xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 3f35709c55e1c27f60389ef1b43a2b436d3d4eb7)
1 /*
2  * Copyright (c) 2013-2020, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_helpers.h>
15 #include <arch_features.h>
16 #include <bl31/interrupt_mgmt.h>
17 #include <common/bl_common.h>
18 #include <context.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/el3_runtime/pubsub_events.h>
21 #include <lib/extensions/amu.h>
22 #include <lib/extensions/mpam.h>
23 #include <lib/extensions/spe.h>
24 #include <lib/extensions/sve.h>
25 #include <lib/extensions/twed.h>
26 #include <lib/utils.h>
27 
28 
29 /*******************************************************************************
30  * Context management library initialisation routine. This library is used by
31  * runtime services to share pointers to 'cpu_context' structures for the secure
32  * and non-secure states. Management of the structures and their associated
33  * memory is not done by the context management library e.g. the PSCI service
34  * manages the cpu context used for entry from and exit to the non-secure state.
35  * The Secure payload dispatcher service manages the context(s) corresponding to
36  * the secure state. It also uses this library to get access to the non-secure
37  * state cpu context pointers.
38  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
39  * which will used for programming an entry into a lower EL. The same context
40  * will used to save state upon exception entry from that EL.
41  ******************************************************************************/
42 void __init cm_init(void)
43 {
44 	/*
45 	 * The context management library has only global data to intialize, but
46 	 * that will be done when the BSS is zeroed out
47 	 */
48 }
49 
50 /*******************************************************************************
51  * The following function initializes the cpu_context 'ctx' for
52  * first use, and sets the initial entrypoint state as specified by the
53  * entry_point_info structure.
54  *
55  * The security state to initialize is determined by the SECURE attribute
56  * of the entry_point_info.
57  *
58  * The EE and ST attributes are used to configure the endianness and secure
59  * timer availability for the new execution context.
60  *
61  * To prepare the register state for entry call cm_prepare_el3_exit() and
62  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
63  * cm_e1_sysreg_context_restore().
64  ******************************************************************************/
65 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
66 {
67 	unsigned int security_state;
68 	u_register_t scr_el3;
69 	el3_state_t *state;
70 	gp_regs_t *gp_regs;
71 	u_register_t sctlr_elx, actlr_elx;
72 
73 	assert(ctx != NULL);
74 
75 	security_state = GET_SECURITY_STATE(ep->h.attr);
76 
77 	/* Clear any residual register values from the context */
78 	zeromem(ctx, sizeof(*ctx));
79 
80 	/*
81 	 * SCR_EL3 was initialised during reset sequence in macro
82 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
83 	 * affect the next EL.
84 	 *
85 	 * The following fields are initially set to zero and then updated to
86 	 * the required value depending on the state of the SPSR_EL3 and the
87 	 * Security state and entrypoint attributes of the next EL.
88 	 */
89 	scr_el3 = read_scr();
90 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
91 			SCR_ST_BIT | SCR_HCE_BIT);
92 	/*
93 	 * SCR_NS: Set the security state of the next EL.
94 	 */
95 	if (security_state != SECURE)
96 		scr_el3 |= SCR_NS_BIT;
97 	/*
98 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
99 	 *  Exception level as specified by SPSR.
100 	 */
101 	if (GET_RW(ep->spsr) == MODE_RW_64)
102 		scr_el3 |= SCR_RW_BIT;
103 	/*
104 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
105 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
106 	 *  by the entrypoint attributes.
107 	 */
108 	if (EP_GET_ST(ep->h.attr) != 0U)
109 		scr_el3 |= SCR_ST_BIT;
110 
111 #if !HANDLE_EA_EL3_FIRST
112 	/*
113 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
114 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
115 	 *  Aborts are taken to EL3.
116 	 */
117 	scr_el3 &= ~SCR_EA_BIT;
118 #endif
119 
120 #if FAULT_INJECTION_SUPPORT
121 	/* Enable fault injection from lower ELs */
122 	scr_el3 |= SCR_FIEN_BIT;
123 #endif
124 
125 #if !CTX_INCLUDE_PAUTH_REGS
126 	/*
127 	 * If the pointer authentication registers aren't saved during world
128 	 * switches the value of the registers can be leaked from the Secure to
129 	 * the Non-secure world. To prevent this, rather than enabling pointer
130 	 * authentication everywhere, we only enable it in the Non-secure world.
131 	 *
132 	 * If the Secure world wants to use pointer authentication,
133 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
134 	 */
135 	if (security_state == NON_SECURE)
136 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
137 #endif /* !CTX_INCLUDE_PAUTH_REGS */
138 
139 	/*
140 	 * Enable MTE support. Support is enabled unilaterally for the normal
141 	 * world, and only for the secure world when CTX_INCLUDE_MTE_REGS is
142 	 * set.
143 	 */
144 #if CTX_INCLUDE_MTE_REGS
145 	assert(get_armv8_5_mte_support() == MTE_IMPLEMENTED_ELX);
146 	scr_el3 |= SCR_ATA_BIT;
147 #else
148 	unsigned int mte = get_armv8_5_mte_support();
149 	if (mte == MTE_IMPLEMENTED_EL0) {
150 		/*
151 		 * Can enable MTE across both worlds as no MTE registers are
152 		 * used
153 		 */
154 		scr_el3 |= SCR_ATA_BIT;
155 	} else if (mte == MTE_IMPLEMENTED_ELX && security_state == NON_SECURE) {
156 		/*
157 		 * Can only enable MTE in Non-Secure world without register
158 		 * saving
159 		 */
160 		scr_el3 |= SCR_ATA_BIT;
161 	}
162 #endif
163 
164 #ifdef IMAGE_BL31
165 	/*
166 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
167 	 *  indicated by the interrupt routing model for BL31.
168 	 */
169 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
170 #endif
171 
172 	/*
173 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
174 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
175 	 * next mode is Hyp.
176 	 */
177 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
178 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
179 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
180 		scr_el3 |= SCR_HCE_BIT;
181 	}
182 
183 	/* Enable S-EL2 if the next EL is EL2 and security state is secure */
184 	if ((security_state == SECURE) && (GET_EL(ep->spsr) == MODE_EL2)) {
185 		if (GET_RW(ep->spsr) != MODE_RW_64) {
186 			ERROR("S-EL2 can not be used in AArch32.");
187 			panic();
188 		}
189 
190 		scr_el3 |= SCR_EEL2_BIT;
191 	}
192 
193 	/*
194 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
195 	 * execution state setting all fields rather than relying of the hw.
196 	 * Some fields have architecturally UNKNOWN reset values and these are
197 	 * set to zero.
198 	 *
199 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
200 	 *
201 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
202 	 *  required by PSCI specification)
203 	 */
204 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
205 	if (GET_RW(ep->spsr) == MODE_RW_64)
206 		sctlr_elx |= SCTLR_EL1_RES1;
207 	else {
208 		/*
209 		 * If the target execution state is AArch32 then the following
210 		 * fields need to be set.
211 		 *
212 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
213 		 *  instructions are not trapped to EL1.
214 		 *
215 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
216 		 *  instructions are not trapped to EL1.
217 		 *
218 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
219 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
220 		 */
221 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
222 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
223 	}
224 
225 #if ERRATA_A75_764081
226 	/*
227 	 * If workaround of errata 764081 for Cortex-A75 is used then set
228 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
229 	 */
230 	sctlr_elx |= SCTLR_IESB_BIT;
231 #endif
232 
233 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
234 	if (is_armv8_6_twed_present()) {
235 		uint32_t delay = plat_arm_set_twedel_scr_el3();
236 
237 		if (delay != TWED_DISABLED) {
238 			/* Make sure delay value fits */
239 			assert((delay & ~SCR_TWEDEL_MASK) == 0U);
240 
241 			/* Set delay in SCR_EL3 */
242 			scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
243 			scr_el3 |= ((delay & SCR_TWEDEL_MASK)
244 					<< SCR_TWEDEL_SHIFT);
245 
246 			/* Enable WFE delay */
247 			scr_el3 |= SCR_TWEDEn_BIT;
248 		}
249 	}
250 
251 	/*
252 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
253 	 * and other EL2 registers are set up by cm_prepare_ns_entry() as they
254 	 * are not part of the stored cpu_context.
255 	 */
256 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
257 
258 	/*
259 	 * Base the context ACTLR_EL1 on the current value, as it is
260 	 * implementation defined. The context restore process will write
261 	 * the value from the context to the actual register and can cause
262 	 * problems for processor cores that don't expect certain bits to
263 	 * be zero.
264 	 */
265 	actlr_elx = read_actlr_el1();
266 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
267 
268 	/*
269 	 * Populate EL3 state so that we've the right context
270 	 * before doing ERET
271 	 */
272 	state = get_el3state_ctx(ctx);
273 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
274 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
275 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
276 
277 	/*
278 	 * Store the X0-X7 value from the entrypoint into the context
279 	 * Use memcpy as we are in control of the layout of the structures
280 	 */
281 	gp_regs = get_gpregs_ctx(ctx);
282 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
283 }
284 
285 /*******************************************************************************
286  * Enable architecture extensions on first entry to Non-secure world.
287  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
288  * it is zero.
289  ******************************************************************************/
290 static void enable_extensions_nonsecure(bool el2_unused)
291 {
292 #if IMAGE_BL31
293 #if ENABLE_SPE_FOR_LOWER_ELS
294 	spe_enable(el2_unused);
295 #endif
296 
297 #if ENABLE_AMU
298 	amu_enable(el2_unused);
299 #endif
300 
301 #if ENABLE_SVE_FOR_NS
302 	sve_enable(el2_unused);
303 #endif
304 
305 #if ENABLE_MPAM_FOR_LOWER_ELS
306 	mpam_enable(el2_unused);
307 #endif
308 #endif
309 }
310 
311 /*******************************************************************************
312  * The following function initializes the cpu_context for a CPU specified by
313  * its `cpu_idx` for first use, and sets the initial entrypoint state as
314  * specified by the entry_point_info structure.
315  ******************************************************************************/
316 void cm_init_context_by_index(unsigned int cpu_idx,
317 			      const entry_point_info_t *ep)
318 {
319 	cpu_context_t *ctx;
320 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
321 	cm_setup_context(ctx, ep);
322 }
323 
324 /*******************************************************************************
325  * The following function initializes the cpu_context for the current CPU
326  * for first use, and sets the initial entrypoint state as specified by the
327  * entry_point_info structure.
328  ******************************************************************************/
329 void cm_init_my_context(const entry_point_info_t *ep)
330 {
331 	cpu_context_t *ctx;
332 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
333 	cm_setup_context(ctx, ep);
334 }
335 
336 /*******************************************************************************
337  * Prepare the CPU system registers for first entry into secure or normal world
338  *
339  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
340  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
341  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
342  * For all entries, the EL1 registers are initialized from the cpu_context
343  ******************************************************************************/
344 void cm_prepare_el3_exit(uint32_t security_state)
345 {
346 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
347 	cpu_context_t *ctx = cm_get_context(security_state);
348 	bool el2_unused = false;
349 	uint64_t hcr_el2 = 0U;
350 
351 	assert(ctx != NULL);
352 
353 	if (security_state == NON_SECURE) {
354 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
355 						 CTX_SCR_EL3);
356 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
357 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
358 			sctlr_elx = read_ctx_reg(get_el1_sysregs_ctx(ctx),
359 							   CTX_SCTLR_EL1);
360 			sctlr_elx &= SCTLR_EE_BIT;
361 			sctlr_elx |= SCTLR_EL2_RES1;
362 #if ERRATA_A75_764081
363 			/*
364 			 * If workaround of errata 764081 for Cortex-A75 is used
365 			 * then set SCTLR_EL2.IESB to enable Implicit Error
366 			 * Synchronization Barrier.
367 			 */
368 			sctlr_elx |= SCTLR_IESB_BIT;
369 #endif
370 			write_sctlr_el2(sctlr_elx);
371 		} else if (el_implemented(2) != EL_IMPL_NONE) {
372 			el2_unused = true;
373 
374 			/*
375 			 * EL2 present but unused, need to disable safely.
376 			 * SCTLR_EL2 can be ignored in this case.
377 			 *
378 			 * Set EL2 register width appropriately: Set HCR_EL2
379 			 * field to match SCR_EL3.RW.
380 			 */
381 			if ((scr_el3 & SCR_RW_BIT) != 0U)
382 				hcr_el2 |= HCR_RW_BIT;
383 
384 			/*
385 			 * For Armv8.3 pointer authentication feature, disable
386 			 * traps to EL2 when accessing key registers or using
387 			 * pointer authentication instructions from lower ELs.
388 			 */
389 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
390 
391 			write_hcr_el2(hcr_el2);
392 
393 			/*
394 			 * Initialise CPTR_EL2 setting all fields rather than
395 			 * relying on the hw. All fields have architecturally
396 			 * UNKNOWN reset values.
397 			 *
398 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
399 			 *  accesses to the CPACR_EL1 or CPACR from both
400 			 *  Execution states do not trap to EL2.
401 			 *
402 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
403 			 *  register accesses to the trace registers from both
404 			 *  Execution states do not trap to EL2.
405 			 *
406 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
407 			 *  to SIMD and floating-point functionality from both
408 			 *  Execution states do not trap to EL2.
409 			 */
410 			write_cptr_el2(CPTR_EL2_RESET_VAL &
411 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
412 					| CPTR_EL2_TFP_BIT));
413 
414 			/*
415 			 * Initialise CNTHCTL_EL2. All fields are
416 			 * architecturally UNKNOWN on reset and are set to zero
417 			 * except for field(s) listed below.
418 			 *
419 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
420 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
421 			 *  physical timer registers.
422 			 *
423 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
424 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
425 			 *  physical counter registers.
426 			 */
427 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
428 						EL1PCEN_BIT | EL1PCTEN_BIT);
429 
430 			/*
431 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
432 			 * architecturally UNKNOWN value.
433 			 */
434 			write_cntvoff_el2(0);
435 
436 			/*
437 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
438 			 * MPIDR_EL1 respectively.
439 			 */
440 			write_vpidr_el2(read_midr_el1());
441 			write_vmpidr_el2(read_mpidr_el1());
442 
443 			/*
444 			 * Initialise VTTBR_EL2. All fields are architecturally
445 			 * UNKNOWN on reset.
446 			 *
447 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
448 			 *  2 address translation is disabled, cache maintenance
449 			 *  operations depend on the VMID.
450 			 *
451 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
452 			 *  translation is disabled.
453 			 */
454 			write_vttbr_el2(VTTBR_RESET_VAL &
455 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
456 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
457 
458 			/*
459 			 * Initialise MDCR_EL2, setting all fields rather than
460 			 * relying on hw. Some fields are architecturally
461 			 * UNKNOWN on reset.
462 			 *
463 			 * MDCR_EL2.HLP: Set to one so that event counter
464 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
465 			 *  occurs on the increment that changes
466 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
467 			 *  implemented. This bit is RES0 in versions of the
468 			 *  architecture earlier than ARMv8.5, setting it to 1
469 			 *  doesn't have any effect on them.
470 			 *
471 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
472 			 *  Filter Control register TRFCR_EL1 at EL1 is not
473 			 *  trapped to EL2. This bit is RES0 in versions of
474 			 *  the architecture earlier than ARMv8.4.
475 			 *
476 			 * MDCR_EL2.HPMD: Set to one so that event counting is
477 			 *  prohibited at EL2. This bit is RES0 in versions of
478 			 *  the architecture earlier than ARMv8.1, setting it
479 			 *  to 1 doesn't have any effect on them.
480 			 *
481 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
482 			 *  Statistical Profiling control registers from EL1
483 			 *  do not trap to EL2. This bit is RES0 when SPE is
484 			 *  not implemented.
485 			 *
486 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
487 			 *  EL1 System register accesses to the Debug ROM
488 			 *  registers are not trapped to EL2.
489 			 *
490 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
491 			 *  System register accesses to the powerdown debug
492 			 *  registers are not trapped to EL2.
493 			 *
494 			 * MDCR_EL2.TDA: Set to zero so that System register
495 			 *  accesses to the debug registers do not trap to EL2.
496 			 *
497 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
498 			 *  are not routed to EL2.
499 			 *
500 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
501 			 *  Monitors.
502 			 *
503 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
504 			 *  EL1 accesses to all Performance Monitors registers
505 			 *  are not trapped to EL2.
506 			 *
507 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
508 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
509 			 *  trapped to EL2.
510 			 *
511 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
512 			 *  architecturally-defined reset value.
513 			 */
514 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
515 				     MDCR_EL2_HPMD) |
516 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
517 				   >> PMCR_EL0_N_SHIFT)) &
518 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
519 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
520 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
521 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
522 				     MDCR_EL2_TPMCR_BIT);
523 
524 			write_mdcr_el2(mdcr_el2);
525 
526 			/*
527 			 * Initialise HSTR_EL2. All fields are architecturally
528 			 * UNKNOWN on reset.
529 			 *
530 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
531 			 *  Non-secure EL0 or EL1 accesses to System registers
532 			 *  do not trap to EL2.
533 			 */
534 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
535 			/*
536 			 * Initialise CNTHP_CTL_EL2. All fields are
537 			 * architecturally UNKNOWN on reset.
538 			 *
539 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
540 			 *  physical timer and prevent timer interrupts.
541 			 */
542 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
543 						~(CNTHP_CTL_ENABLE_BIT));
544 		}
545 		enable_extensions_nonsecure(el2_unused);
546 	}
547 
548 	cm_el1_sysregs_context_restore(security_state);
549 	cm_set_next_eret_context(security_state);
550 }
551 
552 #if CTX_INCLUDE_EL2_REGS
553 /*******************************************************************************
554  * Save EL2 sysreg context
555  ******************************************************************************/
556 void cm_el2_sysregs_context_save(uint32_t security_state)
557 {
558 	u_register_t scr_el3 = read_scr();
559 
560 	/*
561 	 * Always save the non-secure EL2 context, only save the
562 	 * S-EL2 context if S-EL2 is enabled.
563 	 */
564 	if ((security_state == NON_SECURE) ||
565 	    ((scr_el3 & SCR_EEL2_BIT) != 0U)) {
566 		cpu_context_t *ctx;
567 
568 		ctx = cm_get_context(security_state);
569 		assert(ctx != NULL);
570 
571 		el2_sysregs_context_save(get_el2_sysregs_ctx(ctx));
572 	}
573 }
574 
575 /*******************************************************************************
576  * Restore EL2 sysreg context
577  ******************************************************************************/
578 void cm_el2_sysregs_context_restore(uint32_t security_state)
579 {
580 	u_register_t scr_el3 = read_scr();
581 
582 	/*
583 	 * Always restore the non-secure EL2 context, only restore the
584 	 * S-EL2 context if S-EL2 is enabled.
585 	 */
586 	if ((security_state == NON_SECURE) ||
587 	    ((scr_el3 & SCR_EEL2_BIT) != 0U)) {
588 		cpu_context_t *ctx;
589 
590 		ctx = cm_get_context(security_state);
591 		assert(ctx != NULL);
592 
593 		el2_sysregs_context_restore(get_el2_sysregs_ctx(ctx));
594 	}
595 }
596 #endif /* CTX_INCLUDE_EL2_REGS */
597 
598 /*******************************************************************************
599  * The next four functions are used by runtime services to save and restore
600  * EL1 context on the 'cpu_context' structure for the specified security
601  * state.
602  ******************************************************************************/
603 void cm_el1_sysregs_context_save(uint32_t security_state)
604 {
605 	cpu_context_t *ctx;
606 
607 	ctx = cm_get_context(security_state);
608 	assert(ctx != NULL);
609 
610 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
611 
612 #if IMAGE_BL31
613 	if (security_state == SECURE)
614 		PUBLISH_EVENT(cm_exited_secure_world);
615 	else
616 		PUBLISH_EVENT(cm_exited_normal_world);
617 #endif
618 }
619 
620 void cm_el1_sysregs_context_restore(uint32_t security_state)
621 {
622 	cpu_context_t *ctx;
623 
624 	ctx = cm_get_context(security_state);
625 	assert(ctx != NULL);
626 
627 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
628 
629 #if IMAGE_BL31
630 	if (security_state == SECURE)
631 		PUBLISH_EVENT(cm_entering_secure_world);
632 	else
633 		PUBLISH_EVENT(cm_entering_normal_world);
634 #endif
635 }
636 
637 /*******************************************************************************
638  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
639  * given security state with the given entrypoint
640  ******************************************************************************/
641 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
642 {
643 	cpu_context_t *ctx;
644 	el3_state_t *state;
645 
646 	ctx = cm_get_context(security_state);
647 	assert(ctx != NULL);
648 
649 	/* Populate EL3 state so that ERET jumps to the correct entry */
650 	state = get_el3state_ctx(ctx);
651 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
652 }
653 
654 /*******************************************************************************
655  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
656  * pertaining to the given security state
657  ******************************************************************************/
658 void cm_set_elr_spsr_el3(uint32_t security_state,
659 			uintptr_t entrypoint, uint32_t spsr)
660 {
661 	cpu_context_t *ctx;
662 	el3_state_t *state;
663 
664 	ctx = cm_get_context(security_state);
665 	assert(ctx != NULL);
666 
667 	/* Populate EL3 state so that ERET jumps to the correct entry */
668 	state = get_el3state_ctx(ctx);
669 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
670 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
671 }
672 
673 /*******************************************************************************
674  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
675  * pertaining to the given security state using the value and bit position
676  * specified in the parameters. It preserves all other bits.
677  ******************************************************************************/
678 void cm_write_scr_el3_bit(uint32_t security_state,
679 			  uint32_t bit_pos,
680 			  uint32_t value)
681 {
682 	cpu_context_t *ctx;
683 	el3_state_t *state;
684 	u_register_t scr_el3;
685 
686 	ctx = cm_get_context(security_state);
687 	assert(ctx != NULL);
688 
689 	/* Ensure that the bit position is a valid one */
690 	assert(((1U << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
691 
692 	/* Ensure that the 'value' is only a bit wide */
693 	assert(value <= 1U);
694 
695 	/*
696 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
697 	 * and set it to its new value.
698 	 */
699 	state = get_el3state_ctx(ctx);
700 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
701 	scr_el3 &= ~(1U << bit_pos);
702 	scr_el3 |= (u_register_t)value << bit_pos;
703 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
704 }
705 
706 /*******************************************************************************
707  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
708  * given security state.
709  ******************************************************************************/
710 u_register_t cm_get_scr_el3(uint32_t security_state)
711 {
712 	cpu_context_t *ctx;
713 	el3_state_t *state;
714 
715 	ctx = cm_get_context(security_state);
716 	assert(ctx != NULL);
717 
718 	/* Populate EL3 state so that ERET jumps to the correct entry */
719 	state = get_el3state_ctx(ctx);
720 	return read_ctx_reg(state, CTX_SCR_EL3);
721 }
722 
723 /*******************************************************************************
724  * This function is used to program the context that's used for exception
725  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
726  * the required security state
727  ******************************************************************************/
728 void cm_set_next_eret_context(uint32_t security_state)
729 {
730 	cpu_context_t *ctx;
731 
732 	ctx = cm_get_context(security_state);
733 	assert(ctx != NULL);
734 
735 	cm_set_next_context(ctx);
736 }
737