xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 4ec4e545c66cb888bfbedcea4030a234421457d7)
1 /*
2  * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/cpus/cpu_ops.h>
23 #include <lib/cpus/errata.h>
24 #include <lib/el3_runtime/context_mgmt.h>
25 #include <lib/el3_runtime/cpu_data.h>
26 #include <lib/el3_runtime/pubsub_events.h>
27 #include <lib/extensions/amu.h>
28 #include <lib/extensions/brbe.h>
29 #include <lib/extensions/debug_v8p9.h>
30 #include <lib/extensions/fgt2.h>
31 #include <lib/extensions/mpam.h>
32 #include <lib/extensions/pmuv3.h>
33 #include <lib/extensions/sme.h>
34 #include <lib/extensions/spe.h>
35 #include <lib/extensions/sve.h>
36 #include <lib/extensions/sys_reg_trace.h>
37 #include <lib/extensions/tcr2.h>
38 #include <lib/extensions/trbe.h>
39 #include <lib/extensions/trf.h>
40 #include <lib/utils.h>
41 
42 #if ENABLE_FEAT_TWED
43 /* Make sure delay value fits within the range(0-15) */
44 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
45 #endif /* ENABLE_FEAT_TWED */
46 
47 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
48 static bool has_secure_perworld_init;
49 
50 static void manage_extensions_common(cpu_context_t *ctx);
51 static void manage_extensions_nonsecure(cpu_context_t *ctx);
52 static void manage_extensions_secure(cpu_context_t *ctx);
53 static void manage_extensions_secure_per_world(void);
54 
55 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
56 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
57 {
58 	u_register_t sctlr_elx, actlr_elx;
59 
60 	/*
61 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
62 	 * execution state setting all fields rather than relying on the hw.
63 	 * Some fields have architecturally UNKNOWN reset values and these are
64 	 * set to zero.
65 	 *
66 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
67 	 *
68 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
69 	 * required by PSCI specification)
70 	 */
71 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
72 	if (GET_RW(ep->spsr) == MODE_RW_64) {
73 		sctlr_elx |= SCTLR_EL1_RES1;
74 	} else {
75 		/*
76 		 * If the target execution state is AArch32 then the following
77 		 * fields need to be set.
78 		 *
79 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
80 		 *  instructions are not trapped to EL1.
81 		 *
82 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
83 		 *  instructions are not trapped to EL1.
84 		 *
85 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
86 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
87 		 */
88 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
89 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
90 	}
91 
92 	/*
93 	 * If workaround of errata 764081 for Cortex-A75 is used then set
94 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
95 	 */
96 	if (errata_a75_764081_applies()) {
97 		sctlr_elx |= SCTLR_IESB_BIT;
98 	}
99 
100 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
101 	write_ctx_sctlr_el1_reg_errata(ctx, sctlr_elx);
102 
103 	/*
104 	 * Base the context ACTLR_EL1 on the current value, as it is
105 	 * implementation defined. The context restore process will write
106 	 * the value from the context to the actual register and can cause
107 	 * problems for processor cores that don't expect certain bits to
108 	 * be zero.
109 	 */
110 	actlr_elx = read_actlr_el1();
111 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx);
112 }
113 #endif /* (IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)) */
114 
115 /******************************************************************************
116  * This function performs initializations that are specific to SECURE state
117  * and updates the cpu context specified by 'ctx'.
118  *****************************************************************************/
119 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
120 {
121 	u_register_t scr_el3;
122 	el3_state_t *state;
123 
124 	state = get_el3state_ctx(ctx);
125 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
126 
127 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
128 	/*
129 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
130 	 * indicated by the interrupt routing model for BL31.
131 	 */
132 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
133 #endif
134 
135 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
136 	if (is_feat_mte2_supported()) {
137 		scr_el3 |= SCR_ATA_BIT;
138 	}
139 
140 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
141 
142 	/*
143 	 * Initialize EL1 context registers unless SPMC is running
144 	 * at S-EL2.
145 	 */
146 #if (!SPMD_SPM_AT_SEL2)
147 	setup_el1_context(ctx, ep);
148 #endif
149 
150 	manage_extensions_secure(ctx);
151 
152 	/**
153 	 * manage_extensions_secure_per_world api has to be executed once,
154 	 * as the registers getting initialised, maintain constant value across
155 	 * all the cpus for the secure world.
156 	 * Henceforth, this check ensures that the registers are initialised once
157 	 * and avoids re-initialization from multiple cores.
158 	 */
159 	if (!has_secure_perworld_init) {
160 		manage_extensions_secure_per_world();
161 	}
162 }
163 
164 #if ENABLE_RME
165 /******************************************************************************
166  * This function performs initializations that are specific to REALM state
167  * and updates the cpu context specified by 'ctx'.
168  *****************************************************************************/
169 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
170 {
171 	u_register_t scr_el3;
172 	el3_state_t *state;
173 
174 	state = get_el3state_ctx(ctx);
175 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
176 
177 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
178 
179 	/* CSV2 version 2 and above */
180 	if (is_feat_csv2_2_supported()) {
181 		/* Enable access to the SCXTNUM_ELx registers. */
182 		scr_el3 |= SCR_EnSCXT_BIT;
183 	}
184 
185 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
186 }
187 #endif /* ENABLE_RME */
188 
189 /******************************************************************************
190  * This function performs initializations that are specific to NON-SECURE state
191  * and updates the cpu context specified by 'ctx'.
192  *****************************************************************************/
193 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
194 {
195 	u_register_t scr_el3;
196 	el3_state_t *state;
197 
198 	state = get_el3state_ctx(ctx);
199 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
200 
201 	/* SCR_NS: Set the NS bit */
202 	scr_el3 |= SCR_NS_BIT;
203 
204 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
205 	if (is_feat_mte2_supported()) {
206 		scr_el3 |= SCR_ATA_BIT;
207 	}
208 
209 #if !CTX_INCLUDE_PAUTH_REGS
210 	/*
211 	 * Pointer Authentication feature, if present, is always enabled by default
212 	 * for Non secure lower exception levels. We do not have an explicit
213 	 * flag to set it.
214 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
215 	 * exception levels of secure and realm worlds.
216 	 *
217 	 * To prevent the leakage between the worlds during world switch,
218 	 * we enable it only for the non-secure world.
219 	 *
220 	 * If the Secure/realm world wants to use pointer authentication,
221 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
222 	 * it will be enabled globally for all the contexts.
223 	 *
224 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
225 	 *  other than EL3
226 	 *
227 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
228 	 *  than EL3
229 	 */
230 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
231 
232 #endif /* CTX_INCLUDE_PAUTH_REGS */
233 
234 #if HANDLE_EA_EL3_FIRST_NS
235 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
236 	scr_el3 |= SCR_EA_BIT;
237 #endif
238 
239 #if RAS_TRAP_NS_ERR_REC_ACCESS
240 	/*
241 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
242 	 * and RAS ERX registers from EL1 and EL2(from any security state)
243 	 * are trapped to EL3.
244 	 * Set here to trap only for NS EL1/EL2
245 	 *
246 	 */
247 	scr_el3 |= SCR_TERR_BIT;
248 #endif
249 
250 	/* CSV2 version 2 and above */
251 	if (is_feat_csv2_2_supported()) {
252 		/* Enable access to the SCXTNUM_ELx registers. */
253 		scr_el3 |= SCR_EnSCXT_BIT;
254 	}
255 
256 #ifdef IMAGE_BL31
257 	/*
258 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
259 	 *  indicated by the interrupt routing model for BL31.
260 	 */
261 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
262 #endif
263 
264 	if (is_feat_the_supported()) {
265 		/* Set the RCWMASKEn bit in SCR_EL3 to enable access to
266 		 * RCWMASK_EL1 and RCWSMASK_EL1 registers.
267 		 */
268 		scr_el3 |= SCR_RCWMASKEn_BIT;
269 	}
270 
271 	if (is_feat_sctlr2_supported()) {
272 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
273 		 * SCTLR2_ELx registers.
274 		 */
275 		scr_el3 |= SCR_SCTLR2En_BIT;
276 	}
277 
278 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
279 
280 	/* Initialize EL2 context registers */
281 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
282 
283 	/*
284 	 * Initialize SCTLR_EL2 context register with reset value.
285 	 */
286 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
287 
288 	if (is_feat_hcx_supported()) {
289 		/*
290 		 * Initialize register HCRX_EL2 with its init value.
291 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
292 		 * chance that this can lead to unexpected behavior in lower
293 		 * ELs that have not been updated since the introduction of
294 		 * this feature if not properly initialized, especially when
295 		 * it comes to those bits that enable/disable traps.
296 		 */
297 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
298 			HCRX_EL2_INIT_VAL);
299 	}
300 
301 	if (is_feat_fgt_supported()) {
302 		/*
303 		 * Initialize HFG*_EL2 registers with a default value so legacy
304 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
305 		 * of initialization for this feature.
306 		 */
307 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
308 			HFGITR_EL2_INIT_VAL);
309 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
310 			HFGRTR_EL2_INIT_VAL);
311 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
312 			HFGWTR_EL2_INIT_VAL);
313 	}
314 #else
315 	/* Initialize EL1 context registers */
316 	setup_el1_context(ctx, ep);
317 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
318 
319 	manage_extensions_nonsecure(ctx);
320 }
321 
322 /*******************************************************************************
323  * The following function performs initialization of the cpu_context 'ctx'
324  * for first use that is common to all security states, and sets the
325  * initial entrypoint state as specified by the entry_point_info structure.
326  *
327  * The EE and ST attributes are used to configure the endianness and secure
328  * timer availability for the new execution context.
329  ******************************************************************************/
330 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
331 {
332 	u_register_t scr_el3;
333 	u_register_t mdcr_el3;
334 	el3_state_t *state;
335 	gp_regs_t *gp_regs;
336 
337 	state = get_el3state_ctx(ctx);
338 
339 	/* Clear any residual register values from the context */
340 	zeromem(ctx, sizeof(*ctx));
341 
342 	/*
343 	 * The lower-EL context is zeroed so that no stale values leak to a world.
344 	 * It is assumed that an all-zero lower-EL context is good enough for it
345 	 * to boot correctly. However, there are very few registers where this
346 	 * is not true and some values need to be recreated.
347 	 */
348 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
349 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
350 
351 	/*
352 	 * These bits are set in the gicv3 driver. Losing them (especially the
353 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
354 	 */
355 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
356 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
357 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
358 
359 	/*
360 	 * The actlr_el2 register can be initialized in platform's reset handler
361 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
362 	 */
363 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
364 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
365 
366 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
367 	scr_el3 = SCR_RESET_VAL;
368 
369 	/*
370 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
371 	 *  EL2, EL1 and EL0 are not trapped to EL3.
372 	 *
373 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
374 	 *  EL2, EL1 and EL0 are not trapped to EL3.
375 	 *
376 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
377 	 *  both Security states and both Execution states.
378 	 *
379 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
380 	 *  Non-secure memory.
381 	 */
382 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
383 
384 	scr_el3 |= SCR_SIF_BIT;
385 
386 	/*
387 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
388 	 *  Exception level as specified by SPSR.
389 	 */
390 	if (GET_RW(ep->spsr) == MODE_RW_64) {
391 		scr_el3 |= SCR_RW_BIT;
392 	}
393 
394 	/*
395 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
396 	 * Secure timer registers to EL3, from AArch64 state only, if specified
397 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
398 	 * bit always behaves as 1 (i.e. secure physical timer register access
399 	 * is not trapped)
400 	 */
401 	if (EP_GET_ST(ep->h.attr) != 0U) {
402 		scr_el3 |= SCR_ST_BIT;
403 	}
404 
405 	/*
406 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
407 	 * SCR_EL3.HXEn.
408 	 */
409 	if (is_feat_hcx_supported()) {
410 		scr_el3 |= SCR_HXEn_BIT;
411 	}
412 
413 	/*
414 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
415 	 * registers are trapped to EL3.
416 	 */
417 #if ENABLE_FEAT_RNG_TRAP
418 	scr_el3 |= SCR_TRNDR_BIT;
419 #endif
420 
421 #if FAULT_INJECTION_SUPPORT
422 	/* Enable fault injection from lower ELs */
423 	scr_el3 |= SCR_FIEN_BIT;
424 #endif
425 
426 #if CTX_INCLUDE_PAUTH_REGS
427 	/*
428 	 * Enable Pointer Authentication globally for all the worlds.
429 	 *
430 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
431 	 *  other than EL3
432 	 *
433 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
434 	 *  than EL3
435 	 */
436 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
437 #endif /* CTX_INCLUDE_PAUTH_REGS */
438 
439 	/*
440 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
441 	 */
442 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
443 		scr_el3 |= SCR_TCR2EN_BIT;
444 	}
445 
446 	/*
447 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
448 	 * registers for AArch64 if present.
449 	 */
450 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
451 		scr_el3 |= SCR_PIEN_BIT;
452 	}
453 
454 	/*
455 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
456 	 */
457 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
458 		scr_el3 |= SCR_GCSEn_BIT;
459 	}
460 
461 	/*
462 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
463 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
464 	 * next mode is Hyp.
465 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
466 	 * same conditions as HVC instructions and when the processor supports
467 	 * ARMv8.6-FGT.
468 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
469 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
470 	 * and when the processor supports ECV.
471 	 */
472 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
473 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
474 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
475 		scr_el3 |= SCR_HCE_BIT;
476 
477 		if (is_feat_fgt_supported()) {
478 			scr_el3 |= SCR_FGTEN_BIT;
479 		}
480 
481 		if (is_feat_ecv_supported()) {
482 			scr_el3 |= SCR_ECVEN_BIT;
483 		}
484 	}
485 
486 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
487 	if (is_feat_twed_supported()) {
488 		/* Set delay in SCR_EL3 */
489 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
490 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
491 				<< SCR_TWEDEL_SHIFT);
492 
493 		/* Enable WFE delay */
494 		scr_el3 |= SCR_TWEDEn_BIT;
495 	}
496 
497 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
498 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
499 	if (is_feat_sel2_supported()) {
500 		scr_el3 |= SCR_EEL2_BIT;
501 	}
502 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
503 
504 	/*
505 	 * Populate EL3 state so that we've the right context
506 	 * before doing ERET
507 	 */
508 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
509 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
510 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
511 
512 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
513 	mdcr_el3 = MDCR_EL3_RESET_VAL;
514 
515 	/* ---------------------------------------------------------------------
516 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
517 	 * Some fields are architecturally UNKNOWN on reset.
518 	 *
519 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
520 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
521 	 *  disabled from all ELs in Secure state.
522 	 *
523 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
524 	 *  privileged debug from S-EL1.
525 	 *
526 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
527 	 *  access to the powerdown debug registers do not trap to EL3.
528 	 *
529 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
530 	 *  debug registers, other than those registers that are controlled by
531 	 *  MDCR_EL3.TDOSA.
532 	 */
533 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
534 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
535 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
536 
537 	/*
538 	 * Configure MDCR_EL3 register as applicable for each world
539 	 * (NS/Secure/Realm) context.
540 	 */
541 	manage_extensions_common(ctx);
542 
543 	/*
544 	 * Store the X0-X7 value from the entrypoint into the context
545 	 * Use memcpy as we are in control of the layout of the structures
546 	 */
547 	gp_regs = get_gpregs_ctx(ctx);
548 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
549 }
550 
551 /*******************************************************************************
552  * Context management library initialization routine. This library is used by
553  * runtime services to share pointers to 'cpu_context' structures for secure
554  * non-secure and realm states. Management of the structures and their associated
555  * memory is not done by the context management library e.g. the PSCI service
556  * manages the cpu context used for entry from and exit to the non-secure state.
557  * The Secure payload dispatcher service manages the context(s) corresponding to
558  * the secure state. It also uses this library to get access to the non-secure
559  * state cpu context pointers.
560  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
561  * which will be used for programming an entry into a lower EL. The same context
562  * will be used to save state upon exception entry from that EL.
563  ******************************************************************************/
564 void __init cm_init(void)
565 {
566 	/*
567 	 * The context management library has only global data to initialize, but
568 	 * that will be done when the BSS is zeroed out.
569 	 */
570 }
571 
572 /*******************************************************************************
573  * This is the high-level function used to initialize the cpu_context 'ctx' for
574  * first use. It performs initializations that are common to all security states
575  * and initializations specific to the security state specified in 'ep'
576  ******************************************************************************/
577 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
578 {
579 	unsigned int security_state;
580 
581 	assert(ctx != NULL);
582 
583 	/*
584 	 * Perform initializations that are common
585 	 * to all security states
586 	 */
587 	setup_context_common(ctx, ep);
588 
589 	security_state = GET_SECURITY_STATE(ep->h.attr);
590 
591 	/* Perform security state specific initializations */
592 	switch (security_state) {
593 	case SECURE:
594 		setup_secure_context(ctx, ep);
595 		break;
596 #if ENABLE_RME
597 	case REALM:
598 		setup_realm_context(ctx, ep);
599 		break;
600 #endif
601 	case NON_SECURE:
602 		setup_ns_context(ctx, ep);
603 		break;
604 	default:
605 		ERROR("Invalid security state\n");
606 		panic();
607 		break;
608 	}
609 }
610 
611 /*******************************************************************************
612  * Enable architecture extensions for EL3 execution. This function only updates
613  * registers in-place which are expected to either never change or be
614  * overwritten by el3_exit.
615  ******************************************************************************/
616 #if IMAGE_BL31
617 void cm_manage_extensions_el3(void)
618 {
619 	if (is_feat_amu_supported()) {
620 		amu_init_el3();
621 	}
622 
623 	if (is_feat_sme_supported()) {
624 		sme_init_el3();
625 	}
626 
627 	pmuv3_init_el3();
628 }
629 #endif /* IMAGE_BL31 */
630 
631 /******************************************************************************
632  * Function to initialise the registers with the RESET values in the context
633  * memory, which are maintained per world.
634  ******************************************************************************/
635 #if IMAGE_BL31
636 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
637 {
638 	/*
639 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
640 	 *
641 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
642 	 *  by Advanced SIMD, floating-point or SVE instructions (if
643 	 *  implemented) do not trap to EL3.
644 	 *
645 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
646 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
647 	 */
648 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
649 
650 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
651 
652 	/*
653 	 * Initialize MPAM3_EL3 to its default reset value
654 	 *
655 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
656 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
657 	 */
658 
659 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
660 }
661 #endif /* IMAGE_BL31 */
662 
663 /*******************************************************************************
664  * Initialise per_world_context for Non-Secure world.
665  * This function enables the architecture extensions, which have same value
666  * across the cores for the non-secure world.
667  ******************************************************************************/
668 #if IMAGE_BL31
669 void manage_extensions_nonsecure_per_world(void)
670 {
671 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
672 
673 	if (is_feat_sme_supported()) {
674 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
675 	}
676 
677 	if (is_feat_sve_supported()) {
678 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
679 	}
680 
681 	if (is_feat_amu_supported()) {
682 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
683 	}
684 
685 	if (is_feat_sys_reg_trace_supported()) {
686 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
687 	}
688 
689 	if (is_feat_mpam_supported()) {
690 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
691 	}
692 }
693 #endif /* IMAGE_BL31 */
694 
695 /*******************************************************************************
696  * Initialise per_world_context for Secure world.
697  * This function enables the architecture extensions, which have same value
698  * across the cores for the secure world.
699  ******************************************************************************/
700 static void manage_extensions_secure_per_world(void)
701 {
702 #if IMAGE_BL31
703 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
704 
705 	if (is_feat_sme_supported()) {
706 
707 		if (ENABLE_SME_FOR_SWD) {
708 		/*
709 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
710 		 * SME, SVE, and FPU/SIMD context properly managed.
711 		 */
712 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
713 		} else {
714 		/*
715 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
716 		 * world can safely use the associated registers.
717 		 */
718 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
719 		}
720 	}
721 	if (is_feat_sve_supported()) {
722 		if (ENABLE_SVE_FOR_SWD) {
723 		/*
724 		 * Enable SVE and FPU in secure context, SPM must ensure
725 		 * that the SVE and FPU register contexts are properly managed.
726 		 */
727 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
728 		} else {
729 		/*
730 		 * Disable SVE and FPU in secure context so non-secure world
731 		 * can safely use them.
732 		 */
733 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
734 		}
735 	}
736 
737 	/* NS can access this but Secure shouldn't */
738 	if (is_feat_sys_reg_trace_supported()) {
739 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
740 	}
741 
742 	has_secure_perworld_init = true;
743 #endif /* IMAGE_BL31 */
744 }
745 
746 /*******************************************************************************
747  * Enable architecture extensions on first entry to Non-secure world only
748  * and disable for secure world.
749  *
750  * NOTE: Arch features which have been provided with the capability of getting
751  * enabled only for non-secure world and being disabled for secure world are
752  * grouped here, as the MDCR_EL3 context value remains same across the worlds.
753  ******************************************************************************/
754 static void manage_extensions_common(cpu_context_t *ctx)
755 {
756 #if IMAGE_BL31
757 	if (is_feat_spe_supported()) {
758 		/*
759 		 * Enable FEAT_SPE for Non-Secure and prohibit for Secure state.
760 		 */
761 		spe_enable(ctx);
762 	}
763 
764 	if (is_feat_trbe_supported()) {
765 		/*
766 		 * Enable FEAT_TRBE for Non-Secure and prohibit for Secure and
767 		 * Realm state.
768 		 */
769 		trbe_enable(ctx);
770 	}
771 
772 	if (is_feat_trf_supported()) {
773 		/*
774 		 * Enable FEAT_TRF for Non-Secure and prohibit for Secure state.
775 		 */
776 		trf_enable(ctx);
777 	}
778 
779 	if (is_feat_brbe_supported()) {
780 		/*
781 		 * Enable FEAT_BRBE for Non-Secure and prohibit for Secure state.
782 		 */
783 		brbe_enable(ctx);
784 	}
785 #endif /* IMAGE_BL31 */
786 }
787 
788 /*******************************************************************************
789  * Enable architecture extensions on first entry to Non-secure world.
790  ******************************************************************************/
791 static void manage_extensions_nonsecure(cpu_context_t *ctx)
792 {
793 #if IMAGE_BL31
794 	if (is_feat_amu_supported()) {
795 		amu_enable(ctx);
796 	}
797 
798 	if (is_feat_sme_supported()) {
799 		sme_enable(ctx);
800 	}
801 
802 	if (is_feat_fgt2_supported()) {
803 		fgt2_enable(ctx);
804 	}
805 
806 	if (is_feat_debugv8p9_supported()) {
807 		debugv8p9_extended_bp_wp_enable(ctx);
808 	}
809 
810 	pmuv3_enable(ctx);
811 #endif /* IMAGE_BL31 */
812 }
813 
814 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
815 static __unused void enable_pauth_el2(void)
816 {
817 	u_register_t hcr_el2 = read_hcr_el2();
818 	/*
819 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
820 	 *  accessing key registers or using pointer authentication instructions
821 	 *  from lower ELs.
822 	 */
823 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
824 
825 	write_hcr_el2(hcr_el2);
826 }
827 
828 #if INIT_UNUSED_NS_EL2
829 /*******************************************************************************
830  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
831  * world when EL2 is empty and unused.
832  ******************************************************************************/
833 static void manage_extensions_nonsecure_el2_unused(void)
834 {
835 #if IMAGE_BL31
836 	if (is_feat_spe_supported()) {
837 		spe_init_el2_unused();
838 	}
839 
840 	if (is_feat_amu_supported()) {
841 		amu_init_el2_unused();
842 	}
843 
844 	if (is_feat_mpam_supported()) {
845 		mpam_init_el2_unused();
846 	}
847 
848 	if (is_feat_trbe_supported()) {
849 		trbe_init_el2_unused();
850 	}
851 
852 	if (is_feat_sys_reg_trace_supported()) {
853 		sys_reg_trace_init_el2_unused();
854 	}
855 
856 	if (is_feat_trf_supported()) {
857 		trf_init_el2_unused();
858 	}
859 
860 	pmuv3_init_el2_unused();
861 
862 	if (is_feat_sve_supported()) {
863 		sve_init_el2_unused();
864 	}
865 
866 	if (is_feat_sme_supported()) {
867 		sme_init_el2_unused();
868 	}
869 
870 #if ENABLE_PAUTH
871 	enable_pauth_el2();
872 #endif /* ENABLE_PAUTH */
873 #endif /* IMAGE_BL31 */
874 }
875 #endif /* INIT_UNUSED_NS_EL2 */
876 
877 /*******************************************************************************
878  * Enable architecture extensions on first entry to Secure world.
879  ******************************************************************************/
880 static void manage_extensions_secure(cpu_context_t *ctx)
881 {
882 #if IMAGE_BL31
883 	if (is_feat_sme_supported()) {
884 		if (ENABLE_SME_FOR_SWD) {
885 		/*
886 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
887 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
888 		 */
889 			sme_init_el3();
890 			sme_enable(ctx);
891 		} else {
892 		/*
893 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
894 		 * world can safely use the associated registers.
895 		 */
896 			sme_disable(ctx);
897 		}
898 	}
899 #endif /* IMAGE_BL31 */
900 }
901 
902 #if !IMAGE_BL1
903 /*******************************************************************************
904  * The following function initializes the cpu_context for a CPU specified by
905  * its `cpu_idx` for first use, and sets the initial entrypoint state as
906  * specified by the entry_point_info structure.
907  ******************************************************************************/
908 void cm_init_context_by_index(unsigned int cpu_idx,
909 			      const entry_point_info_t *ep)
910 {
911 	cpu_context_t *ctx;
912 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
913 	cm_setup_context(ctx, ep);
914 }
915 #endif /* !IMAGE_BL1 */
916 
917 /*******************************************************************************
918  * The following function initializes the cpu_context for the current CPU
919  * for first use, and sets the initial entrypoint state as specified by the
920  * entry_point_info structure.
921  ******************************************************************************/
922 void cm_init_my_context(const entry_point_info_t *ep)
923 {
924 	cpu_context_t *ctx;
925 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
926 	cm_setup_context(ctx, ep);
927 }
928 
929 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
930 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
931 {
932 #if INIT_UNUSED_NS_EL2
933 	u_register_t hcr_el2 = HCR_RESET_VAL;
934 	u_register_t mdcr_el2;
935 	u_register_t scr_el3;
936 
937 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
938 
939 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
940 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
941 		hcr_el2 |= HCR_RW_BIT;
942 	}
943 
944 	write_hcr_el2(hcr_el2);
945 
946 	/*
947 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
948 	 * All fields have architecturally UNKNOWN reset values.
949 	 */
950 	write_cptr_el2(CPTR_EL2_RESET_VAL);
951 
952 	/*
953 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
954 	 * reset and are set to zero except for field(s) listed below.
955 	 *
956 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
957 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
958 	 *
959 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
960 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
961 	 */
962 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
963 
964 	/*
965 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
966 	 * UNKNOWN value.
967 	 */
968 	write_cntvoff_el2(0);
969 
970 	/*
971 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
972 	 * respectively.
973 	 */
974 	write_vpidr_el2(read_midr_el1());
975 	write_vmpidr_el2(read_mpidr_el1());
976 
977 	/*
978 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
979 	 *
980 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
981 	 * translation is disabled, cache maintenance operations depend on the
982 	 * VMID.
983 	 *
984 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
985 	 * disabled.
986 	 */
987 	write_vttbr_el2(VTTBR_RESET_VAL &
988 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
989 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
990 
991 	/*
992 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
993 	 * Some fields are architecturally UNKNOWN on reset.
994 	 *
995 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
996 	 * register accesses to the Debug ROM registers are not trapped to EL2.
997 	 *
998 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
999 	 * accesses to the powerdown debug registers are not trapped to EL2.
1000 	 *
1001 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
1002 	 * debug registers do not trap to EL2.
1003 	 *
1004 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
1005 	 * EL2.
1006 	 */
1007 	mdcr_el2 = MDCR_EL2_RESET_VAL &
1008 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
1009 		   MDCR_EL2_TDE_BIT);
1010 
1011 	write_mdcr_el2(mdcr_el2);
1012 
1013 	/*
1014 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
1015 	 *
1016 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
1017 	 * EL1 accesses to System registers do not trap to EL2.
1018 	 */
1019 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
1020 
1021 	/*
1022 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
1023 	 * reset.
1024 	 *
1025 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1026 	 * and prevent timer interrupts.
1027 	 */
1028 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1029 
1030 	manage_extensions_nonsecure_el2_unused();
1031 #endif /* INIT_UNUSED_NS_EL2 */
1032 }
1033 
1034 /*******************************************************************************
1035  * Prepare the CPU system registers for first entry into realm, secure, or
1036  * normal world.
1037  *
1038  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1039  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1040  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1041  * For all entries, the EL1 registers are initialized from the cpu_context
1042  ******************************************************************************/
1043 void cm_prepare_el3_exit(uint32_t security_state)
1044 {
1045 	u_register_t sctlr_el2, scr_el3;
1046 	cpu_context_t *ctx = cm_get_context(security_state);
1047 
1048 	assert(ctx != NULL);
1049 
1050 	if (security_state == NON_SECURE) {
1051 		uint64_t el2_implemented = el_implemented(2);
1052 
1053 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1054 						 CTX_SCR_EL3);
1055 
1056 		if (el2_implemented != EL_IMPL_NONE) {
1057 
1058 			/*
1059 			 * If context is not being used for EL2, initialize
1060 			 * HCRX_EL2 with its init value here.
1061 			 */
1062 			if (is_feat_hcx_supported()) {
1063 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1064 			}
1065 
1066 			/*
1067 			 * Initialize Fine-grained trap registers introduced
1068 			 * by FEAT_FGT so all traps are initially disabled when
1069 			 * switching to EL2 or a lower EL, preventing undesired
1070 			 * behavior.
1071 			 */
1072 			if (is_feat_fgt_supported()) {
1073 				/*
1074 				 * Initialize HFG*_EL2 registers with a default
1075 				 * value so legacy systems unaware of FEAT_FGT
1076 				 * do not get trapped due to their lack of
1077 				 * initialization for this feature.
1078 				 */
1079 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1080 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1081 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1082 			}
1083 
1084 			/* Condition to ensure EL2 is being used. */
1085 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1086 				/* Initialize SCTLR_EL2 register with reset value. */
1087 				sctlr_el2 = SCTLR_EL2_RES1;
1088 
1089 				/*
1090 				 * If workaround of errata 764081 for Cortex-A75
1091 				 * is used then set SCTLR_EL2.IESB to enable
1092 				 * Implicit Error Synchronization Barrier.
1093 				 */
1094 				if (errata_a75_764081_applies()) {
1095 					sctlr_el2 |= SCTLR_IESB_BIT;
1096 				}
1097 
1098 				write_sctlr_el2(sctlr_el2);
1099 			} else {
1100 				/*
1101 				 * (scr_el3 & SCR_HCE_BIT==0)
1102 				 * EL2 implemented but unused.
1103 				 */
1104 				init_nonsecure_el2_unused(ctx);
1105 			}
1106 		}
1107 	}
1108 #if (!CTX_INCLUDE_EL2_REGS)
1109 	/* Restore EL1 system registers, only when CTX_INCLUDE_EL2_REGS=0 */
1110 	cm_el1_sysregs_context_restore(security_state);
1111 #endif
1112 	cm_set_next_eret_context(security_state);
1113 }
1114 
1115 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1116 
1117 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1118 {
1119 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1120 	if (is_feat_amu_supported()) {
1121 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1122 	}
1123 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1124 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1125 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1126 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1127 }
1128 
1129 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1130 {
1131 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1132 	if (is_feat_amu_supported()) {
1133 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1134 	}
1135 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1136 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1137 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1138 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1139 }
1140 
1141 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1142 {
1143 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1144 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1145 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1146 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1147 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1148 }
1149 
1150 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1151 {
1152 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1153 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1154 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1155 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1156 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1157 }
1158 
1159 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1160 {
1161 	u_register_t mpam_idr = read_mpamidr_el1();
1162 
1163 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1164 
1165 	/*
1166 	 * The context registers that we intend to save would be part of the
1167 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1168 	 */
1169 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1170 		return;
1171 	}
1172 
1173 	/*
1174 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1175 	 * MPAMIDR_HAS_HCR_BIT == 1.
1176 	 */
1177 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1178 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1179 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1180 
1181 	/*
1182 	 * The number of MPAMVPM registers is implementation defined, their
1183 	 * number is stored in the MPAMIDR_EL1 register.
1184 	 */
1185 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1186 	case 7:
1187 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1188 		__fallthrough;
1189 	case 6:
1190 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1191 		__fallthrough;
1192 	case 5:
1193 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1194 		__fallthrough;
1195 	case 4:
1196 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1197 		__fallthrough;
1198 	case 3:
1199 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1200 		__fallthrough;
1201 	case 2:
1202 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1203 		__fallthrough;
1204 	case 1:
1205 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1206 		break;
1207 	}
1208 }
1209 
1210 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1211 {
1212 	u_register_t mpam_idr = read_mpamidr_el1();
1213 
1214 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1215 
1216 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1217 		return;
1218 	}
1219 
1220 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1221 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1222 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1223 
1224 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1225 	case 7:
1226 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1227 		__fallthrough;
1228 	case 6:
1229 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1230 		__fallthrough;
1231 	case 5:
1232 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1233 		__fallthrough;
1234 	case 4:
1235 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1236 		__fallthrough;
1237 	case 3:
1238 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1239 		__fallthrough;
1240 	case 2:
1241 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1242 		__fallthrough;
1243 	case 1:
1244 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1245 		break;
1246 	}
1247 }
1248 
1249 /* ---------------------------------------------------------------------------
1250  * The following registers are not added:
1251  * ICH_AP0R<n>_EL2
1252  * ICH_AP1R<n>_EL2
1253  * ICH_LR<n>_EL2
1254  *
1255  * NOTE: For a system with S-EL2 present but not enabled, accessing
1256  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1257  * SCR_EL3.NS = 1 before accessing this register.
1258  * ---------------------------------------------------------------------------
1259  */
1260 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx)
1261 {
1262 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1263 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1264 #else
1265 	u_register_t scr_el3 = read_scr_el3();
1266 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1267 	isb();
1268 
1269 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1270 
1271 	write_scr_el3(scr_el3);
1272 	isb();
1273 #endif
1274 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1275 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1276 }
1277 
1278 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx)
1279 {
1280 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1281 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1282 #else
1283 	u_register_t scr_el3 = read_scr_el3();
1284 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1285 	isb();
1286 
1287 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1288 
1289 	write_scr_el3(scr_el3);
1290 	isb();
1291 #endif
1292 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1293 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1294 }
1295 
1296 /* -----------------------------------------------------
1297  * The following registers are not added:
1298  * AMEVCNTVOFF0<n>_EL2
1299  * AMEVCNTVOFF1<n>_EL2
1300  * -----------------------------------------------------
1301  */
1302 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1303 {
1304 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1305 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1306 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1307 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1308 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1309 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1310 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1311 	if (CTX_INCLUDE_AARCH32_REGS) {
1312 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1313 	}
1314 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1315 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1316 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1317 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1318 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1319 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1320 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1321 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1322 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1323 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1324 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1325 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1326 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1327 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1328 	write_el2_ctx_common(ctx, ttbr0_el2, read_ttbr0_el2());
1329 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1330 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1331 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1332 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1333 	write_el2_ctx_common(ctx, vttbr_el2, read_vttbr_el2());
1334 }
1335 
1336 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1337 {
1338 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1339 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1340 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1341 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1342 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1343 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1344 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1345 	if (CTX_INCLUDE_AARCH32_REGS) {
1346 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1347 	}
1348 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1349 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1350 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1351 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1352 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1353 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1354 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1355 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1356 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1357 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1358 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1359 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1360 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1361 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1362 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1363 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1364 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1365 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1366 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1367 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1368 }
1369 
1370 /*******************************************************************************
1371  * Save EL2 sysreg context
1372  ******************************************************************************/
1373 void cm_el2_sysregs_context_save(uint32_t security_state)
1374 {
1375 	cpu_context_t *ctx;
1376 	el2_sysregs_t *el2_sysregs_ctx;
1377 
1378 	ctx = cm_get_context(security_state);
1379 	assert(ctx != NULL);
1380 
1381 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1382 
1383 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1384 	el2_sysregs_context_save_gic(el2_sysregs_ctx);
1385 
1386 	if (is_feat_mte2_supported()) {
1387 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1388 	}
1389 
1390 	if (is_feat_mpam_supported()) {
1391 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1392 	}
1393 
1394 	if (is_feat_fgt_supported()) {
1395 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1396 	}
1397 
1398 	if (is_feat_fgt2_supported()) {
1399 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1400 	}
1401 
1402 	if (is_feat_ecv_v2_supported()) {
1403 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1404 	}
1405 
1406 	if (is_feat_vhe_supported()) {
1407 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1408 					read_contextidr_el2());
1409 		write_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1410 	}
1411 
1412 	if (is_feat_ras_supported()) {
1413 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1414 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1415 	}
1416 
1417 	if (is_feat_nv2_supported()) {
1418 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1419 	}
1420 
1421 	if (is_feat_trf_supported()) {
1422 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1423 	}
1424 
1425 	if (is_feat_csv2_2_supported()) {
1426 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1427 					read_scxtnum_el2());
1428 	}
1429 
1430 	if (is_feat_hcx_supported()) {
1431 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1432 	}
1433 
1434 	if (is_feat_tcr2_supported()) {
1435 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1436 	}
1437 
1438 	if (is_feat_sxpie_supported()) {
1439 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1440 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1441 	}
1442 
1443 	if (is_feat_sxpoe_supported()) {
1444 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1445 	}
1446 
1447 	if (is_feat_s2pie_supported()) {
1448 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1449 	}
1450 
1451 	if (is_feat_gcs_supported()) {
1452 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1453 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1454 	}
1455 
1456 	if (is_feat_sctlr2_supported()) {
1457 		write_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2, read_sctlr2_el2());
1458 	}
1459 }
1460 
1461 /*******************************************************************************
1462  * Restore EL2 sysreg context
1463  ******************************************************************************/
1464 void cm_el2_sysregs_context_restore(uint32_t security_state)
1465 {
1466 	cpu_context_t *ctx;
1467 	el2_sysregs_t *el2_sysregs_ctx;
1468 
1469 	ctx = cm_get_context(security_state);
1470 	assert(ctx != NULL);
1471 
1472 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1473 
1474 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1475 	el2_sysregs_context_restore_gic(el2_sysregs_ctx);
1476 
1477 	if (is_feat_mte2_supported()) {
1478 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1479 	}
1480 
1481 	if (is_feat_mpam_supported()) {
1482 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1483 	}
1484 
1485 	if (is_feat_fgt_supported()) {
1486 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1487 	}
1488 
1489 	if (is_feat_fgt2_supported()) {
1490 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1491 	}
1492 
1493 	if (is_feat_ecv_v2_supported()) {
1494 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1495 	}
1496 
1497 	if (is_feat_vhe_supported()) {
1498 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1499 					contextidr_el2));
1500 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1501 	}
1502 
1503 	if (is_feat_ras_supported()) {
1504 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1505 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1506 	}
1507 
1508 	if (is_feat_nv2_supported()) {
1509 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1510 	}
1511 
1512 	if (is_feat_trf_supported()) {
1513 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1514 	}
1515 
1516 	if (is_feat_csv2_2_supported()) {
1517 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1518 					scxtnum_el2));
1519 	}
1520 
1521 	if (is_feat_hcx_supported()) {
1522 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1523 	}
1524 
1525 	if (is_feat_tcr2_supported()) {
1526 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1527 	}
1528 
1529 	if (is_feat_sxpie_supported()) {
1530 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1531 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1532 	}
1533 
1534 	if (is_feat_sxpoe_supported()) {
1535 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1536 	}
1537 
1538 	if (is_feat_s2pie_supported()) {
1539 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1540 	}
1541 
1542 	if (is_feat_gcs_supported()) {
1543 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1544 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1545 	}
1546 
1547 	if (is_feat_sctlr2_supported()) {
1548 		write_sctlr2_el2(read_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2));
1549 	}
1550 }
1551 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1552 
1553 #if IMAGE_BL31
1554 /*********************************************************************************
1555 * This function allows Architecture features asymmetry among cores.
1556 * TF-A assumes that all the cores in the platform has architecture feature parity
1557 * and hence the context is setup on different core (e.g. primary sets up the
1558 * context for secondary cores).This assumption may not be true for systems where
1559 * cores are not conforming to same Arch version or there is CPU Erratum which
1560 * requires certain feature to be be disabled only on a given core.
1561 *
1562 * This function is called on secondary cores to override any disparity in context
1563 * setup by primary, this would be called during warmboot path.
1564 *********************************************************************************/
1565 void cm_handle_asymmetric_features(void)
1566 {
1567 	cpu_context_t *ctx __maybe_unused = cm_get_context(NON_SECURE);
1568 
1569 	assert(ctx != NULL);
1570 
1571 #if ENABLE_SPE_FOR_NS == FEAT_STATE_CHECK_ASYMMETRIC
1572 	if (is_feat_spe_supported()) {
1573 		spe_enable(ctx);
1574 	} else {
1575 		spe_disable(ctx);
1576 	}
1577 #endif
1578 
1579 #if ERRATA_A520_2938996 || ERRATA_X4_2726228
1580 	if (check_if_affected_core() == ERRATA_APPLIES) {
1581 		if (is_feat_trbe_supported()) {
1582 			trbe_disable(ctx);
1583 		}
1584 	}
1585 #endif
1586 
1587 #if ENABLE_FEAT_TCR2 == FEAT_STATE_CHECK_ASYMMETRIC
1588 	el3_state_t *el3_state = get_el3state_ctx(ctx);
1589 	u_register_t spsr = read_ctx_reg(el3_state, CTX_SPSR_EL3);
1590 
1591 	if (is_feat_tcr2_supported() && (GET_RW(spsr) == MODE_RW_64)) {
1592 		tcr2_enable(ctx);
1593 	} else {
1594 		tcr2_disable(ctx);
1595 	}
1596 #endif
1597 
1598 }
1599 #endif
1600 
1601 /*******************************************************************************
1602  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1603  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1604  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1605  * cm_prepare_el3_exit function.
1606  ******************************************************************************/
1607 void cm_prepare_el3_exit_ns(void)
1608 {
1609 #if IMAGE_BL31
1610 	/*
1611 	 * Check and handle Architecture feature asymmetry among cores.
1612 	 *
1613 	 * In warmboot path secondary cores context is initialized on core which
1614 	 * did CPU_ON SMC call, if there is feature asymmetry in these cores handle
1615 	 * it in this function call.
1616 	 * For Symmetric cores this is an empty function.
1617 	 */
1618 	cm_handle_asymmetric_features();
1619 #endif
1620 
1621 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1622 #if ENABLE_ASSERTIONS
1623 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1624 	assert(ctx != NULL);
1625 
1626 	/* Assert that EL2 is used. */
1627 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1628 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1629 			(el_implemented(2U) != EL_IMPL_NONE));
1630 #endif /* ENABLE_ASSERTIONS */
1631 
1632 	/* Restore EL2 sysreg contexts */
1633 	cm_el2_sysregs_context_restore(NON_SECURE);
1634 	cm_set_next_eret_context(NON_SECURE);
1635 #else
1636 	cm_prepare_el3_exit(NON_SECURE);
1637 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1638 }
1639 
1640 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
1641 /*******************************************************************************
1642  * The next set of six functions are used by runtime services to save and restore
1643  * EL1 context on the 'cpu_context' structure for the specified security state.
1644  ******************************************************************************/
1645 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1646 {
1647 	write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1());
1648 	write_el1_ctx_common(ctx, elr_el1, read_elr_el1());
1649 
1650 #if (!ERRATA_SPECULATIVE_AT)
1651 	write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1());
1652 	write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1());
1653 #endif /* (!ERRATA_SPECULATIVE_AT) */
1654 
1655 	write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1());
1656 	write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1());
1657 	write_el1_ctx_common(ctx, sp_el1, read_sp_el1());
1658 	write_el1_ctx_common(ctx, esr_el1, read_esr_el1());
1659 	write_el1_ctx_common(ctx, ttbr0_el1, read_ttbr0_el1());
1660 	write_el1_ctx_common(ctx, ttbr1_el1, read_ttbr1_el1());
1661 	write_el1_ctx_common(ctx, mair_el1, read_mair_el1());
1662 	write_el1_ctx_common(ctx, amair_el1, read_amair_el1());
1663 	write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1());
1664 	write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1());
1665 	write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0());
1666 	write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0());
1667 	write_el1_ctx_common(ctx, par_el1, read_par_el1());
1668 	write_el1_ctx_common(ctx, far_el1, read_far_el1());
1669 	write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1());
1670 	write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1());
1671 	write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1());
1672 	write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1());
1673 	write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1());
1674 	write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1());
1675 
1676 	if (CTX_INCLUDE_AARCH32_REGS) {
1677 		/* Save Aarch32 registers */
1678 		write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt());
1679 		write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und());
1680 		write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq());
1681 		write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq());
1682 		write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2());
1683 		write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2());
1684 	}
1685 
1686 	if (NS_TIMER_SWITCH) {
1687 		/* Save NS Timer registers */
1688 		write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0());
1689 		write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0());
1690 		write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0());
1691 		write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0());
1692 		write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1());
1693 	}
1694 
1695 	if (is_feat_mte2_supported()) {
1696 		write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1());
1697 		write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1());
1698 		write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1());
1699 		write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1());
1700 	}
1701 
1702 	if (is_feat_ras_supported()) {
1703 		write_el1_ctx_ras(ctx, disr_el1, read_disr_el1());
1704 	}
1705 
1706 	if (is_feat_s1pie_supported()) {
1707 		write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1());
1708 		write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1());
1709 	}
1710 
1711 	if (is_feat_s1poe_supported()) {
1712 		write_el1_ctx_s1poe(ctx, por_el1, read_por_el1());
1713 	}
1714 
1715 	if (is_feat_s2poe_supported()) {
1716 		write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1());
1717 	}
1718 
1719 	if (is_feat_tcr2_supported()) {
1720 		write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1());
1721 	}
1722 
1723 	if (is_feat_trf_supported()) {
1724 		write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1());
1725 	}
1726 
1727 	if (is_feat_csv2_2_supported()) {
1728 		write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0());
1729 		write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1());
1730 	}
1731 
1732 	if (is_feat_gcs_supported()) {
1733 		write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1());
1734 		write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1());
1735 		write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1());
1736 		write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0());
1737 	}
1738 
1739 	if (is_feat_the_supported()) {
1740 		write_el1_ctx_the(ctx, rcwmask_el1, read_rcwmask_el1());
1741 		write_el1_ctx_the(ctx, rcwsmask_el1, read_rcwsmask_el1());
1742 	}
1743 
1744 	if (is_feat_sctlr2_supported()) {
1745 		write_el1_ctx_sctlr2(ctx, sctlr2_el1, read_sctlr2_el1());
1746 	}
1747 
1748 }
1749 
1750 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1751 {
1752 	write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1));
1753 	write_elr_el1(read_el1_ctx_common(ctx, elr_el1));
1754 
1755 #if (!ERRATA_SPECULATIVE_AT)
1756 	write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1));
1757 	write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1));
1758 #endif /* (!ERRATA_SPECULATIVE_AT) */
1759 
1760 	write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1));
1761 	write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1));
1762 	write_sp_el1(read_el1_ctx_common(ctx, sp_el1));
1763 	write_esr_el1(read_el1_ctx_common(ctx, esr_el1));
1764 	write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1));
1765 	write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1));
1766 	write_mair_el1(read_el1_ctx_common(ctx, mair_el1));
1767 	write_amair_el1(read_el1_ctx_common(ctx, amair_el1));
1768 	write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1));
1769 	write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1));
1770 	write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0));
1771 	write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0));
1772 	write_par_el1(read_el1_ctx_common(ctx, par_el1));
1773 	write_far_el1(read_el1_ctx_common(ctx, far_el1));
1774 	write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1));
1775 	write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1));
1776 	write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1));
1777 	write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1));
1778 	write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1));
1779 	write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1));
1780 
1781 	if (CTX_INCLUDE_AARCH32_REGS) {
1782 		/* Restore Aarch32 registers */
1783 		write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt));
1784 		write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und));
1785 		write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq));
1786 		write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq));
1787 		write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2));
1788 		write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2));
1789 	}
1790 
1791 	if (NS_TIMER_SWITCH) {
1792 		/* Restore NS Timer registers */
1793 		write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0));
1794 		write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0));
1795 		write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0));
1796 		write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0));
1797 		write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1));
1798 	}
1799 
1800 	if (is_feat_mte2_supported()) {
1801 		write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1));
1802 		write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1));
1803 		write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1));
1804 		write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1));
1805 	}
1806 
1807 	if (is_feat_ras_supported()) {
1808 		write_disr_el1(read_el1_ctx_ras(ctx, disr_el1));
1809 	}
1810 
1811 	if (is_feat_s1pie_supported()) {
1812 		write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1));
1813 		write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1));
1814 	}
1815 
1816 	if (is_feat_s1poe_supported()) {
1817 		write_por_el1(read_el1_ctx_s1poe(ctx, por_el1));
1818 	}
1819 
1820 	if (is_feat_s2poe_supported()) {
1821 		write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1));
1822 	}
1823 
1824 	if (is_feat_tcr2_supported()) {
1825 		write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1));
1826 	}
1827 
1828 	if (is_feat_trf_supported()) {
1829 		write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1));
1830 	}
1831 
1832 	if (is_feat_csv2_2_supported()) {
1833 		write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0));
1834 		write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1));
1835 	}
1836 
1837 	if (is_feat_gcs_supported()) {
1838 		write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1));
1839 		write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1));
1840 		write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1));
1841 		write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0));
1842 	}
1843 
1844 	if (is_feat_the_supported()) {
1845 		write_rcwmask_el1(read_el1_ctx_the(ctx, rcwmask_el1));
1846 		write_rcwsmask_el1(read_el1_ctx_the(ctx, rcwsmask_el1));
1847 	}
1848 
1849 	if (is_feat_sctlr2_supported()) {
1850 		write_sctlr2_el1(read_el1_ctx_sctlr2(ctx, sctlr2_el1));
1851 	}
1852 
1853 }
1854 
1855 /*******************************************************************************
1856  * The next couple of functions are used by runtime services to save and restore
1857  * EL1 context on the 'cpu_context' structure for the specified security state.
1858  ******************************************************************************/
1859 void cm_el1_sysregs_context_save(uint32_t security_state)
1860 {
1861 	cpu_context_t *ctx;
1862 
1863 	ctx = cm_get_context(security_state);
1864 	assert(ctx != NULL);
1865 
1866 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1867 
1868 #if IMAGE_BL31
1869 	if (security_state == SECURE)
1870 		PUBLISH_EVENT(cm_exited_secure_world);
1871 	else
1872 		PUBLISH_EVENT(cm_exited_normal_world);
1873 #endif
1874 }
1875 
1876 void cm_el1_sysregs_context_restore(uint32_t security_state)
1877 {
1878 	cpu_context_t *ctx;
1879 
1880 	ctx = cm_get_context(security_state);
1881 	assert(ctx != NULL);
1882 
1883 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1884 
1885 #if IMAGE_BL31
1886 	if (security_state == SECURE)
1887 		PUBLISH_EVENT(cm_entering_secure_world);
1888 	else
1889 		PUBLISH_EVENT(cm_entering_normal_world);
1890 #endif
1891 }
1892 
1893 #endif /* ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) */
1894 
1895 /*******************************************************************************
1896  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1897  * given security state with the given entrypoint
1898  ******************************************************************************/
1899 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1900 {
1901 	cpu_context_t *ctx;
1902 	el3_state_t *state;
1903 
1904 	ctx = cm_get_context(security_state);
1905 	assert(ctx != NULL);
1906 
1907 	/* Populate EL3 state so that ERET jumps to the correct entry */
1908 	state = get_el3state_ctx(ctx);
1909 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1910 }
1911 
1912 /*******************************************************************************
1913  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1914  * pertaining to the given security state
1915  ******************************************************************************/
1916 void cm_set_elr_spsr_el3(uint32_t security_state,
1917 			uintptr_t entrypoint, uint32_t spsr)
1918 {
1919 	cpu_context_t *ctx;
1920 	el3_state_t *state;
1921 
1922 	ctx = cm_get_context(security_state);
1923 	assert(ctx != NULL);
1924 
1925 	/* Populate EL3 state so that ERET jumps to the correct entry */
1926 	state = get_el3state_ctx(ctx);
1927 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1928 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1929 }
1930 
1931 /*******************************************************************************
1932  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1933  * pertaining to the given security state using the value and bit position
1934  * specified in the parameters. It preserves all other bits.
1935  ******************************************************************************/
1936 void cm_write_scr_el3_bit(uint32_t security_state,
1937 			  uint32_t bit_pos,
1938 			  uint32_t value)
1939 {
1940 	cpu_context_t *ctx;
1941 	el3_state_t *state;
1942 	u_register_t scr_el3;
1943 
1944 	ctx = cm_get_context(security_state);
1945 	assert(ctx != NULL);
1946 
1947 	/* Ensure that the bit position is a valid one */
1948 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1949 
1950 	/* Ensure that the 'value' is only a bit wide */
1951 	assert(value <= 1U);
1952 
1953 	/*
1954 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1955 	 * and set it to its new value.
1956 	 */
1957 	state = get_el3state_ctx(ctx);
1958 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1959 	scr_el3 &= ~(1UL << bit_pos);
1960 	scr_el3 |= (u_register_t)value << bit_pos;
1961 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1962 }
1963 
1964 /*******************************************************************************
1965  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1966  * given security state.
1967  ******************************************************************************/
1968 u_register_t cm_get_scr_el3(uint32_t security_state)
1969 {
1970 	cpu_context_t *ctx;
1971 	el3_state_t *state;
1972 
1973 	ctx = cm_get_context(security_state);
1974 	assert(ctx != NULL);
1975 
1976 	/* Populate EL3 state so that ERET jumps to the correct entry */
1977 	state = get_el3state_ctx(ctx);
1978 	return read_ctx_reg(state, CTX_SCR_EL3);
1979 }
1980 
1981 /*******************************************************************************
1982  * This function is used to program the context that's used for exception
1983  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1984  * the required security state
1985  ******************************************************************************/
1986 void cm_set_next_eret_context(uint32_t security_state)
1987 {
1988 	cpu_context_t *ctx;
1989 
1990 	ctx = cm_get_context(security_state);
1991 	assert(ctx != NULL);
1992 
1993 	cm_set_next_context(ctx);
1994 }
1995