xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 51997e3d8a55b92d5c61deb096cc7975cf15f002)
1 /*
2  * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/cpus/cpu_ops.h>
23 #include <lib/cpus/errata.h>
24 #include <lib/el3_runtime/context_mgmt.h>
25 #include <lib/el3_runtime/cpu_data.h>
26 #include <lib/el3_runtime/pubsub_events.h>
27 #include <lib/extensions/amu.h>
28 #include <lib/extensions/brbe.h>
29 #include <lib/extensions/debug_v8p9.h>
30 #include <lib/extensions/fgt2.h>
31 #include <lib/extensions/fpmr.h>
32 #include <lib/extensions/mpam.h>
33 #include <lib/extensions/pauth.h>
34 #include <lib/extensions/pmuv3.h>
35 #include <lib/extensions/sme.h>
36 #include <lib/extensions/spe.h>
37 #include <lib/extensions/sve.h>
38 #include <lib/extensions/sysreg128.h>
39 #include <lib/extensions/sys_reg_trace.h>
40 #include <lib/extensions/tcr2.h>
41 #include <lib/extensions/trbe.h>
42 #include <lib/extensions/trf.h>
43 #include <lib/utils.h>
44 
45 #if ENABLE_FEAT_TWED
46 /* Make sure delay value fits within the range(0-15) */
47 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
48 #endif /* ENABLE_FEAT_TWED */
49 
50 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
51 static bool has_secure_perworld_init;
52 
53 static void manage_extensions_nonsecure(cpu_context_t *ctx);
54 static void manage_extensions_secure(cpu_context_t *ctx);
55 static void manage_extensions_secure_per_world(void);
56 
57 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
58 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
59 {
60 	u_register_t sctlr_elx, actlr_elx;
61 
62 	/*
63 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
64 	 * execution state setting all fields rather than relying on the hw.
65 	 * Some fields have architecturally UNKNOWN reset values and these are
66 	 * set to zero.
67 	 *
68 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
69 	 *
70 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
71 	 * required by PSCI specification)
72 	 */
73 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
74 	if (GET_RW(ep->spsr) == MODE_RW_64) {
75 		sctlr_elx |= SCTLR_EL1_RES1;
76 	} else {
77 		/*
78 		 * If the target execution state is AArch32 then the following
79 		 * fields need to be set.
80 		 *
81 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
82 		 *  instructions are not trapped to EL1.
83 		 *
84 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
85 		 *  instructions are not trapped to EL1.
86 		 *
87 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
88 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
89 		 */
90 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
91 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
92 	}
93 
94 	/*
95 	 * If workaround of errata 764081 for Cortex-A75 is used then set
96 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
97 	 */
98 	if (errata_a75_764081_applies()) {
99 		sctlr_elx |= SCTLR_IESB_BIT;
100 	}
101 
102 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
103 	write_ctx_sctlr_el1_reg_errata(ctx, sctlr_elx);
104 
105 	/*
106 	 * Base the context ACTLR_EL1 on the current value, as it is
107 	 * implementation defined. The context restore process will write
108 	 * the value from the context to the actual register and can cause
109 	 * problems for processor cores that don't expect certain bits to
110 	 * be zero.
111 	 */
112 	actlr_elx = read_actlr_el1();
113 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx);
114 }
115 #endif /* (IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)) */
116 
117 /******************************************************************************
118  * This function performs initializations that are specific to SECURE state
119  * and updates the cpu context specified by 'ctx'.
120  *****************************************************************************/
121 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
122 {
123 	u_register_t scr_el3;
124 	el3_state_t *state;
125 
126 	state = get_el3state_ctx(ctx);
127 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
128 
129 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
130 	/*
131 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
132 	 * indicated by the interrupt routing model for BL31.
133 	 */
134 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
135 #endif
136 
137 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
138 	if (is_feat_mte2_supported()) {
139 		scr_el3 |= SCR_ATA_BIT;
140 	}
141 
142 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
143 
144 	/*
145 	 * Initialize EL1 context registers unless SPMC is running
146 	 * at S-EL2.
147 	 */
148 #if (!SPMD_SPM_AT_SEL2)
149 	setup_el1_context(ctx, ep);
150 #endif
151 
152 	manage_extensions_secure(ctx);
153 
154 	/**
155 	 * manage_extensions_secure_per_world api has to be executed once,
156 	 * as the registers getting initialised, maintain constant value across
157 	 * all the cpus for the secure world.
158 	 * Henceforth, this check ensures that the registers are initialised once
159 	 * and avoids re-initialization from multiple cores.
160 	 */
161 	if (!has_secure_perworld_init) {
162 		manage_extensions_secure_per_world();
163 	}
164 }
165 
166 #if ENABLE_RME
167 /******************************************************************************
168  * This function performs initializations that are specific to REALM state
169  * and updates the cpu context specified by 'ctx'.
170  *****************************************************************************/
171 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
172 {
173 	u_register_t scr_el3;
174 	el3_state_t *state;
175 
176 	state = get_el3state_ctx(ctx);
177 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
178 
179 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
180 
181 	/* CSV2 version 2 and above */
182 	if (is_feat_csv2_2_supported()) {
183 		/* Enable access to the SCXTNUM_ELx registers. */
184 		scr_el3 |= SCR_EnSCXT_BIT;
185 	}
186 
187 	if (is_feat_sctlr2_supported()) {
188 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
189 		 * SCTLR2_ELx registers.
190 		 */
191 		scr_el3 |= SCR_SCTLR2En_BIT;
192 	}
193 
194 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
195 
196 	if (is_feat_fgt2_supported()) {
197 		fgt2_enable(ctx);
198 	}
199 
200 	if (is_feat_debugv8p9_supported()) {
201 		debugv8p9_extended_bp_wp_enable(ctx);
202 	}
203 
204 	if (is_feat_brbe_supported()) {
205 		brbe_enable(ctx);
206 	}
207 
208 }
209 #endif /* ENABLE_RME */
210 
211 /******************************************************************************
212  * This function performs initializations that are specific to NON-SECURE state
213  * and updates the cpu context specified by 'ctx'.
214  *****************************************************************************/
215 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
216 {
217 	u_register_t scr_el3;
218 	el3_state_t *state;
219 
220 	state = get_el3state_ctx(ctx);
221 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
222 
223 	/* SCR_NS: Set the NS bit */
224 	scr_el3 |= SCR_NS_BIT;
225 
226 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
227 	if (is_feat_mte2_supported()) {
228 		scr_el3 |= SCR_ATA_BIT;
229 	}
230 
231 	/*
232 	 * Pointer Authentication feature, if present, is always enabled by
233 	 * default for Non secure lower exception levels. We do not have an
234 	 * explicit flag to set it. To prevent the leakage between the worlds
235 	 * during world switch, we enable it only for the non-secure world.
236 	 *
237 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
238 	 * exception levels of secure and realm worlds.
239 	 *
240 	 * If the Secure/realm world wants to use pointer authentication,
241 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
242 	 * it will be enabled globally for all the contexts.
243 	 *
244 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
245 	 *  other than EL3
246 	 *
247 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
248 	 *  than EL3
249 	 */
250 	if (!is_ctx_pauth_supported()) {
251 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
252 	}
253 
254 #if HANDLE_EA_EL3_FIRST_NS
255 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
256 	scr_el3 |= SCR_EA_BIT;
257 #endif
258 
259 #if RAS_TRAP_NS_ERR_REC_ACCESS
260 	/*
261 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
262 	 * and RAS ERX registers from EL1 and EL2(from any security state)
263 	 * are trapped to EL3.
264 	 * Set here to trap only for NS EL1/EL2
265 	 */
266 	scr_el3 |= SCR_TERR_BIT;
267 #endif
268 
269 	/* CSV2 version 2 and above */
270 	if (is_feat_csv2_2_supported()) {
271 		/* Enable access to the SCXTNUM_ELx registers. */
272 		scr_el3 |= SCR_EnSCXT_BIT;
273 	}
274 
275 #ifdef IMAGE_BL31
276 	/*
277 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
278 	 *  indicated by the interrupt routing model for BL31.
279 	 */
280 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
281 #endif
282 
283 	if (is_feat_the_supported()) {
284 		/* Set the RCWMASKEn bit in SCR_EL3 to enable access to
285 		 * RCWMASK_EL1 and RCWSMASK_EL1 registers.
286 		 */
287 		scr_el3 |= SCR_RCWMASKEn_BIT;
288 	}
289 
290 	if (is_feat_sctlr2_supported()) {
291 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
292 		 * SCTLR2_ELx registers.
293 		 */
294 		scr_el3 |= SCR_SCTLR2En_BIT;
295 	}
296 
297 	if (is_feat_d128_supported()) {
298 		/* Set the D128En bit in SCR_EL3 to enable access to 128-bit
299 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
300 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
301 		 */
302 		scr_el3 |= SCR_D128En_BIT;
303 	}
304 
305 	if (is_feat_fpmr_supported()) {
306 		/* Set the EnFPM bit in SCR_EL3 to enable access to FPMR
307 		 * register.
308 		 */
309 		scr_el3 |= SCR_EnFPM_BIT;
310 	}
311 
312 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
313 
314 	/* Initialize EL2 context registers */
315 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
316 
317 	/*
318 	 * Initialize SCTLR_EL2 context register with reset value.
319 	 */
320 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
321 
322 	if (is_feat_hcx_supported()) {
323 		/*
324 		 * Initialize register HCRX_EL2 with its init value.
325 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
326 		 * chance that this can lead to unexpected behavior in lower
327 		 * ELs that have not been updated since the introduction of
328 		 * this feature if not properly initialized, especially when
329 		 * it comes to those bits that enable/disable traps.
330 		 */
331 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
332 			HCRX_EL2_INIT_VAL);
333 	}
334 
335 	if (is_feat_fgt_supported()) {
336 		/*
337 		 * Initialize HFG*_EL2 registers with a default value so legacy
338 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
339 		 * of initialization for this feature.
340 		 */
341 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
342 			HFGITR_EL2_INIT_VAL);
343 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
344 			HFGRTR_EL2_INIT_VAL);
345 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
346 			HFGWTR_EL2_INIT_VAL);
347 	}
348 #else
349 	/* Initialize EL1 context registers */
350 	setup_el1_context(ctx, ep);
351 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
352 
353 	manage_extensions_nonsecure(ctx);
354 }
355 
356 /*******************************************************************************
357  * The following function performs initialization of the cpu_context 'ctx'
358  * for first use that is common to all security states, and sets the
359  * initial entrypoint state as specified by the entry_point_info structure.
360  *
361  * The EE and ST attributes are used to configure the endianness and secure
362  * timer availability for the new execution context.
363  ******************************************************************************/
364 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
365 {
366 	u_register_t scr_el3;
367 	u_register_t mdcr_el3;
368 	el3_state_t *state;
369 	gp_regs_t *gp_regs;
370 
371 	state = get_el3state_ctx(ctx);
372 
373 	/* Clear any residual register values from the context */
374 	zeromem(ctx, sizeof(*ctx));
375 
376 	/*
377 	 * The lower-EL context is zeroed so that no stale values leak to a world.
378 	 * It is assumed that an all-zero lower-EL context is good enough for it
379 	 * to boot correctly. However, there are very few registers where this
380 	 * is not true and some values need to be recreated.
381 	 */
382 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
383 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
384 
385 	/*
386 	 * These bits are set in the gicv3 driver. Losing them (especially the
387 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
388 	 */
389 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
390 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
391 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
392 
393 	/*
394 	 * The actlr_el2 register can be initialized in platform's reset handler
395 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
396 	 */
397 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
398 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
399 
400 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
401 	scr_el3 = SCR_RESET_VAL;
402 
403 	/*
404 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
405 	 *  EL2, EL1 and EL0 are not trapped to EL3.
406 	 *
407 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
408 	 *  EL2, EL1 and EL0 are not trapped to EL3.
409 	 *
410 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
411 	 *  both Security states and both Execution states.
412 	 *
413 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
414 	 *  Non-secure memory.
415 	 */
416 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
417 
418 	scr_el3 |= SCR_SIF_BIT;
419 
420 	/*
421 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
422 	 *  Exception level as specified by SPSR.
423 	 */
424 	if (GET_RW(ep->spsr) == MODE_RW_64) {
425 		scr_el3 |= SCR_RW_BIT;
426 	}
427 
428 	/*
429 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
430 	 * Secure timer registers to EL3, from AArch64 state only, if specified
431 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
432 	 * bit always behaves as 1 (i.e. secure physical timer register access
433 	 * is not trapped)
434 	 */
435 	if (EP_GET_ST(ep->h.attr) != 0U) {
436 		scr_el3 |= SCR_ST_BIT;
437 	}
438 
439 	/*
440 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
441 	 * SCR_EL3.HXEn.
442 	 */
443 	if (is_feat_hcx_supported()) {
444 		scr_el3 |= SCR_HXEn_BIT;
445 	}
446 
447 	/*
448 	 * If FEAT_LS64_ACCDATA is enabled, enable access to ACCDATA_EL1 by
449 	 * setting SCR_EL3.ADEn and allow the ST64BV0 instruction by setting
450 	 * SCR_EL3.EnAS0.
451 	 */
452 	if (is_feat_ls64_accdata_supported()) {
453 		scr_el3 |= SCR_ADEn_BIT | SCR_EnAS0_BIT;
454 	}
455 
456 	/*
457 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
458 	 * registers are trapped to EL3.
459 	 */
460 	if (is_feat_rng_trap_supported()) {
461 		scr_el3 |= SCR_TRNDR_BIT;
462 	}
463 
464 #if FAULT_INJECTION_SUPPORT
465 	/* Enable fault injection from lower ELs */
466 	scr_el3 |= SCR_FIEN_BIT;
467 #endif
468 
469 	/*
470 	 * Enable Pointer Authentication globally for all the worlds.
471 	 *
472 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
473 	 *  other than EL3
474 	 *
475 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
476 	 *  than EL3
477 	 */
478 	if (is_ctx_pauth_supported()) {
479 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
480 	}
481 
482 	/*
483 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
484 	 */
485 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
486 		scr_el3 |= SCR_TCR2EN_BIT;
487 	}
488 
489 	/*
490 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
491 	 * registers for AArch64 if present.
492 	 */
493 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
494 		scr_el3 |= SCR_PIEN_BIT;
495 	}
496 
497 	/*
498 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
499 	 */
500 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
501 		scr_el3 |= SCR_GCSEn_BIT;
502 	}
503 
504 	/*
505 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
506 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
507 	 * next mode is Hyp.
508 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
509 	 * same conditions as HVC instructions and when the processor supports
510 	 * ARMv8.6-FGT.
511 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
512 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
513 	 * and when the processor supports ECV.
514 	 */
515 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
516 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
517 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
518 		scr_el3 |= SCR_HCE_BIT;
519 
520 		if (is_feat_fgt_supported()) {
521 			scr_el3 |= SCR_FGTEN_BIT;
522 		}
523 
524 		if (is_feat_ecv_supported()) {
525 			scr_el3 |= SCR_ECVEN_BIT;
526 		}
527 	}
528 
529 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
530 	if (is_feat_twed_supported()) {
531 		/* Set delay in SCR_EL3 */
532 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
533 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
534 				<< SCR_TWEDEL_SHIFT);
535 
536 		/* Enable WFE delay */
537 		scr_el3 |= SCR_TWEDEn_BIT;
538 	}
539 
540 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
541 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
542 	if (is_feat_sel2_supported()) {
543 		scr_el3 |= SCR_EEL2_BIT;
544 	}
545 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
546 
547 	if (is_feat_mec_supported()) {
548 		scr_el3 |= SCR_MECEn_BIT;
549 	}
550 
551 	/*
552 	 * Populate EL3 state so that we've the right context
553 	 * before doing ERET
554 	 */
555 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
556 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
557 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
558 
559 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
560 	mdcr_el3 = MDCR_EL3_RESET_VAL;
561 
562 	/* ---------------------------------------------------------------------
563 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
564 	 * Some fields are architecturally UNKNOWN on reset.
565 	 *
566 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
567 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
568 	 *  disabled from all ELs in Secure state.
569 	 *
570 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
571 	 *  privileged debug from S-EL1.
572 	 *
573 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
574 	 *  access to the powerdown debug registers do not trap to EL3.
575 	 *
576 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
577 	 *  debug registers, other than those registers that are controlled by
578 	 *  MDCR_EL3.TDOSA.
579 	 */
580 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
581 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
582 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
583 
584 #if IMAGE_BL31
585 	/* Enable FEAT_TRF for Non-Secure and prohibit for Secure state. */
586 	if (is_feat_trf_supported()) {
587 		trf_enable(ctx);
588 	}
589 
590 	pmuv3_enable(ctx);
591 #endif /* IMAGE_BL31 */
592 
593 	/*
594 	 * Store the X0-X7 value from the entrypoint into the context
595 	 * Use memcpy as we are in control of the layout of the structures
596 	 */
597 	gp_regs = get_gpregs_ctx(ctx);
598 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
599 }
600 
601 /*******************************************************************************
602  * Context management library initialization routine. This library is used by
603  * runtime services to share pointers to 'cpu_context' structures for secure
604  * non-secure and realm states. Management of the structures and their associated
605  * memory is not done by the context management library e.g. the PSCI service
606  * manages the cpu context used for entry from and exit to the non-secure state.
607  * The Secure payload dispatcher service manages the context(s) corresponding to
608  * the secure state. It also uses this library to get access to the non-secure
609  * state cpu context pointers.
610  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
611  * which will be used for programming an entry into a lower EL. The same context
612  * will be used to save state upon exception entry from that EL.
613  ******************************************************************************/
614 void __init cm_init(void)
615 {
616 	/*
617 	 * The context management library has only global data to initialize, but
618 	 * that will be done when the BSS is zeroed out.
619 	 */
620 }
621 
622 /*******************************************************************************
623  * This is the high-level function used to initialize the cpu_context 'ctx' for
624  * first use. It performs initializations that are common to all security states
625  * and initializations specific to the security state specified in 'ep'
626  ******************************************************************************/
627 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
628 {
629 	unsigned int security_state;
630 
631 	assert(ctx != NULL);
632 
633 	/*
634 	 * Perform initializations that are common
635 	 * to all security states
636 	 */
637 	setup_context_common(ctx, ep);
638 
639 	security_state = GET_SECURITY_STATE(ep->h.attr);
640 
641 	/* Perform security state specific initializations */
642 	switch (security_state) {
643 	case SECURE:
644 		setup_secure_context(ctx, ep);
645 		break;
646 #if ENABLE_RME
647 	case REALM:
648 		setup_realm_context(ctx, ep);
649 		break;
650 #endif
651 	case NON_SECURE:
652 		setup_ns_context(ctx, ep);
653 		break;
654 	default:
655 		ERROR("Invalid security state\n");
656 		panic();
657 		break;
658 	}
659 }
660 
661 /*******************************************************************************
662  * Enable architecture extensions for EL3 execution. This function only updates
663  * registers in-place which are expected to either never change or be
664  * overwritten by el3_exit. Expects the core_pos of the current core as argument.
665  ******************************************************************************/
666 #if IMAGE_BL31
667 void cm_manage_extensions_el3(unsigned int my_idx)
668 {
669 	if (is_feat_sve_supported()) {
670 		sve_init_el3();
671 	}
672 
673 	if (is_feat_amu_supported()) {
674 		amu_init_el3(my_idx);
675 	}
676 
677 	if (is_feat_sme_supported()) {
678 		sme_init_el3();
679 	}
680 
681 	pmuv3_init_el3();
682 }
683 #endif /* IMAGE_BL31 */
684 
685 /******************************************************************************
686  * Function to initialise the registers with the RESET values in the context
687  * memory, which are maintained per world.
688  ******************************************************************************/
689 #if IMAGE_BL31
690 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
691 {
692 	/*
693 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
694 	 *
695 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
696 	 *  by Advanced SIMD, floating-point or SVE instructions (if
697 	 *  implemented) do not trap to EL3.
698 	 *
699 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
700 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
701 	 */
702 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
703 
704 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
705 
706 	/*
707 	 * Initialize MPAM3_EL3 to its default reset value
708 	 *
709 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
710 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
711 	 */
712 
713 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
714 }
715 #endif /* IMAGE_BL31 */
716 
717 /*******************************************************************************
718  * Initialise per_world_context for Non-Secure world.
719  * This function enables the architecture extensions, which have same value
720  * across the cores for the non-secure world.
721  ******************************************************************************/
722 #if IMAGE_BL31
723 void manage_extensions_nonsecure_per_world(void)
724 {
725 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
726 
727 	if (is_feat_sme_supported()) {
728 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
729 	}
730 
731 	if (is_feat_sve_supported()) {
732 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
733 	}
734 
735 	if (is_feat_amu_supported()) {
736 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
737 	}
738 
739 	if (is_feat_sys_reg_trace_supported()) {
740 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
741 	}
742 
743 	if (is_feat_mpam_supported()) {
744 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
745 	}
746 
747 	if (is_feat_fpmr_supported()) {
748 		fpmr_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
749 	}
750 }
751 #endif /* IMAGE_BL31 */
752 
753 /*******************************************************************************
754  * Initialise per_world_context for Secure world.
755  * This function enables the architecture extensions, which have same value
756  * across the cores for the secure world.
757  ******************************************************************************/
758 static void manage_extensions_secure_per_world(void)
759 {
760 #if IMAGE_BL31
761 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
762 
763 	if (is_feat_sme_supported()) {
764 
765 		if (ENABLE_SME_FOR_SWD) {
766 		/*
767 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
768 		 * SME, SVE, and FPU/SIMD context properly managed.
769 		 */
770 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
771 		} else {
772 		/*
773 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
774 		 * world can safely use the associated registers.
775 		 */
776 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
777 		}
778 	}
779 	if (is_feat_sve_supported()) {
780 		if (ENABLE_SVE_FOR_SWD) {
781 		/*
782 		 * Enable SVE and FPU in secure context, SPM must ensure
783 		 * that the SVE and FPU register contexts are properly managed.
784 		 */
785 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
786 		} else {
787 		/*
788 		 * Disable SVE and FPU in secure context so non-secure world
789 		 * can safely use them.
790 		 */
791 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
792 		}
793 	}
794 
795 	/* NS can access this but Secure shouldn't */
796 	if (is_feat_sys_reg_trace_supported()) {
797 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
798 	}
799 
800 	has_secure_perworld_init = true;
801 #endif /* IMAGE_BL31 */
802 }
803 
804 /*******************************************************************************
805  * Enable architecture extensions on first entry to Non-secure world.
806  ******************************************************************************/
807 static void manage_extensions_nonsecure(cpu_context_t *ctx)
808 {
809 #if IMAGE_BL31
810 	/* NOTE: registers are not context switched */
811 	if (is_feat_amu_supported()) {
812 		amu_enable(ctx);
813 	}
814 
815 	if (is_feat_sme_supported()) {
816 		sme_enable(ctx);
817 	}
818 
819 	if (is_feat_fgt2_supported()) {
820 		fgt2_enable(ctx);
821 	}
822 
823 	if (is_feat_debugv8p9_supported()) {
824 		debugv8p9_extended_bp_wp_enable(ctx);
825 	}
826 
827 	/*
828 	 * SPE, TRBE, and BRBE have multi-field enables that affect which world
829 	 * they apply to. Despite this, it is useful to ignore these for
830 	 * simplicity in determining the feature's per world enablement status.
831 	 * This is only possible when context is written per-world. Relied on
832 	 * by SMCCC_ARCH_FEATURE_AVAILABILITY
833 	 */
834 	if (is_feat_spe_supported()) {
835 		spe_enable(ctx);
836 	}
837 
838 	if (is_feat_trbe_supported()) {
839 		trbe_enable(ctx);
840 	}
841 
842 	if (is_feat_brbe_supported()) {
843 		brbe_enable(ctx);
844 	}
845 #endif /* IMAGE_BL31 */
846 }
847 
848 #if INIT_UNUSED_NS_EL2
849 /*******************************************************************************
850  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
851  * world when EL2 is empty and unused.
852  ******************************************************************************/
853 static void manage_extensions_nonsecure_el2_unused(void)
854 {
855 #if IMAGE_BL31
856 	if (is_feat_spe_supported()) {
857 		spe_init_el2_unused();
858 	}
859 
860 	if (is_feat_amu_supported()) {
861 		amu_init_el2_unused();
862 	}
863 
864 	if (is_feat_mpam_supported()) {
865 		mpam_init_el2_unused();
866 	}
867 
868 	if (is_feat_trbe_supported()) {
869 		trbe_init_el2_unused();
870 	}
871 
872 	if (is_feat_sys_reg_trace_supported()) {
873 		sys_reg_trace_init_el2_unused();
874 	}
875 
876 	if (is_feat_trf_supported()) {
877 		trf_init_el2_unused();
878 	}
879 
880 	pmuv3_init_el2_unused();
881 
882 	if (is_feat_sve_supported()) {
883 		sve_init_el2_unused();
884 	}
885 
886 	if (is_feat_sme_supported()) {
887 		sme_init_el2_unused();
888 	}
889 
890 	if (is_feat_mops_supported() && is_feat_hcx_supported()) {
891 		write_hcrx_el2(read_hcrx_el2() | HCRX_EL2_MSCEn_BIT);
892 	}
893 
894 	if (is_feat_pauth_supported()) {
895 		pauth_enable_el2();
896 	}
897 #endif /* IMAGE_BL31 */
898 }
899 #endif /* INIT_UNUSED_NS_EL2 */
900 
901 /*******************************************************************************
902  * Enable architecture extensions on first entry to Secure world.
903  ******************************************************************************/
904 static void manage_extensions_secure(cpu_context_t *ctx)
905 {
906 #if IMAGE_BL31
907 	if (is_feat_sme_supported()) {
908 		if (ENABLE_SME_FOR_SWD) {
909 		/*
910 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
911 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
912 		 */
913 			sme_init_el3();
914 			sme_enable(ctx);
915 		} else {
916 		/*
917 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
918 		 * world can safely use the associated registers.
919 		 */
920 			sme_disable(ctx);
921 		}
922 	}
923 
924 	/*
925 	 * SPE and TRBE cannot be fully disabled from EL3 registers alone, only
926 	 * sysreg access can. In case the EL1 controls leave them active on
927 	 * context switch, we want the owning security state to be NS so Secure
928 	 * can't be DOSed.
929 	 */
930 	if (is_feat_spe_supported()) {
931 		spe_disable(ctx);
932 	}
933 
934 	if (is_feat_trbe_supported()) {
935 		trbe_disable(ctx);
936 	}
937 #endif /* IMAGE_BL31 */
938 }
939 
940 #if !IMAGE_BL1
941 /*******************************************************************************
942  * The following function initializes the cpu_context for a CPU specified by
943  * its `cpu_idx` for first use, and sets the initial entrypoint state as
944  * specified by the entry_point_info structure.
945  ******************************************************************************/
946 void cm_init_context_by_index(unsigned int cpu_idx,
947 			      const entry_point_info_t *ep)
948 {
949 	cpu_context_t *ctx;
950 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
951 	cm_setup_context(ctx, ep);
952 }
953 #endif /* !IMAGE_BL1 */
954 
955 /*******************************************************************************
956  * The following function initializes the cpu_context for the current CPU
957  * for first use, and sets the initial entrypoint state as specified by the
958  * entry_point_info structure.
959  ******************************************************************************/
960 void cm_init_my_context(const entry_point_info_t *ep)
961 {
962 	cpu_context_t *ctx;
963 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
964 	cm_setup_context(ctx, ep);
965 }
966 
967 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
968 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
969 {
970 #if INIT_UNUSED_NS_EL2
971 	u_register_t hcr_el2 = HCR_RESET_VAL;
972 	u_register_t mdcr_el2;
973 	u_register_t scr_el3;
974 
975 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
976 
977 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
978 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
979 		hcr_el2 |= HCR_RW_BIT;
980 	}
981 
982 	write_hcr_el2(hcr_el2);
983 
984 	/*
985 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
986 	 * All fields have architecturally UNKNOWN reset values.
987 	 */
988 	write_cptr_el2(CPTR_EL2_RESET_VAL);
989 
990 	/*
991 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
992 	 * reset and are set to zero except for field(s) listed below.
993 	 *
994 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
995 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
996 	 *
997 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
998 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
999 	 */
1000 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
1001 
1002 	/*
1003 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
1004 	 * UNKNOWN value.
1005 	 */
1006 	write_cntvoff_el2(0);
1007 
1008 	/*
1009 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
1010 	 * respectively.
1011 	 */
1012 	write_vpidr_el2(read_midr_el1());
1013 	write_vmpidr_el2(read_mpidr_el1());
1014 
1015 	/*
1016 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
1017 	 *
1018 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
1019 	 * translation is disabled, cache maintenance operations depend on the
1020 	 * VMID.
1021 	 *
1022 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
1023 	 * disabled.
1024 	 */
1025 	write_vttbr_el2(VTTBR_RESET_VAL &
1026 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
1027 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
1028 
1029 	/*
1030 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
1031 	 * Some fields are architecturally UNKNOWN on reset.
1032 	 *
1033 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
1034 	 * register accesses to the Debug ROM registers are not trapped to EL2.
1035 	 *
1036 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
1037 	 * accesses to the powerdown debug registers are not trapped to EL2.
1038 	 *
1039 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
1040 	 * debug registers do not trap to EL2.
1041 	 *
1042 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
1043 	 * EL2.
1044 	 */
1045 	mdcr_el2 = MDCR_EL2_RESET_VAL &
1046 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
1047 		   MDCR_EL2_TDE_BIT);
1048 
1049 	write_mdcr_el2(mdcr_el2);
1050 
1051 	/*
1052 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
1053 	 *
1054 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
1055 	 * EL1 accesses to System registers do not trap to EL2.
1056 	 */
1057 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
1058 
1059 	/*
1060 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
1061 	 * reset.
1062 	 *
1063 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1064 	 * and prevent timer interrupts.
1065 	 */
1066 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1067 
1068 	manage_extensions_nonsecure_el2_unused();
1069 #endif /* INIT_UNUSED_NS_EL2 */
1070 }
1071 
1072 /*******************************************************************************
1073  * Prepare the CPU system registers for first entry into realm, secure, or
1074  * normal world.
1075  *
1076  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1077  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1078  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1079  * For all entries, the EL1 registers are initialized from the cpu_context
1080  ******************************************************************************/
1081 void cm_prepare_el3_exit(uint32_t security_state)
1082 {
1083 	u_register_t sctlr_el2, scr_el3;
1084 	cpu_context_t *ctx = cm_get_context(security_state);
1085 
1086 	assert(ctx != NULL);
1087 
1088 	if (security_state == NON_SECURE) {
1089 		uint64_t el2_implemented = el_implemented(2);
1090 
1091 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1092 						 CTX_SCR_EL3);
1093 
1094 		if (el2_implemented != EL_IMPL_NONE) {
1095 
1096 			/*
1097 			 * If context is not being used for EL2, initialize
1098 			 * HCRX_EL2 with its init value here.
1099 			 */
1100 			if (is_feat_hcx_supported()) {
1101 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1102 			}
1103 
1104 			/*
1105 			 * Initialize Fine-grained trap registers introduced
1106 			 * by FEAT_FGT so all traps are initially disabled when
1107 			 * switching to EL2 or a lower EL, preventing undesired
1108 			 * behavior.
1109 			 */
1110 			if (is_feat_fgt_supported()) {
1111 				/*
1112 				 * Initialize HFG*_EL2 registers with a default
1113 				 * value so legacy systems unaware of FEAT_FGT
1114 				 * do not get trapped due to their lack of
1115 				 * initialization for this feature.
1116 				 */
1117 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1118 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1119 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1120 			}
1121 
1122 			/* Condition to ensure EL2 is being used. */
1123 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1124 				/* Initialize SCTLR_EL2 register with reset value. */
1125 				sctlr_el2 = SCTLR_EL2_RES1;
1126 
1127 				/*
1128 				 * If workaround of errata 764081 for Cortex-A75
1129 				 * is used then set SCTLR_EL2.IESB to enable
1130 				 * Implicit Error Synchronization Barrier.
1131 				 */
1132 				if (errata_a75_764081_applies()) {
1133 					sctlr_el2 |= SCTLR_IESB_BIT;
1134 				}
1135 
1136 				write_sctlr_el2(sctlr_el2);
1137 			} else {
1138 				/*
1139 				 * (scr_el3 & SCR_HCE_BIT==0)
1140 				 * EL2 implemented but unused.
1141 				 */
1142 				init_nonsecure_el2_unused(ctx);
1143 			}
1144 		}
1145 	}
1146 #if (!CTX_INCLUDE_EL2_REGS)
1147 	/* Restore EL1 system registers, only when CTX_INCLUDE_EL2_REGS=0 */
1148 	cm_el1_sysregs_context_restore(security_state);
1149 #endif
1150 	cm_set_next_eret_context(security_state);
1151 }
1152 
1153 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1154 
1155 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1156 {
1157 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1158 	if (is_feat_amu_supported()) {
1159 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1160 	}
1161 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1162 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1163 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1164 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1165 }
1166 
1167 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1168 {
1169 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1170 	if (is_feat_amu_supported()) {
1171 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1172 	}
1173 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1174 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1175 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1176 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1177 }
1178 
1179 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1180 {
1181 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1182 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1183 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1184 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1185 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1186 }
1187 
1188 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1189 {
1190 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1191 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1192 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1193 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1194 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1195 }
1196 
1197 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1198 {
1199 	u_register_t mpam_idr = read_mpamidr_el1();
1200 
1201 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1202 
1203 	/*
1204 	 * The context registers that we intend to save would be part of the
1205 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1206 	 */
1207 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1208 		return;
1209 	}
1210 
1211 	/*
1212 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1213 	 * MPAMIDR_HAS_HCR_BIT == 1.
1214 	 */
1215 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1216 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1217 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1218 
1219 	/*
1220 	 * The number of MPAMVPM registers is implementation defined, their
1221 	 * number is stored in the MPAMIDR_EL1 register.
1222 	 */
1223 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1224 	case 7:
1225 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1226 		__fallthrough;
1227 	case 6:
1228 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1229 		__fallthrough;
1230 	case 5:
1231 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1232 		__fallthrough;
1233 	case 4:
1234 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1235 		__fallthrough;
1236 	case 3:
1237 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1238 		__fallthrough;
1239 	case 2:
1240 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1241 		__fallthrough;
1242 	case 1:
1243 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1244 		break;
1245 	}
1246 }
1247 
1248 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1249 {
1250 	u_register_t mpam_idr = read_mpamidr_el1();
1251 
1252 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1253 
1254 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1255 		return;
1256 	}
1257 
1258 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1259 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1260 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1261 
1262 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1263 	case 7:
1264 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1265 		__fallthrough;
1266 	case 6:
1267 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1268 		__fallthrough;
1269 	case 5:
1270 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1271 		__fallthrough;
1272 	case 4:
1273 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1274 		__fallthrough;
1275 	case 3:
1276 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1277 		__fallthrough;
1278 	case 2:
1279 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1280 		__fallthrough;
1281 	case 1:
1282 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1283 		break;
1284 	}
1285 }
1286 
1287 /* ---------------------------------------------------------------------------
1288  * The following registers are not added:
1289  * ICH_AP0R<n>_EL2
1290  * ICH_AP1R<n>_EL2
1291  * ICH_LR<n>_EL2
1292  *
1293  * NOTE: For a system with S-EL2 present but not enabled, accessing
1294  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1295  * SCR_EL3.NS = 1 before accessing this register.
1296  * ---------------------------------------------------------------------------
1297  */
1298 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx, uint32_t security_state)
1299 {
1300 	u_register_t scr_el3 = read_scr_el3();
1301 
1302 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1303 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1304 #else
1305 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1306 	isb();
1307 
1308 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1309 
1310 	write_scr_el3(scr_el3);
1311 	isb();
1312 #endif
1313 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1314 
1315 	if (errata_ich_vmcr_el2_applies()) {
1316 		if (security_state == SECURE) {
1317 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1318 		} else {
1319 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1320 		}
1321 		isb();
1322 	}
1323 
1324 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1325 
1326 	if (errata_ich_vmcr_el2_applies()) {
1327 		write_scr_el3(scr_el3);
1328 		isb();
1329 	}
1330 }
1331 
1332 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx, uint32_t security_state)
1333 {
1334 	u_register_t scr_el3 = read_scr_el3();
1335 
1336 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1337 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1338 #else
1339 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1340 	isb();
1341 
1342 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1343 
1344 	write_scr_el3(scr_el3);
1345 	isb();
1346 #endif
1347 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1348 
1349 	if (errata_ich_vmcr_el2_applies()) {
1350 		if (security_state == SECURE) {
1351 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1352 		} else {
1353 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1354 		}
1355 		isb();
1356 	}
1357 
1358 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1359 
1360 	if (errata_ich_vmcr_el2_applies()) {
1361 		write_scr_el3(scr_el3);
1362 		isb();
1363 	}
1364 }
1365 
1366 /* -----------------------------------------------------
1367  * The following registers are not added:
1368  * AMEVCNTVOFF0<n>_EL2
1369  * AMEVCNTVOFF1<n>_EL2
1370  * -----------------------------------------------------
1371  */
1372 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1373 {
1374 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1375 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1376 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1377 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1378 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1379 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1380 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1381 	if (CTX_INCLUDE_AARCH32_REGS) {
1382 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1383 	}
1384 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1385 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1386 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1387 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1388 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1389 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1390 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1391 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1392 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1393 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1394 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1395 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1396 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1397 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1398 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1399 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1400 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1401 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1402 
1403 	write_el2_ctx_common_sysreg128(ctx, ttbr0_el2, read_ttbr0_el2());
1404 	write_el2_ctx_common_sysreg128(ctx, vttbr_el2, read_vttbr_el2());
1405 }
1406 
1407 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1408 {
1409 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1410 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1411 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1412 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1413 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1414 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1415 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1416 	if (CTX_INCLUDE_AARCH32_REGS) {
1417 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1418 	}
1419 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1420 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1421 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1422 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1423 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1424 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1425 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1426 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1427 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1428 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1429 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1430 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1431 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1432 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1433 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1434 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1435 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1436 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1437 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1438 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1439 }
1440 
1441 /*******************************************************************************
1442  * Save EL2 sysreg context
1443  ******************************************************************************/
1444 void cm_el2_sysregs_context_save(uint32_t security_state)
1445 {
1446 	cpu_context_t *ctx;
1447 	el2_sysregs_t *el2_sysregs_ctx;
1448 
1449 	ctx = cm_get_context(security_state);
1450 	assert(ctx != NULL);
1451 
1452 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1453 
1454 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1455 	el2_sysregs_context_save_gic(el2_sysregs_ctx, security_state);
1456 
1457 	if (is_feat_mte2_supported()) {
1458 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1459 	}
1460 
1461 	if (is_feat_mpam_supported()) {
1462 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1463 	}
1464 
1465 	if (is_feat_fgt_supported()) {
1466 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1467 	}
1468 
1469 	if (is_feat_fgt2_supported()) {
1470 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1471 	}
1472 
1473 	if (is_feat_ecv_v2_supported()) {
1474 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1475 	}
1476 
1477 	if (is_feat_vhe_supported()) {
1478 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1479 					read_contextidr_el2());
1480 		write_el2_ctx_vhe_sysreg128(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1481 	}
1482 
1483 	if (is_feat_ras_supported()) {
1484 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1485 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1486 	}
1487 
1488 	if (is_feat_nv2_supported()) {
1489 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1490 	}
1491 
1492 	if (is_feat_trf_supported()) {
1493 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1494 	}
1495 
1496 	if (is_feat_csv2_2_supported()) {
1497 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1498 					read_scxtnum_el2());
1499 	}
1500 
1501 	if (is_feat_hcx_supported()) {
1502 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1503 	}
1504 
1505 	if (is_feat_tcr2_supported()) {
1506 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1507 	}
1508 
1509 	if (is_feat_sxpie_supported()) {
1510 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1511 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1512 	}
1513 
1514 	if (is_feat_sxpoe_supported()) {
1515 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1516 	}
1517 
1518 	if (is_feat_brbe_supported()) {
1519 		write_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2, read_brbcr_el2());
1520 	}
1521 
1522 	if (is_feat_s2pie_supported()) {
1523 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1524 	}
1525 
1526 	if (is_feat_gcs_supported()) {
1527 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1528 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1529 	}
1530 
1531 	if (is_feat_sctlr2_supported()) {
1532 		write_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2, read_sctlr2_el2());
1533 	}
1534 }
1535 
1536 /*******************************************************************************
1537  * Restore EL2 sysreg context
1538  ******************************************************************************/
1539 void cm_el2_sysregs_context_restore(uint32_t security_state)
1540 {
1541 	cpu_context_t *ctx;
1542 	el2_sysregs_t *el2_sysregs_ctx;
1543 
1544 	ctx = cm_get_context(security_state);
1545 	assert(ctx != NULL);
1546 
1547 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1548 
1549 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1550 	el2_sysregs_context_restore_gic(el2_sysregs_ctx, security_state);
1551 
1552 	if (is_feat_mte2_supported()) {
1553 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1554 	}
1555 
1556 	if (is_feat_mpam_supported()) {
1557 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1558 	}
1559 
1560 	if (is_feat_fgt_supported()) {
1561 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1562 	}
1563 
1564 	if (is_feat_fgt2_supported()) {
1565 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1566 	}
1567 
1568 	if (is_feat_ecv_v2_supported()) {
1569 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1570 	}
1571 
1572 	if (is_feat_vhe_supported()) {
1573 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1574 					contextidr_el2));
1575 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1576 	}
1577 
1578 	if (is_feat_ras_supported()) {
1579 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1580 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1581 	}
1582 
1583 	if (is_feat_nv2_supported()) {
1584 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1585 	}
1586 
1587 	if (is_feat_trf_supported()) {
1588 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1589 	}
1590 
1591 	if (is_feat_csv2_2_supported()) {
1592 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1593 					scxtnum_el2));
1594 	}
1595 
1596 	if (is_feat_hcx_supported()) {
1597 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1598 	}
1599 
1600 	if (is_feat_tcr2_supported()) {
1601 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1602 	}
1603 
1604 	if (is_feat_sxpie_supported()) {
1605 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1606 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1607 	}
1608 
1609 	if (is_feat_sxpoe_supported()) {
1610 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1611 	}
1612 
1613 	if (is_feat_s2pie_supported()) {
1614 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1615 	}
1616 
1617 	if (is_feat_gcs_supported()) {
1618 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1619 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1620 	}
1621 
1622 	if (is_feat_sctlr2_supported()) {
1623 		write_sctlr2_el2(read_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2));
1624 	}
1625 
1626 	if (is_feat_brbe_supported()) {
1627 		write_brbcr_el2(read_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2));
1628 	}
1629 }
1630 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1631 
1632 #if IMAGE_BL31
1633 /*********************************************************************************
1634 * This function allows Architecture features asymmetry among cores.
1635 * TF-A assumes that all the cores in the platform has architecture feature parity
1636 * and hence the context is setup on different core (e.g. primary sets up the
1637 * context for secondary cores).This assumption may not be true for systems where
1638 * cores are not conforming to same Arch version or there is CPU Erratum which
1639 * requires certain feature to be be disabled only on a given core.
1640 *
1641 * This function is called on secondary cores to override any disparity in context
1642 * setup by primary, this would be called during warmboot path.
1643 *********************************************************************************/
1644 void cm_handle_asymmetric_features(void)
1645 {
1646 	cpu_context_t *ctx __maybe_unused = cm_get_context(NON_SECURE);
1647 
1648 	assert(ctx != NULL);
1649 
1650 #if ENABLE_SPE_FOR_NS == FEAT_STATE_CHECK_ASYMMETRIC
1651 	if (is_feat_spe_supported()) {
1652 		spe_enable(ctx);
1653 	} else {
1654 		spe_disable(ctx);
1655 	}
1656 #endif
1657 
1658 	if (check_if_trbe_disable_affected_core()) {
1659 		if (is_feat_trbe_supported()) {
1660 			trbe_disable(ctx);
1661 		}
1662 	}
1663 
1664 #if ENABLE_FEAT_TCR2 == FEAT_STATE_CHECK_ASYMMETRIC
1665 	el3_state_t *el3_state = get_el3state_ctx(ctx);
1666 	u_register_t spsr = read_ctx_reg(el3_state, CTX_SPSR_EL3);
1667 
1668 	if (is_feat_tcr2_supported() && (GET_RW(spsr) == MODE_RW_64)) {
1669 		tcr2_enable(ctx);
1670 	} else {
1671 		tcr2_disable(ctx);
1672 	}
1673 #endif
1674 
1675 }
1676 #endif
1677 
1678 /*******************************************************************************
1679  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1680  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1681  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1682  * cm_prepare_el3_exit function.
1683  ******************************************************************************/
1684 void cm_prepare_el3_exit_ns(void)
1685 {
1686 #if IMAGE_BL31
1687 	/*
1688 	 * Check and handle Architecture feature asymmetry among cores.
1689 	 *
1690 	 * In warmboot path secondary cores context is initialized on core which
1691 	 * did CPU_ON SMC call, if there is feature asymmetry in these cores handle
1692 	 * it in this function call.
1693 	 * For Symmetric cores this is an empty function.
1694 	 */
1695 	cm_handle_asymmetric_features();
1696 #endif
1697 
1698 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1699 #if ENABLE_ASSERTIONS
1700 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1701 	assert(ctx != NULL);
1702 
1703 	/* Assert that EL2 is used. */
1704 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1705 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1706 			(el_implemented(2U) != EL_IMPL_NONE));
1707 #endif /* ENABLE_ASSERTIONS */
1708 
1709 	/* Restore EL2 sysreg contexts */
1710 	cm_el2_sysregs_context_restore(NON_SECURE);
1711 	cm_set_next_eret_context(NON_SECURE);
1712 #else
1713 	cm_prepare_el3_exit(NON_SECURE);
1714 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1715 }
1716 
1717 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
1718 /*******************************************************************************
1719  * The next set of six functions are used by runtime services to save and restore
1720  * EL1 context on the 'cpu_context' structure for the specified security state.
1721  ******************************************************************************/
1722 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1723 {
1724 	write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1());
1725 	write_el1_ctx_common(ctx, elr_el1, read_elr_el1());
1726 
1727 #if (!ERRATA_SPECULATIVE_AT)
1728 	write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1());
1729 	write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1());
1730 #endif /* (!ERRATA_SPECULATIVE_AT) */
1731 
1732 	write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1());
1733 	write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1());
1734 	write_el1_ctx_common(ctx, sp_el1, read_sp_el1());
1735 	write_el1_ctx_common(ctx, esr_el1, read_esr_el1());
1736 	write_el1_ctx_common(ctx, mair_el1, read_mair_el1());
1737 	write_el1_ctx_common(ctx, amair_el1, read_amair_el1());
1738 	write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1());
1739 	write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1());
1740 	write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0());
1741 	write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0());
1742 	write_el1_ctx_common(ctx, far_el1, read_far_el1());
1743 	write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1());
1744 	write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1());
1745 	write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1());
1746 	write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1());
1747 	write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1());
1748 	write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1());
1749 
1750 	write_el1_ctx_common_sysreg128(ctx, par_el1, read_par_el1());
1751 	write_el1_ctx_common_sysreg128(ctx, ttbr0_el1, read_ttbr0_el1());
1752 	write_el1_ctx_common_sysreg128(ctx, ttbr1_el1, read_ttbr1_el1());
1753 
1754 	if (CTX_INCLUDE_AARCH32_REGS) {
1755 		/* Save Aarch32 registers */
1756 		write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt());
1757 		write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und());
1758 		write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq());
1759 		write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq());
1760 		write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2());
1761 		write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2());
1762 	}
1763 
1764 	if (NS_TIMER_SWITCH) {
1765 		/* Save NS Timer registers */
1766 		write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0());
1767 		write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0());
1768 		write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0());
1769 		write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0());
1770 		write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1());
1771 	}
1772 
1773 	if (is_feat_mte2_supported()) {
1774 		write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1());
1775 		write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1());
1776 		write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1());
1777 		write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1());
1778 	}
1779 
1780 	if (is_feat_ras_supported()) {
1781 		write_el1_ctx_ras(ctx, disr_el1, read_disr_el1());
1782 	}
1783 
1784 	if (is_feat_s1pie_supported()) {
1785 		write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1());
1786 		write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1());
1787 	}
1788 
1789 	if (is_feat_s1poe_supported()) {
1790 		write_el1_ctx_s1poe(ctx, por_el1, read_por_el1());
1791 	}
1792 
1793 	if (is_feat_s2poe_supported()) {
1794 		write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1());
1795 	}
1796 
1797 	if (is_feat_tcr2_supported()) {
1798 		write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1());
1799 	}
1800 
1801 	if (is_feat_trf_supported()) {
1802 		write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1());
1803 	}
1804 
1805 	if (is_feat_csv2_2_supported()) {
1806 		write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0());
1807 		write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1());
1808 	}
1809 
1810 	if (is_feat_gcs_supported()) {
1811 		write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1());
1812 		write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1());
1813 		write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1());
1814 		write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0());
1815 	}
1816 
1817 	if (is_feat_the_supported()) {
1818 		write_el1_ctx_the_sysreg128(ctx, rcwmask_el1, read_rcwmask_el1());
1819 		write_el1_ctx_the_sysreg128(ctx, rcwsmask_el1, read_rcwsmask_el1());
1820 	}
1821 
1822 	if (is_feat_sctlr2_supported()) {
1823 		write_el1_ctx_sctlr2(ctx, sctlr2_el1, read_sctlr2_el1());
1824 	}
1825 
1826 	if (is_feat_ls64_accdata_supported()) {
1827 		write_el1_ctx_ls64(ctx, accdata_el1, read_accdata_el1());
1828 	}
1829 }
1830 
1831 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1832 {
1833 	write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1));
1834 	write_elr_el1(read_el1_ctx_common(ctx, elr_el1));
1835 
1836 #if (!ERRATA_SPECULATIVE_AT)
1837 	write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1));
1838 	write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1));
1839 #endif /* (!ERRATA_SPECULATIVE_AT) */
1840 
1841 	write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1));
1842 	write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1));
1843 	write_sp_el1(read_el1_ctx_common(ctx, sp_el1));
1844 	write_esr_el1(read_el1_ctx_common(ctx, esr_el1));
1845 	write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1));
1846 	write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1));
1847 	write_mair_el1(read_el1_ctx_common(ctx, mair_el1));
1848 	write_amair_el1(read_el1_ctx_common(ctx, amair_el1));
1849 	write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1));
1850 	write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1));
1851 	write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0));
1852 	write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0));
1853 	write_par_el1(read_el1_ctx_common(ctx, par_el1));
1854 	write_far_el1(read_el1_ctx_common(ctx, far_el1));
1855 	write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1));
1856 	write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1));
1857 	write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1));
1858 	write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1));
1859 	write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1));
1860 	write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1));
1861 
1862 	if (CTX_INCLUDE_AARCH32_REGS) {
1863 		/* Restore Aarch32 registers */
1864 		write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt));
1865 		write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und));
1866 		write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq));
1867 		write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq));
1868 		write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2));
1869 		write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2));
1870 	}
1871 
1872 	if (NS_TIMER_SWITCH) {
1873 		/* Restore NS Timer registers */
1874 		write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0));
1875 		write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0));
1876 		write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0));
1877 		write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0));
1878 		write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1));
1879 	}
1880 
1881 	if (is_feat_mte2_supported()) {
1882 		write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1));
1883 		write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1));
1884 		write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1));
1885 		write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1));
1886 	}
1887 
1888 	if (is_feat_ras_supported()) {
1889 		write_disr_el1(read_el1_ctx_ras(ctx, disr_el1));
1890 	}
1891 
1892 	if (is_feat_s1pie_supported()) {
1893 		write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1));
1894 		write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1));
1895 	}
1896 
1897 	if (is_feat_s1poe_supported()) {
1898 		write_por_el1(read_el1_ctx_s1poe(ctx, por_el1));
1899 	}
1900 
1901 	if (is_feat_s2poe_supported()) {
1902 		write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1));
1903 	}
1904 
1905 	if (is_feat_tcr2_supported()) {
1906 		write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1));
1907 	}
1908 
1909 	if (is_feat_trf_supported()) {
1910 		write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1));
1911 	}
1912 
1913 	if (is_feat_csv2_2_supported()) {
1914 		write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0));
1915 		write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1));
1916 	}
1917 
1918 	if (is_feat_gcs_supported()) {
1919 		write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1));
1920 		write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1));
1921 		write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1));
1922 		write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0));
1923 	}
1924 
1925 	if (is_feat_the_supported()) {
1926 		write_rcwmask_el1(read_el1_ctx_the(ctx, rcwmask_el1));
1927 		write_rcwsmask_el1(read_el1_ctx_the(ctx, rcwsmask_el1));
1928 	}
1929 
1930 	if (is_feat_sctlr2_supported()) {
1931 		write_sctlr2_el1(read_el1_ctx_sctlr2(ctx, sctlr2_el1));
1932 	}
1933 
1934 	if (is_feat_ls64_accdata_supported()) {
1935 		write_accdata_el1(read_el1_ctx_ls64(ctx, accdata_el1));
1936 	}
1937 }
1938 
1939 /*******************************************************************************
1940  * The next couple of functions are used by runtime services to save and restore
1941  * EL1 context on the 'cpu_context' structure for the specified security state.
1942  ******************************************************************************/
1943 void cm_el1_sysregs_context_save(uint32_t security_state)
1944 {
1945 	cpu_context_t *ctx;
1946 
1947 	ctx = cm_get_context(security_state);
1948 	assert(ctx != NULL);
1949 
1950 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1951 
1952 #if IMAGE_BL31
1953 	if (security_state == SECURE) {
1954 		PUBLISH_EVENT(cm_exited_secure_world);
1955 	} else {
1956 		PUBLISH_EVENT(cm_exited_normal_world);
1957 	}
1958 #endif
1959 }
1960 
1961 void cm_el1_sysregs_context_restore(uint32_t security_state)
1962 {
1963 	cpu_context_t *ctx;
1964 
1965 	ctx = cm_get_context(security_state);
1966 	assert(ctx != NULL);
1967 
1968 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1969 
1970 #if IMAGE_BL31
1971 	if (security_state == SECURE) {
1972 		PUBLISH_EVENT(cm_entering_secure_world);
1973 	} else {
1974 		PUBLISH_EVENT(cm_entering_normal_world);
1975 	}
1976 #endif
1977 }
1978 
1979 #endif /* ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) */
1980 
1981 /*******************************************************************************
1982  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1983  * given security state with the given entrypoint
1984  ******************************************************************************/
1985 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1986 {
1987 	cpu_context_t *ctx;
1988 	el3_state_t *state;
1989 
1990 	ctx = cm_get_context(security_state);
1991 	assert(ctx != NULL);
1992 
1993 	/* Populate EL3 state so that ERET jumps to the correct entry */
1994 	state = get_el3state_ctx(ctx);
1995 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1996 }
1997 
1998 /*******************************************************************************
1999  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
2000  * pertaining to the given security state
2001  ******************************************************************************/
2002 void cm_set_elr_spsr_el3(uint32_t security_state,
2003 			uintptr_t entrypoint, uint32_t spsr)
2004 {
2005 	cpu_context_t *ctx;
2006 	el3_state_t *state;
2007 
2008 	ctx = cm_get_context(security_state);
2009 	assert(ctx != NULL);
2010 
2011 	/* Populate EL3 state so that ERET jumps to the correct entry */
2012 	state = get_el3state_ctx(ctx);
2013 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
2014 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
2015 }
2016 
2017 /*******************************************************************************
2018  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
2019  * pertaining to the given security state using the value and bit position
2020  * specified in the parameters. It preserves all other bits.
2021  ******************************************************************************/
2022 void cm_write_scr_el3_bit(uint32_t security_state,
2023 			  uint32_t bit_pos,
2024 			  uint32_t value)
2025 {
2026 	cpu_context_t *ctx;
2027 	el3_state_t *state;
2028 	u_register_t scr_el3;
2029 
2030 	ctx = cm_get_context(security_state);
2031 	assert(ctx != NULL);
2032 
2033 	/* Ensure that the bit position is a valid one */
2034 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
2035 
2036 	/* Ensure that the 'value' is only a bit wide */
2037 	assert(value <= 1U);
2038 
2039 	/*
2040 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
2041 	 * and set it to its new value.
2042 	 */
2043 	state = get_el3state_ctx(ctx);
2044 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
2045 	scr_el3 &= ~(1UL << bit_pos);
2046 	scr_el3 |= (u_register_t)value << bit_pos;
2047 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
2048 }
2049 
2050 /*******************************************************************************
2051  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
2052  * given security state.
2053  ******************************************************************************/
2054 u_register_t cm_get_scr_el3(uint32_t security_state)
2055 {
2056 	const cpu_context_t *ctx;
2057 	const el3_state_t *state;
2058 
2059 	ctx = cm_get_context(security_state);
2060 	assert(ctx != NULL);
2061 
2062 	/* Populate EL3 state so that ERET jumps to the correct entry */
2063 	state = get_el3state_ctx(ctx);
2064 	return read_ctx_reg(state, CTX_SCR_EL3);
2065 }
2066 
2067 /*******************************************************************************
2068  * This function is used to program the context that's used for exception
2069  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
2070  * the required security state
2071  ******************************************************************************/
2072 void cm_set_next_eret_context(uint32_t security_state)
2073 {
2074 	cpu_context_t *ctx;
2075 
2076 	ctx = cm_get_context(security_state);
2077 	assert(ctx != NULL);
2078 
2079 	cm_set_next_context(ctx);
2080 }
2081