	 * M, C and I bits must be zero (as required by PSCI specification)
132 	 *
133 	 * The target exception level is based on the spsr mode requested.
134 	 * If execution is requested to EL2 or hyp mode, HVC is enabled
135 	 * via SCR_EL3.HCE.
136 	 *
137 	 * Always compute the SCTLR_EL1 value and save in the cpu_context
138 	 * - the EL2 registers are set up by cm_preapre_ns_entry() as they
139 	 * are not part of the stored cpu_context
140 	 *
141 	 * TODO: In debug builds the spsr should be validated and checked
142 	 * against the CPU support, security state, endianess and pc
143 	 */
144 	sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
145 	if (GET_RW(ep->spsr) == MODE_RW_64)
146 		sctlr_elx |= SCTLR_EL1_RES1;
147 	else {
148 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1;
149 		/*
150 		 * If lower non-secure EL is AArch32, enable the CP15BEN, nTWI
151 		 * & nTWI bits. This aligns with SCTLR initialization on
152 		 * systems with an AArch32 EL3, where these bits
153 		 * architecturally reset to 1.
154 		 */
155 		if (security_state != SECURE)
156 			sctlr_elx |= SCTLR_CP15BEN_BIT | SCTLR_NTWI_BIT
157 						| SCTLR_NTWE_BIT;
158 	}
159 
160 	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
161 
162 	if ((GET_RW(ep->spsr) == MODE_RW_64
163 	     && GET_EL(ep->spsr) == MODE_EL2)
164 	    || (GET_RW(ep->spsr) != MODE_RW_64
165 		&& GET_M32(ep->spsr) == MODE32_hyp)) {
166 		scr_el3 |= SCR_HCE_BIT;
167 	}
168 
169 	/* Populate EL3 state so that we've the right context before doing ERET */
170 	state = get_el3state_ctx(ctx);
171 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
172 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
173 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
174 
175 	/*
176 	 * Store the X0-X7 value from the entrypoint into the context
177 	 * Use memcpy as we are in control of the layout of the structures
178 	 */
179 	gp_regs = get_gpregs_ctx(ctx);
180 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
181 }
182 
183 /*******************************************************************************
184  * The following function initializes the cpu_context for a CPU specified by
185  * its `cpu_idx` for first use, and sets the initial entrypoint state as
186  * specified by the entry_point_info structure.
187  ******************************************************************************/
188 void cm_init_context_by_index(unsigned int cpu_idx,
189 			      const entry_point_info_t *ep)
190 {
191 	cpu_context_t *ctx;
192 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
193 	cm_init_context_common(ctx, ep);
194 }
195 
196 /*******************************************************************************
197  * The following function initializes the cpu_context for the current CPU
198  * for first use, and sets the initial entrypoint state as specified by the
199  * entry_point_info structure.
200  ******************************************************************************/
201 void cm_init_my_context(const entry_point_info_t *ep)
202 {
203 	cpu_context_t *ctx;
204 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
205 	cm_init_context_common(ctx, ep);
206 }
207 
208 /*******************************************************************************
209  * Prepare the CPU system registers for first entry into secure or normal world
210  *
211  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
212  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
213  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
214  * For all entries, the EL1 registers are initialized from the cpu_context
215  ******************************************************************************/
216 void cm_prepare_el3_exit(uint32_t security_state)
217 {
218 	uint32_t sctlr_elx, scr_el3, cptr_el2;
219 	cpu_context_t *ctx = cm_get_context(security_state);
220 
221 	assert(ctx);
222 
223 	if (security_state == NON_SECURE) {
224 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
225 		if (scr_el3 & SCR_HCE_BIT) {
226 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
227 			sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
228 						 CTX_SCTLR_EL1);
229 			sctlr_elx &= ~SCTLR_EE_BIT;
230 			sctlr_elx |= SCTLR_EL2_RES1;
231 			write_sctlr_el2(sctlr_elx);
232 		} else if (read_id_aa64pfr0_el1() &
233 			   (ID_AA64PFR0_ELX_MASK << ID_AA64PFR0_EL2_SHIFT)) {
234 			/* EL2 present but unused, need to disable safely */
235 
236 			/* HCR_EL2 = 0, except RW bit set to match SCR_EL3 */
237 			write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);
238 
239 			/* SCTLR_EL2 : can be ignored when bypassing */
240 
241 			/* CPTR_EL2 : disable all traps TCPAC, TTA, TFP */
242 			cptr_el2 = read_cptr_el2();
243 			cptr_el2 &= ~(TCPAC_BIT | TTA_BIT | TFP_BIT);
244 			write_cptr_el2(cptr_el2);
245 
246 			/* Enable EL1 access to timer */
247 			write_cnthctl_el2(EL1PCEN_BIT | EL1PCTEN_BIT);
248 
249 			/* Reset CNTVOFF_EL2 */
250 			write_cntvoff_el2(0);
251 
252 			/* Set VPIDR, VMPIDR to match MIDR, MPIDR */
253 			write_vpidr_el2(read_midr_el1());
254 			write_vmpidr_el2(read_mpidr_el1());
255 
256 			/*
257 			 * Reset VTTBR_EL2.
258 			 * Needed because cache maintenance operations depend on
259 			 * the VMID even when non-secure EL1&0 stage 2 address
260 			 * translation are disabled.
261 			 */
262 			write_vttbr_el2(0);
263 			/*
264 			 * Avoid unexpected debug traps in case where MDCR_EL2
265 			 * is not completely reset by the hardware - set
266 			 * MDCR_EL2.HPMN to PMCR_EL0.N and zero the remaining
267 			 * bits.
268 			 * MDCR_EL2.HPMN and PMCR_EL0.N fields are the same size
269 			 * (5 bits) and HPMN is at offset zero within MDCR_EL2.
270 			 */
271 			write_mdcr_el2((read_pmcr_el0() & PMCR_EL0_N_BITS)
272 					>> PMCR_EL0_N_SHIFT);
273 			/*
274 			 * Avoid unexpected traps of non-secure access to
275 			 * certain system registers at EL1 or lower where
276 			 * HSTR_EL2 is not completely reset to zero by the
277 			 * hardware - zero the entire register.
278 			 */
279 			write_hstr_el2(0);
280 			/*
281 			 * Reset CNTHP_CTL_EL2 to disable the EL2 physical timer
282 			 * and therefore prevent timer interrupts.
283 			 */
284 			write_cnthp_ctl_el2(0);
285 		}
286 	}
287 
288 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
289 
290 	cm_set_next_context(ctx);
291 }
292 
293 /*******************************************************************************
294  * The next four functions are used by runtime services to save and restore
295  * EL1 context on the 'cpu_context' structure for the specified security
296  * state.
297  ******************************************************************************/
298 void cm_el1_sysregs_context_save(uint32_t security_state)
299 {
300 	cpu_context_t *ctx;
301 
302 	ctx = cm_get_context(security_state);
303 	assert(ctx);
304 
305 	el1_sysregs_context_save(get_sysregs_ctx(ctx));
306 }
307 
308 void cm_el1_sysregs_context_restore(uint32_t security_state)
309 {
310 	cpu_context_t *ctx;
311 
312 	ctx = cm_get_context(security_state);
313 	assert(ctx);
314 
315 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
316 }
317 
318 /*******************************************************************************
319  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
320  * given security state with the given entrypoint
321  ******************************************************************************/
322 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
323 {
324 	cpu_context_t *ctx;
325 	el3_state_t *state;
326 
327 	ctx = cm_get_context(security_state);
328 	assert(ctx);
329 
330 	/* Populate EL3 state so that ERET jumps to the correct entry */
331 	state = get_el3state_ctx(ctx);
332 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
333 }
334 
335 /*******************************************************************************
336  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
337  * pertaining to the given security state
338  ******************************************************************************/
339 void cm_set_elr_spsr_el3(uint32_t security_state,
340 			uintptr_t entrypoint, uint32_t spsr)
341 {
342 	cpu_context_t *ctx;
343 	el3_state_t *state;
344 
345 	ctx = cm_get_context(security_state);
346 	assert(ctx);
347 
348 	/* Populate EL3 state so that ERET jumps to the correct entry */
349 	state = get_el3state_ctx(ctx);
350 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
351 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
352 }
353 
354 /*******************************************************************************
355  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
356  * pertaining to the given security state using the value and bit position
357  * specified in the parameters. It preserves all other bits.
358  ******************************************************************************/
359 void cm_write_scr_el3_bit(uint32_t security_state,
360 			  uint32_t bit_pos,
361 			  uint32_t value)
362 {
363 	cpu_context_t *ctx;
364 	el3_state_t *state;
365 	uint32_t scr_el3;
366 
367 	ctx = cm_get_context(security_state);
368 	assert(ctx);
369 
370 	/* Ensure that the bit position is a valid one */
371 	assert((1 << bit_pos) & SCR_VALID_BIT_MASK);
372 
373 	/* Ensure that the 'value' is only a bit wide */
374 	assert(value <= 1);
375 
376 	/*
377 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
378 	 * and set it to its new value.
379 	 */
380 	state = get_el3state_ctx(ctx);
381 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
382 	scr_el3 &= ~(1 << bit_pos);
383 	scr_el3 |= value << bit_pos;
384 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
385 }
386 
387 /*******************************************************************************
388  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
389  * given security state.
390  ******************************************************************************/
391 uint32_t cm_get_scr_el3(uint32_t security_state)
392 {
393 	cpu_context_t *ctx;
394 	el3_state_t *state;
395 
396 	ctx = cm_get_context(security_state);
397 	assert(ctx);
398 
399 	/* Populate EL3 state so that ERET jumps to the correct entry */
400 	state = get_el3state_ctx(ctx);
401 	return read_ctx_reg(state, CTX_SCR_EL3);
402 }
403 
404 /*******************************************************************************
405  * This function is used to program the context that's used for exception
406  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
407  * the required security state
408  ******************************************************************************/
409 void cm_set_next_eret_context(uint32_t security_state)
410 {
411 	cpu_context_t *ctx;
412 
413 	ctx = cm_get_context(security_state);
414 	assert(ctx);
415 
416 	cm_set_next_context(ctx);
417 }
418