xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 3eb5640a7d9277eee80b5b31bb30230a374e0fb0)
1 /*
2  * Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/el3_runtime/context_mgmt.h>
23 #include <lib/el3_runtime/cpu_data.h>
24 #include <lib/el3_runtime/pubsub_events.h>
25 #include <lib/extensions/amu.h>
26 #include <lib/extensions/brbe.h>
27 #include <lib/extensions/mpam.h>
28 #include <lib/extensions/pmuv3.h>
29 #include <lib/extensions/sme.h>
30 #include <lib/extensions/spe.h>
31 #include <lib/extensions/sve.h>
32 #include <lib/extensions/sys_reg_trace.h>
33 #include <lib/extensions/trbe.h>
34 #include <lib/extensions/trf.h>
35 #include <lib/utils.h>
36 
37 #if ENABLE_FEAT_TWED
38 /* Make sure delay value fits within the range(0-15) */
39 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
40 #endif /* ENABLE_FEAT_TWED */
41 
42 per_world_context_t per_world_context[CPU_DATA_CONTEXT_NUM];
43 static bool has_secure_perworld_init;
44 
45 static void manage_extensions_common(cpu_context_t *ctx);
46 static void manage_extensions_nonsecure(cpu_context_t *ctx);
47 static void manage_extensions_secure(cpu_context_t *ctx);
48 static void manage_extensions_secure_per_world(void);
49 
50 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
51 {
52 	u_register_t sctlr_elx, actlr_elx;
53 
54 	/*
55 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
56 	 * execution state setting all fields rather than relying on the hw.
57 	 * Some fields have architecturally UNKNOWN reset values and these are
58 	 * set to zero.
59 	 *
60 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
61 	 *
62 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
63 	 * required by PSCI specification)
64 	 */
65 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
66 	if (GET_RW(ep->spsr) == MODE_RW_64) {
67 		sctlr_elx |= SCTLR_EL1_RES1;
68 	} else {
69 		/*
70 		 * If the target execution state is AArch32 then the following
71 		 * fields need to be set.
72 		 *
73 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
74 		 *  instructions are not trapped to EL1.
75 		 *
76 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
77 		 *  instructions are not trapped to EL1.
78 		 *
79 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
80 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
81 		 */
82 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
83 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
84 	}
85 
86 #if ERRATA_A75_764081
87 	/*
88 	 * If workaround of errata 764081 for Cortex-A75 is used then set
89 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
90 	 */
91 	sctlr_elx |= SCTLR_IESB_BIT;
92 #endif
93 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
94 	write_ctx_reg(get_el1_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
95 
96 	/*
97 	 * Base the context ACTLR_EL1 on the current value, as it is
98 	 * implementation defined. The context restore process will write
99 	 * the value from the context to the actual register and can cause
100 	 * problems for processor cores that don't expect certain bits to
101 	 * be zero.
102 	 */
103 	actlr_elx = read_actlr_el1();
104 	write_ctx_reg((get_el1_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
105 }
106 
107 /******************************************************************************
108  * This function performs initializations that are specific to SECURE state
109  * and updates the cpu context specified by 'ctx'.
110  *****************************************************************************/
111 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
112 {
113 	u_register_t scr_el3;
114 	el3_state_t *state;
115 
116 	state = get_el3state_ctx(ctx);
117 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
118 
119 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
120 	/*
121 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
122 	 * indicated by the interrupt routing model for BL31.
123 	 */
124 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
125 #endif
126 
127 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
128 	if (is_feat_mte2_supported()) {
129 		scr_el3 |= SCR_ATA_BIT;
130 	}
131 
132 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
133 
134 	/*
135 	 * Initialize EL1 context registers unless SPMC is running
136 	 * at S-EL2.
137 	 */
138 #if !SPMD_SPM_AT_SEL2
139 	setup_el1_context(ctx, ep);
140 #endif
141 
142 	manage_extensions_secure(ctx);
143 
144 	/**
145 	 * manage_extensions_secure_per_world api has to be executed once,
146 	 * as the registers getting initialised, maintain constant value across
147 	 * all the cpus for the secure world.
148 	 * Henceforth, this check ensures that the registers are initialised once
149 	 * and avoids re-initialization from multiple cores.
150 	 */
151 	if (!has_secure_perworld_init) {
152 		manage_extensions_secure_per_world();
153 	}
154 
155 }
156 
157 #if ENABLE_RME
158 /******************************************************************************
159  * This function performs initializations that are specific to REALM state
160  * and updates the cpu context specified by 'ctx'.
161  *****************************************************************************/
162 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
163 {
164 	u_register_t scr_el3;
165 	el3_state_t *state;
166 
167 	state = get_el3state_ctx(ctx);
168 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
169 
170 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
171 
172 	/* CSV2 version 2 and above */
173 	if (is_feat_csv2_2_supported()) {
174 		/* Enable access to the SCXTNUM_ELx registers. */
175 		scr_el3 |= SCR_EnSCXT_BIT;
176 	}
177 
178 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
179 }
180 #endif /* ENABLE_RME */
181 
182 /******************************************************************************
183  * This function performs initializations that are specific to NON-SECURE state
184  * and updates the cpu context specified by 'ctx'.
185  *****************************************************************************/
186 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
187 {
188 	u_register_t scr_el3;
189 	el3_state_t *state;
190 
191 	state = get_el3state_ctx(ctx);
192 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
193 
194 	/* SCR_NS: Set the NS bit */
195 	scr_el3 |= SCR_NS_BIT;
196 
197 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
198 	if (is_feat_mte2_supported()) {
199 		scr_el3 |= SCR_ATA_BIT;
200 	}
201 
202 #if !CTX_INCLUDE_PAUTH_REGS
203 	/*
204 	 * Pointer Authentication feature, if present, is always enabled by default
205 	 * for Non secure lower exception levels. We do not have an explicit
206 	 * flag to set it.
207 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
208 	 * exception levels of secure and realm worlds.
209 	 *
210 	 * To prevent the leakage between the worlds during world switch,
211 	 * we enable it only for the non-secure world.
212 	 *
213 	 * If the Secure/realm world wants to use pointer authentication,
214 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
215 	 * it will be enabled globally for all the contexts.
216 	 *
217 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
218 	 *  other than EL3
219 	 *
220 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
221 	 *  than EL3
222 	 */
223 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
224 
225 #endif /* CTX_INCLUDE_PAUTH_REGS */
226 
227 #if HANDLE_EA_EL3_FIRST_NS
228 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
229 	scr_el3 |= SCR_EA_BIT;
230 #endif
231 
232 #if RAS_TRAP_NS_ERR_REC_ACCESS
233 	/*
234 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
235 	 * and RAS ERX registers from EL1 and EL2(from any security state)
236 	 * are trapped to EL3.
237 	 * Set here to trap only for NS EL1/EL2
238 	 *
239 	 */
240 	scr_el3 |= SCR_TERR_BIT;
241 #endif
242 
243 	/* CSV2 version 2 and above */
244 	if (is_feat_csv2_2_supported()) {
245 		/* Enable access to the SCXTNUM_ELx registers. */
246 		scr_el3 |= SCR_EnSCXT_BIT;
247 	}
248 
249 #ifdef IMAGE_BL31
250 	/*
251 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
252 	 *  indicated by the interrupt routing model for BL31.
253 	 */
254 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
255 #endif
256 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
257 
258 	/* Initialize EL1 context registers */
259 	setup_el1_context(ctx, ep);
260 
261 	/* Initialize EL2 context registers */
262 #if CTX_INCLUDE_EL2_REGS
263 
264 	/*
265 	 * Initialize SCTLR_EL2 context register with reset value.
266 	 */
267 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
268 
269 	if (is_feat_hcx_supported()) {
270 		/*
271 		 * Initialize register HCRX_EL2 with its init value.
272 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
273 		 * chance that this can lead to unexpected behavior in lower
274 		 * ELs that have not been updated since the introduction of
275 		 * this feature if not properly initialized, especially when
276 		 * it comes to those bits that enable/disable traps.
277 		 */
278 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
279 			HCRX_EL2_INIT_VAL);
280 	}
281 
282 	if (is_feat_fgt_supported()) {
283 		/*
284 		 * Initialize HFG*_EL2 registers with a default value so legacy
285 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
286 		 * of initialization for this feature.
287 		 */
288 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
289 			HFGITR_EL2_INIT_VAL);
290 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
291 			HFGRTR_EL2_INIT_VAL);
292 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
293 			HFGWTR_EL2_INIT_VAL);
294 	}
295 
296 #endif /* CTX_INCLUDE_EL2_REGS */
297 
298 	manage_extensions_nonsecure(ctx);
299 }
300 
301 /*******************************************************************************
302  * The following function performs initialization of the cpu_context 'ctx'
303  * for first use that is common to all security states, and sets the
304  * initial entrypoint state as specified by the entry_point_info structure.
305  *
306  * The EE and ST attributes are used to configure the endianness and secure
307  * timer availability for the new execution context.
308  ******************************************************************************/
309 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
310 {
311 	u_register_t scr_el3;
312 	u_register_t mdcr_el3;
313 	el3_state_t *state;
314 	gp_regs_t *gp_regs;
315 
316 	state = get_el3state_ctx(ctx);
317 
318 	/* Clear any residual register values from the context */
319 	zeromem(ctx, sizeof(*ctx));
320 
321 	/*
322 	 * The lower-EL context is zeroed so that no stale values leak to a world.
323 	 * It is assumed that an all-zero lower-EL context is good enough for it
324 	 * to boot correctly. However, there are very few registers where this
325 	 * is not true and some values need to be recreated.
326 	 */
327 #if CTX_INCLUDE_EL2_REGS
328 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
329 
330 	/*
331 	 * These bits are set in the gicv3 driver. Losing them (especially the
332 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
333 	 */
334 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
335 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
336 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
337 #endif /* CTX_INCLUDE_EL2_REGS */
338 
339 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
340 	scr_el3 = SCR_RESET_VAL;
341 
342 	/*
343 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
344 	 *  EL2, EL1 and EL0 are not trapped to EL3.
345 	 *
346 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
347 	 *  EL2, EL1 and EL0 are not trapped to EL3.
348 	 *
349 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
350 	 *  both Security states and both Execution states.
351 	 *
352 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
353 	 *  Non-secure memory.
354 	 */
355 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
356 
357 	scr_el3 |= SCR_SIF_BIT;
358 
359 	/*
360 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
361 	 *  Exception level as specified by SPSR.
362 	 */
363 	if (GET_RW(ep->spsr) == MODE_RW_64) {
364 		scr_el3 |= SCR_RW_BIT;
365 	}
366 
367 	/*
368 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
369 	 * Secure timer registers to EL3, from AArch64 state only, if specified
370 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
371 	 * bit always behaves as 1 (i.e. secure physical timer register access
372 	 * is not trapped)
373 	 */
374 	if (EP_GET_ST(ep->h.attr) != 0U) {
375 		scr_el3 |= SCR_ST_BIT;
376 	}
377 
378 	/*
379 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
380 	 * SCR_EL3.HXEn.
381 	 */
382 	if (is_feat_hcx_supported()) {
383 		scr_el3 |= SCR_HXEn_BIT;
384 	}
385 
386 	/*
387 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
388 	 * registers are trapped to EL3.
389 	 */
390 #if ENABLE_FEAT_RNG_TRAP
391 	scr_el3 |= SCR_TRNDR_BIT;
392 #endif
393 
394 #if FAULT_INJECTION_SUPPORT
395 	/* Enable fault injection from lower ELs */
396 	scr_el3 |= SCR_FIEN_BIT;
397 #endif
398 
399 #if CTX_INCLUDE_PAUTH_REGS
400 	/*
401 	 * Enable Pointer Authentication globally for all the worlds.
402 	 *
403 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
404 	 *  other than EL3
405 	 *
406 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
407 	 *  than EL3
408 	 */
409 	scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
410 #endif /* CTX_INCLUDE_PAUTH_REGS */
411 
412 	/*
413 	 * SCR_EL3.TCR2EN: Enable access to TCR2_ELx for AArch64 if present.
414 	 */
415 	if (is_feat_tcr2_supported() && (GET_RW(ep->spsr) == MODE_RW_64)) {
416 		scr_el3 |= SCR_TCR2EN_BIT;
417 	}
418 
419 	/*
420 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
421 	 * registers for AArch64 if present.
422 	 */
423 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
424 		scr_el3 |= SCR_PIEN_BIT;
425 	}
426 
427 	/*
428 	 * SCR_EL3.GCSEn: Enable GCS registers for AArch64 if present.
429 	 */
430 	if ((is_feat_gcs_supported()) && (GET_RW(ep->spsr) == MODE_RW_64)) {
431 		scr_el3 |= SCR_GCSEn_BIT;
432 	}
433 
434 	/*
435 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
436 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
437 	 * next mode is Hyp.
438 	 * SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps under the
439 	 * same conditions as HVC instructions and when the processor supports
440 	 * ARMv8.6-FGT.
441 	 * SCR_EL3.ECVEn: Enable Enhanced Counter Virtualization (ECV)
442 	 * CNTPOFF_EL2 register under the same conditions as HVC instructions
443 	 * and when the processor supports ECV.
444 	 */
445 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
446 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
447 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
448 		scr_el3 |= SCR_HCE_BIT;
449 
450 		if (is_feat_fgt_supported()) {
451 			scr_el3 |= SCR_FGTEN_BIT;
452 		}
453 
454 		if (is_feat_ecv_supported()) {
455 			scr_el3 |= SCR_ECVEN_BIT;
456 		}
457 	}
458 
459 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
460 	if (is_feat_twed_supported()) {
461 		/* Set delay in SCR_EL3 */
462 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
463 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
464 				<< SCR_TWEDEL_SHIFT);
465 
466 		/* Enable WFE delay */
467 		scr_el3 |= SCR_TWEDEn_BIT;
468 	}
469 
470 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
471 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
472 	if (is_feat_sel2_supported()) {
473 		scr_el3 |= SCR_EEL2_BIT;
474 	}
475 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
476 
477 	/*
478 	 * Populate EL3 state so that we've the right context
479 	 * before doing ERET
480 	 */
481 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
482 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
483 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
484 
485 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
486 	mdcr_el3 = MDCR_EL3_RESET_VAL;
487 
488 	/* ---------------------------------------------------------------------
489 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
490 	 * Some fields are architecturally UNKNOWN on reset.
491 	 *
492 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
493 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
494 	 *  disabled from all ELs in Secure state.
495 	 *
496 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
497 	 *  privileged debug from S-EL1.
498 	 *
499 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
500 	 *  access to the powerdown debug registers do not trap to EL3.
501 	 *
502 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
503 	 *  debug registers, other than those registers that are controlled by
504 	 *  MDCR_EL3.TDOSA.
505 	 */
506 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
507 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
508 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
509 
510 	/*
511 	 * Configure MDCR_EL3 register as applicable for each world
512 	 * (NS/Secure/Realm) context.
513 	 */
514 	manage_extensions_common(ctx);
515 
516 	/*
517 	 * Store the X0-X7 value from the entrypoint into the context
518 	 * Use memcpy as we are in control of the layout of the structures
519 	 */
520 	gp_regs = get_gpregs_ctx(ctx);
521 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
522 }
523 
524 /*******************************************************************************
525  * Context management library initialization routine. This library is used by
526  * runtime services to share pointers to 'cpu_context' structures for secure
527  * non-secure and realm states. Management of the structures and their associated
528  * memory is not done by the context management library e.g. the PSCI service
529  * manages the cpu context used for entry from and exit to the non-secure state.
530  * The Secure payload dispatcher service manages the context(s) corresponding to
531  * the secure state. It also uses this library to get access to the non-secure
532  * state cpu context pointers.
533  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
534  * which will be used for programming an entry into a lower EL. The same context
535  * will be used to save state upon exception entry from that EL.
536  ******************************************************************************/
537 void __init cm_init(void)
538 {
539 	/*
540 	 * The context management library has only global data to initialize, but
541 	 * that will be done when the BSS is zeroed out.
542 	 */
543 }
544 
545 /*******************************************************************************
546  * This is the high-level function used to initialize the cpu_context 'ctx' for
547  * first use. It performs initializations that are common to all security states
548  * and initializations specific to the security state specified in 'ep'
549  ******************************************************************************/
550 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
551 {
552 	unsigned int security_state;
553 
554 	assert(ctx != NULL);
555 
556 	/*
557 	 * Perform initializations that are common
558 	 * to all security states
559 	 */
560 	setup_context_common(ctx, ep);
561 
562 	security_state = GET_SECURITY_STATE(ep->h.attr);
563 
564 	/* Perform security state specific initializations */
565 	switch (security_state) {
566 	case SECURE:
567 		setup_secure_context(ctx, ep);
568 		break;
569 #if ENABLE_RME
570 	case REALM:
571 		setup_realm_context(ctx, ep);
572 		break;
573 #endif
574 	case NON_SECURE:
575 		setup_ns_context(ctx, ep);
576 		break;
577 	default:
578 		ERROR("Invalid security state\n");
579 		panic();
580 		break;
581 	}
582 }
583 
584 /*******************************************************************************
585  * Enable architecture extensions for EL3 execution. This function only updates
586  * registers in-place which are expected to either never change or be
587  * overwritten by el3_exit.
588  ******************************************************************************/
589 #if IMAGE_BL31
590 void cm_manage_extensions_el3(void)
591 {
592 	if (is_feat_amu_supported()) {
593 		amu_init_el3();
594 	}
595 
596 	if (is_feat_sme_supported()) {
597 		sme_init_el3();
598 	}
599 
600 	pmuv3_init_el3();
601 }
602 #endif /* IMAGE_BL31 */
603 
604 /******************************************************************************
605  * Function to initialise the registers with the RESET values in the context
606  * memory, which are maintained per world.
607  ******************************************************************************/
608 #if IMAGE_BL31
609 void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
610 {
611 	/*
612 	 * Initialise CPTR_EL3, setting all fields rather than relying on hw.
613 	 *
614 	 * CPTR_EL3.TFP: Set to zero so that accesses to the V- or Z- registers
615 	 *  by Advanced SIMD, floating-point or SVE instructions (if
616 	 *  implemented) do not trap to EL3.
617 	 *
618 	 * CPTR_EL3.TCPAC: Set to zero so that accesses to CPACR_EL1,
619 	 *  CPTR_EL2,CPACR, or HCPTR do not trap to EL3.
620 	 */
621 	uint64_t cptr_el3 = CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TFP_BIT);
622 
623 	per_world_ctx->ctx_cptr_el3 = cptr_el3;
624 
625 	/*
626 	 * Initialize MPAM3_EL3 to its default reset value
627 	 *
628 	 * MPAM3_EL3_RESET_VAL sets the MPAM3_EL3.TRAPLOWER bit that forces
629 	 * all lower ELn MPAM3_EL3 register access to, trap to EL3
630 	 */
631 
632 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
633 }
634 #endif /* IMAGE_BL31 */
635 
636 /*******************************************************************************
637  * Initialise per_world_context for Non-Secure world.
638  * This function enables the architecture extensions, which have same value
639  * across the cores for the non-secure world.
640  ******************************************************************************/
641 #if IMAGE_BL31
642 void manage_extensions_nonsecure_per_world(void)
643 {
644 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
645 
646 	if (is_feat_sme_supported()) {
647 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
648 	}
649 
650 	if (is_feat_sve_supported()) {
651 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
652 	}
653 
654 	if (is_feat_amu_supported()) {
655 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
656 	}
657 
658 	if (is_feat_sys_reg_trace_supported()) {
659 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
660 	}
661 
662 	if (is_feat_mpam_supported()) {
663 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
664 	}
665 }
666 #endif /* IMAGE_BL31 */
667 
668 /*******************************************************************************
669  * Initialise per_world_context for Secure world.
670  * This function enables the architecture extensions, which have same value
671  * across the cores for the secure world.
672  ******************************************************************************/
673 static void manage_extensions_secure_per_world(void)
674 {
675 #if IMAGE_BL31
676 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
677 
678 	if (is_feat_sme_supported()) {
679 
680 		if (ENABLE_SME_FOR_SWD) {
681 		/*
682 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
683 		 * SME, SVE, and FPU/SIMD context properly managed.
684 		 */
685 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
686 		} else {
687 		/*
688 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
689 		 * world can safely use the associated registers.
690 		 */
691 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
692 		}
693 	}
694 	if (is_feat_sve_supported()) {
695 		if (ENABLE_SVE_FOR_SWD) {
696 		/*
697 		 * Enable SVE and FPU in secure context, SPM must ensure
698 		 * that the SVE and FPU register contexts are properly managed.
699 		 */
700 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
701 		} else {
702 		/*
703 		 * Disable SVE and FPU in secure context so non-secure world
704 		 * can safely use them.
705 		 */
706 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
707 		}
708 	}
709 
710 	/* NS can access this but Secure shouldn't */
711 	if (is_feat_sys_reg_trace_supported()) {
712 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
713 	}
714 
715 	has_secure_perworld_init = true;
716 #endif /* IMAGE_BL31 */
717 }
718 
719 /*******************************************************************************
720  * Enable architecture extensions on first entry to Non-secure world only
721  * and disable for secure world.
722  *
723  * NOTE: Arch features which have been provided with the capability of getting
724  * enabled only for non-secure world and being disabled for secure world are
725  * grouped here, as the MDCR_EL3 context value remains same across the worlds.
726  ******************************************************************************/
727 static void manage_extensions_common(cpu_context_t *ctx)
728 {
729 #if IMAGE_BL31
730 	if (is_feat_spe_supported()) {
731 		/*
732 		 * Enable FEAT_SPE for Non-Secure and prohibit for Secure state.
733 		 */
734 		spe_enable(ctx);
735 	}
736 
737 	if (is_feat_trbe_supported()) {
738 		/*
739 		 * Enable FEAT_TRBE for Non-Secure and prohibit for Secure and
740 		 * Realm state.
741 		 */
742 		trbe_enable(ctx);
743 	}
744 
745 	if (is_feat_trf_supported()) {
746 		/*
747 		 * Enable FEAT_TRF for Non-Secure and prohibit for Secure state.
748 		 */
749 		trf_enable(ctx);
750 	}
751 
752 	if (is_feat_brbe_supported()) {
753 		/*
754 		 * Enable FEAT_BRBE for Non-Secure and prohibit for Secure state.
755 		 */
756 		brbe_enable(ctx);
757 	}
758 #endif /* IMAGE_BL31 */
759 }
760 
761 /*******************************************************************************
762  * Enable architecture extensions on first entry to Non-secure world.
763  ******************************************************************************/
764 static void manage_extensions_nonsecure(cpu_context_t *ctx)
765 {
766 #if IMAGE_BL31
767 	if (is_feat_amu_supported()) {
768 		amu_enable(ctx);
769 	}
770 
771 	if (is_feat_sme_supported()) {
772 		sme_enable(ctx);
773 	}
774 
775 	pmuv3_enable(ctx);
776 #endif /* IMAGE_BL31 */
777 }
778 
779 /* TODO: move to lib/extensions/pauth when it has been ported to FEAT_STATE */
780 static __unused void enable_pauth_el2(void)
781 {
782 	u_register_t hcr_el2 = read_hcr_el2();
783 	/*
784 	 * For Armv8.3 pointer authentication feature, disable traps to EL2 when
785 	 *  accessing key registers or using pointer authentication instructions
786 	 *  from lower ELs.
787 	 */
788 	hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
789 
790 	write_hcr_el2(hcr_el2);
791 }
792 
793 #if INIT_UNUSED_NS_EL2
794 /*******************************************************************************
795  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
796  * world when EL2 is empty and unused.
797  ******************************************************************************/
798 static void manage_extensions_nonsecure_el2_unused(void)
799 {
800 #if IMAGE_BL31
801 	if (is_feat_spe_supported()) {
802 		spe_init_el2_unused();
803 	}
804 
805 	if (is_feat_amu_supported()) {
806 		amu_init_el2_unused();
807 	}
808 
809 	if (is_feat_mpam_supported()) {
810 		mpam_init_el2_unused();
811 	}
812 
813 	if (is_feat_trbe_supported()) {
814 		trbe_init_el2_unused();
815 	}
816 
817 	if (is_feat_sys_reg_trace_supported()) {
818 		sys_reg_trace_init_el2_unused();
819 	}
820 
821 	if (is_feat_trf_supported()) {
822 		trf_init_el2_unused();
823 	}
824 
825 	pmuv3_init_el2_unused();
826 
827 	if (is_feat_sve_supported()) {
828 		sve_init_el2_unused();
829 	}
830 
831 	if (is_feat_sme_supported()) {
832 		sme_init_el2_unused();
833 	}
834 
835 #if ENABLE_PAUTH
836 	enable_pauth_el2();
837 #endif /* ENABLE_PAUTH */
838 #endif /* IMAGE_BL31 */
839 }
840 #endif /* INIT_UNUSED_NS_EL2 */
841 
842 /*******************************************************************************
843  * Enable architecture extensions on first entry to Secure world.
844  ******************************************************************************/
845 static void manage_extensions_secure(cpu_context_t *ctx)
846 {
847 #if IMAGE_BL31
848 	if (is_feat_sme_supported()) {
849 		if (ENABLE_SME_FOR_SWD) {
850 		/*
851 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
852 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
853 		 */
854 			sme_init_el3();
855 			sme_enable(ctx);
856 		} else {
857 		/*
858 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
859 		 * world can safely use the associated registers.
860 		 */
861 			sme_disable(ctx);
862 		}
863 	}
864 #endif /* IMAGE_BL31 */
865 }
866 
867 #if !IMAGE_BL1
868 /*******************************************************************************
869  * The following function initializes the cpu_context for a CPU specified by
870  * its `cpu_idx` for first use, and sets the initial entrypoint state as
871  * specified by the entry_point_info structure.
872  ******************************************************************************/
873 void cm_init_context_by_index(unsigned int cpu_idx,
874 			      const entry_point_info_t *ep)
875 {
876 	cpu_context_t *ctx;
877 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
878 	cm_setup_context(ctx, ep);
879 }
880 #endif /* !IMAGE_BL1 */
881 
882 /*******************************************************************************
883  * The following function initializes the cpu_context for the current CPU
884  * for first use, and sets the initial entrypoint state as specified by the
885  * entry_point_info structure.
886  ******************************************************************************/
887 void cm_init_my_context(const entry_point_info_t *ep)
888 {
889 	cpu_context_t *ctx;
890 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
891 	cm_setup_context(ctx, ep);
892 }
893 
894 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
895 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
896 {
897 #if INIT_UNUSED_NS_EL2
898 	u_register_t hcr_el2 = HCR_RESET_VAL;
899 	u_register_t mdcr_el2;
900 	u_register_t scr_el3;
901 
902 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
903 
904 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
905 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
906 		hcr_el2 |= HCR_RW_BIT;
907 	}
908 
909 	write_hcr_el2(hcr_el2);
910 
911 	/*
912 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
913 	 * All fields have architecturally UNKNOWN reset values.
914 	 */
915 	write_cptr_el2(CPTR_EL2_RESET_VAL);
916 
917 	/*
918 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
919 	 * reset and are set to zero except for field(s) listed below.
920 	 *
921 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
922 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
923 	 *
924 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
925 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
926 	 */
927 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
928 
929 	/*
930 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
931 	 * UNKNOWN value.
932 	 */
933 	write_cntvoff_el2(0);
934 
935 	/*
936 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
937 	 * respectively.
938 	 */
939 	write_vpidr_el2(read_midr_el1());
940 	write_vmpidr_el2(read_mpidr_el1());
941 
942 	/*
943 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
944 	 *
945 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
946 	 * translation is disabled, cache maintenance operations depend on the
947 	 * VMID.
948 	 *
949 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
950 	 * disabled.
951 	 */
952 	write_vttbr_el2(VTTBR_RESET_VAL &
953 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
954 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
955 
956 	/*
957 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
958 	 * Some fields are architecturally UNKNOWN on reset.
959 	 *
960 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
961 	 * register accesses to the Debug ROM registers are not trapped to EL2.
962 	 *
963 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
964 	 * accesses to the powerdown debug registers are not trapped to EL2.
965 	 *
966 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
967 	 * debug registers do not trap to EL2.
968 	 *
969 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
970 	 * EL2.
971 	 */
972 	mdcr_el2 = MDCR_EL2_RESET_VAL &
973 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
974 		   MDCR_EL2_TDE_BIT);
975 
976 	write_mdcr_el2(mdcr_el2);
977 
978 	/*
979 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
980 	 *
981 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
982 	 * EL1 accesses to System registers do not trap to EL2.
983 	 */
984 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
985 
986 	/*
987 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
988 	 * reset.
989 	 *
990 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
991 	 * and prevent timer interrupts.
992 	 */
993 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
994 
995 	manage_extensions_nonsecure_el2_unused();
996 #endif /* INIT_UNUSED_NS_EL2 */
997 }
998 
999 /*******************************************************************************
1000  * Prepare the CPU system registers for first entry into realm, secure, or
1001  * normal world.
1002  *
1003  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1004  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1005  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1006  * For all entries, the EL1 registers are initialized from the cpu_context
1007  ******************************************************************************/
1008 void cm_prepare_el3_exit(uint32_t security_state)
1009 {
1010 	u_register_t sctlr_el2, scr_el3;
1011 	cpu_context_t *ctx = cm_get_context(security_state);
1012 
1013 	assert(ctx != NULL);
1014 
1015 	if (security_state == NON_SECURE) {
1016 		uint64_t el2_implemented = el_implemented(2);
1017 
1018 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1019 						 CTX_SCR_EL3);
1020 
1021 		if (el2_implemented != EL_IMPL_NONE) {
1022 
1023 			/*
1024 			 * If context is not being used for EL2, initialize
1025 			 * HCRX_EL2 with its init value here.
1026 			 */
1027 			if (is_feat_hcx_supported()) {
1028 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1029 			}
1030 
1031 			/*
1032 			 * Initialize Fine-grained trap registers introduced
1033 			 * by FEAT_FGT so all traps are initially disabled when
1034 			 * switching to EL2 or a lower EL, preventing undesired
1035 			 * behavior.
1036 			 */
1037 			if (is_feat_fgt_supported()) {
1038 				/*
1039 				 * Initialize HFG*_EL2 registers with a default
1040 				 * value so legacy systems unaware of FEAT_FGT
1041 				 * do not get trapped due to their lack of
1042 				 * initialization for this feature.
1043 				 */
1044 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1045 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1046 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1047 			}
1048 
1049 			/* Condition to ensure EL2 is being used. */
1050 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1051 				/* Initialize SCTLR_EL2 register with reset value. */
1052 				sctlr_el2 = SCTLR_EL2_RES1;
1053 #if ERRATA_A75_764081
1054 				/*
1055 				 * If workaround of errata 764081 for Cortex-A75
1056 				 * is used then set SCTLR_EL2.IESB to enable
1057 				 * Implicit Error Synchronization Barrier.
1058 				 */
1059 				sctlr_el2 |= SCTLR_IESB_BIT;
1060 #endif
1061 				write_sctlr_el2(sctlr_el2);
1062 			} else {
1063 				/*
1064 				 * (scr_el3 & SCR_HCE_BIT==0)
1065 				 * EL2 implemented but unused.
1066 				 */
1067 				init_nonsecure_el2_unused(ctx);
1068 			}
1069 		}
1070 	}
1071 	cm_el1_sysregs_context_restore(security_state);
1072 	cm_set_next_eret_context(security_state);
1073 }
1074 
1075 #if CTX_INCLUDE_EL2_REGS
1076 
1077 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1078 {
1079 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1080 	if (is_feat_amu_supported()) {
1081 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1082 	}
1083 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1084 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1085 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1086 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1087 }
1088 
1089 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1090 {
1091 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1092 	if (is_feat_amu_supported()) {
1093 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1094 	}
1095 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1096 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1097 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1098 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1099 }
1100 
1101 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1102 {
1103 	u_register_t mpam_idr = read_mpamidr_el1();
1104 
1105 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1106 
1107 	/*
1108 	 * The context registers that we intend to save would be part of the
1109 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1110 	 */
1111 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1112 		return;
1113 	}
1114 
1115 	/*
1116 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1117 	 * MPAMIDR_HAS_HCR_BIT == 1.
1118 	 */
1119 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1120 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1121 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1122 
1123 	/*
1124 	 * The number of MPAMVPM registers is implementation defined, their
1125 	 * number is stored in the MPAMIDR_EL1 register.
1126 	 */
1127 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1128 	case 7:
1129 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1130 		__fallthrough;
1131 	case 6:
1132 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1133 		__fallthrough;
1134 	case 5:
1135 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1136 		__fallthrough;
1137 	case 4:
1138 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1139 		__fallthrough;
1140 	case 3:
1141 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1142 		__fallthrough;
1143 	case 2:
1144 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1145 		__fallthrough;
1146 	case 1:
1147 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1148 		break;
1149 	}
1150 }
1151 
1152 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1153 {
1154 	u_register_t mpam_idr = read_mpamidr_el1();
1155 
1156 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1157 
1158 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1159 		return;
1160 	}
1161 
1162 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1163 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1164 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1165 
1166 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1167 	case 7:
1168 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1169 		__fallthrough;
1170 	case 6:
1171 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1172 		__fallthrough;
1173 	case 5:
1174 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1175 		__fallthrough;
1176 	case 4:
1177 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1178 		__fallthrough;
1179 	case 3:
1180 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1181 		__fallthrough;
1182 	case 2:
1183 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1184 		__fallthrough;
1185 	case 1:
1186 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1187 		break;
1188 	}
1189 }
1190 
1191 /* ---------------------------------------------------------------------------
1192  * The following registers are not added:
1193  * ICH_AP0R<n>_EL2
1194  * ICH_AP1R<n>_EL2
1195  * ICH_LR<n>_EL2
1196  *
1197  * NOTE: For a system with S-EL2 present but not enabled, accessing
1198  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1199  * SCR_EL3.NS = 1 before accessing this register.
1200  * ---------------------------------------------------------------------------
1201  */
1202 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx)
1203 {
1204 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1205 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1206 #else
1207 	u_register_t scr_el3 = read_scr_el3();
1208 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1209 	isb();
1210 
1211 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1212 
1213 	write_scr_el3(scr_el3);
1214 	isb();
1215 #endif
1216 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1217 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1218 }
1219 
1220 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx)
1221 {
1222 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1223 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1224 #else
1225 	u_register_t scr_el3 = read_scr_el3();
1226 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1227 	isb();
1228 
1229 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1230 
1231 	write_scr_el3(scr_el3);
1232 	isb();
1233 #endif
1234 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1235 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1236 }
1237 
1238 /* -----------------------------------------------------
1239  * The following registers are not added:
1240  * AMEVCNTVOFF0<n>_EL2
1241  * AMEVCNTVOFF1<n>_EL2
1242  * -----------------------------------------------------
1243  */
1244 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1245 {
1246 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1247 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1248 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1249 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1250 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1251 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1252 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1253 	if (CTX_INCLUDE_AARCH32_REGS) {
1254 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1255 	}
1256 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1257 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1258 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1259 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1260 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1261 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1262 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1263 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1264 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1265 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1266 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1267 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1268 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1269 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1270 	write_el2_ctx_common(ctx, ttbr0_el2, read_ttbr0_el2());
1271 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1272 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1273 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1274 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1275 	write_el2_ctx_common(ctx, vttbr_el2, read_vttbr_el2());
1276 }
1277 
1278 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1279 {
1280 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1281 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1282 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1283 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1284 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1285 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1286 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1287 	if (CTX_INCLUDE_AARCH32_REGS) {
1288 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1289 	}
1290 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1291 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1292 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1293 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1294 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1295 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1296 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1297 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1298 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1299 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1300 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1301 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1302 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1303 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1304 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1305 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1306 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1307 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1308 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1309 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1310 }
1311 
1312 /*******************************************************************************
1313  * Save EL2 sysreg context
1314  ******************************************************************************/
1315 void cm_el2_sysregs_context_save(uint32_t security_state)
1316 {
1317 	cpu_context_t *ctx;
1318 	el2_sysregs_t *el2_sysregs_ctx;
1319 
1320 	ctx = cm_get_context(security_state);
1321 	assert(ctx != NULL);
1322 
1323 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1324 
1325 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1326 	el2_sysregs_context_save_gic(el2_sysregs_ctx);
1327 
1328 	if (is_feat_mte2_supported()) {
1329 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1330 	}
1331 
1332 	if (is_feat_mpam_supported()) {
1333 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1334 	}
1335 
1336 	if (is_feat_fgt_supported()) {
1337 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1338 	}
1339 
1340 	if (is_feat_ecv_v2_supported()) {
1341 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1342 	}
1343 
1344 	if (is_feat_vhe_supported()) {
1345 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1346 					read_contextidr_el2());
1347 		write_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1348 	}
1349 
1350 	if (is_feat_ras_supported()) {
1351 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1352 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1353 	}
1354 
1355 	if (is_feat_nv2_supported()) {
1356 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1357 	}
1358 
1359 	if (is_feat_trf_supported()) {
1360 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1361 	}
1362 
1363 	if (is_feat_csv2_2_supported()) {
1364 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1365 					read_scxtnum_el2());
1366 	}
1367 
1368 	if (is_feat_hcx_supported()) {
1369 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1370 	}
1371 
1372 	if (is_feat_tcr2_supported()) {
1373 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1374 	}
1375 
1376 	if (is_feat_sxpie_supported()) {
1377 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1378 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1379 	}
1380 
1381 	if (is_feat_sxpoe_supported()) {
1382 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1383 	}
1384 
1385 	if (is_feat_s2pie_supported()) {
1386 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1387 	}
1388 
1389 	if (is_feat_gcs_supported()) {
1390 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1391 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1392 	}
1393 }
1394 
1395 /*******************************************************************************
1396  * Restore EL2 sysreg context
1397  ******************************************************************************/
1398 void cm_el2_sysregs_context_restore(uint32_t security_state)
1399 {
1400 	cpu_context_t *ctx;
1401 	el2_sysregs_t *el2_sysregs_ctx;
1402 
1403 	ctx = cm_get_context(security_state);
1404 	assert(ctx != NULL);
1405 
1406 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1407 
1408 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1409 	el2_sysregs_context_restore_gic(el2_sysregs_ctx);
1410 
1411 	if (is_feat_mte2_supported()) {
1412 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1413 	}
1414 
1415 	if (is_feat_mpam_supported()) {
1416 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1417 	}
1418 
1419 	if (is_feat_fgt_supported()) {
1420 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1421 	}
1422 
1423 	if (is_feat_ecv_v2_supported()) {
1424 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1425 	}
1426 
1427 	if (is_feat_vhe_supported()) {
1428 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1429 					contextidr_el2));
1430 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1431 	}
1432 
1433 	if (is_feat_ras_supported()) {
1434 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1435 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1436 	}
1437 
1438 	if (is_feat_nv2_supported()) {
1439 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1440 	}
1441 
1442 	if (is_feat_trf_supported()) {
1443 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1444 	}
1445 
1446 	if (is_feat_csv2_2_supported()) {
1447 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1448 					scxtnum_el2));
1449 	}
1450 
1451 	if (is_feat_hcx_supported()) {
1452 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1453 	}
1454 
1455 	if (is_feat_tcr2_supported()) {
1456 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1457 	}
1458 
1459 	if (is_feat_sxpie_supported()) {
1460 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1461 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1462 	}
1463 
1464 	if (is_feat_sxpoe_supported()) {
1465 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1466 	}
1467 
1468 	if (is_feat_s2pie_supported()) {
1469 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1470 	}
1471 
1472 	if (is_feat_gcs_supported()) {
1473 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1474 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1475 	}
1476 }
1477 #endif /* CTX_INCLUDE_EL2_REGS */
1478 
1479 /*******************************************************************************
1480  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1481  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1482  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1483  * cm_prepare_el3_exit function.
1484  ******************************************************************************/
1485 void cm_prepare_el3_exit_ns(void)
1486 {
1487 #if CTX_INCLUDE_EL2_REGS
1488 #if ENABLE_ASSERTIONS
1489 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1490 	assert(ctx != NULL);
1491 
1492 	/* Assert that EL2 is used. */
1493 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1494 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1495 			(el_implemented(2U) != EL_IMPL_NONE));
1496 #endif /* ENABLE_ASSERTIONS */
1497 
1498 	/* Restore EL2 and EL1 sysreg contexts */
1499 	cm_el2_sysregs_context_restore(NON_SECURE);
1500 	cm_el1_sysregs_context_restore(NON_SECURE);
1501 	cm_set_next_eret_context(NON_SECURE);
1502 #else
1503 	cm_prepare_el3_exit(NON_SECURE);
1504 #endif /* CTX_INCLUDE_EL2_REGS */
1505 }
1506 
1507 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1508 {
1509 	write_ctx_reg(ctx, CTX_SPSR_EL1, read_spsr_el1());
1510 	write_ctx_reg(ctx, CTX_ELR_EL1, read_elr_el1());
1511 
1512 #if !ERRATA_SPECULATIVE_AT
1513 	write_ctx_reg(ctx, CTX_SCTLR_EL1, read_sctlr_el1());
1514 	write_ctx_reg(ctx, CTX_TCR_EL1, read_tcr_el1());
1515 #endif /* (!ERRATA_SPECULATIVE_AT) */
1516 
1517 	write_ctx_reg(ctx, CTX_CPACR_EL1, read_cpacr_el1());
1518 	write_ctx_reg(ctx, CTX_CSSELR_EL1, read_csselr_el1());
1519 	write_ctx_reg(ctx, CTX_SP_EL1, read_sp_el1());
1520 	write_ctx_reg(ctx, CTX_ESR_EL1, read_esr_el1());
1521 	write_ctx_reg(ctx, CTX_TTBR0_EL1, read_ttbr0_el1());
1522 	write_ctx_reg(ctx, CTX_TTBR1_EL1, read_ttbr1_el1());
1523 	write_ctx_reg(ctx, CTX_MAIR_EL1, read_mair_el1());
1524 	write_ctx_reg(ctx, CTX_AMAIR_EL1, read_amair_el1());
1525 	write_ctx_reg(ctx, CTX_ACTLR_EL1, read_actlr_el1());
1526 	write_ctx_reg(ctx, CTX_TPIDR_EL1, read_tpidr_el1());
1527 	write_ctx_reg(ctx, CTX_TPIDR_EL0, read_tpidr_el0());
1528 	write_ctx_reg(ctx, CTX_TPIDRRO_EL0, read_tpidrro_el0());
1529 	write_ctx_reg(ctx, CTX_PAR_EL1, read_par_el1());
1530 	write_ctx_reg(ctx, CTX_FAR_EL1, read_far_el1());
1531 	write_ctx_reg(ctx, CTX_AFSR0_EL1, read_afsr0_el1());
1532 	write_ctx_reg(ctx, CTX_AFSR1_EL1, read_afsr1_el1());
1533 	write_ctx_reg(ctx, CTX_CONTEXTIDR_EL1, read_contextidr_el1());
1534 	write_ctx_reg(ctx, CTX_VBAR_EL1, read_vbar_el1());
1535 	write_ctx_reg(ctx, CTX_MDCCINT_EL1, read_mdccint_el1());
1536 	write_ctx_reg(ctx, CTX_MDSCR_EL1, read_mdscr_el1());
1537 
1538 #if CTX_INCLUDE_AARCH32_REGS
1539 	write_ctx_reg(ctx, CTX_SPSR_ABT, read_spsr_abt());
1540 	write_ctx_reg(ctx, CTX_SPSR_UND, read_spsr_und());
1541 	write_ctx_reg(ctx, CTX_SPSR_IRQ, read_spsr_irq());
1542 	write_ctx_reg(ctx, CTX_SPSR_FIQ, read_spsr_fiq());
1543 	write_ctx_reg(ctx, CTX_DACR32_EL2, read_dacr32_el2());
1544 	write_ctx_reg(ctx, CTX_IFSR32_EL2, read_ifsr32_el2());
1545 #endif /* CTX_INCLUDE_AARCH32_REGS */
1546 
1547 #if NS_TIMER_SWITCH
1548 	write_ctx_reg(ctx, CTX_CNTP_CTL_EL0, read_cntp_ctl_el0());
1549 	write_ctx_reg(ctx, CTX_CNTP_CVAL_EL0, read_cntp_cval_el0());
1550 	write_ctx_reg(ctx, CTX_CNTV_CTL_EL0, read_cntv_ctl_el0());
1551 	write_ctx_reg(ctx, CTX_CNTV_CVAL_EL0, read_cntv_cval_el0());
1552 	write_ctx_reg(ctx, CTX_CNTKCTL_EL1, read_cntkctl_el1());
1553 #endif /* NS_TIMER_SWITCH */
1554 
1555 #if ENABLE_FEAT_MTE2
1556 	write_ctx_reg(ctx, CTX_TFSRE0_EL1, read_tfsre0_el1());
1557 	write_ctx_reg(ctx, CTX_TFSR_EL1, read_tfsr_el1());
1558 	write_ctx_reg(ctx, CTX_RGSR_EL1, read_rgsr_el1());
1559 	write_ctx_reg(ctx, CTX_GCR_EL1, read_gcr_el1());
1560 #endif /* ENABLE_FEAT_MTE2 */
1561 
1562 #if ENABLE_FEAT_RAS
1563 	if (is_feat_ras_supported()) {
1564 		write_ctx_reg(ctx, CTX_DISR_EL1, read_disr_el1());
1565 	}
1566 #endif
1567 
1568 #if ENABLE_FEAT_S1PIE
1569 	if (is_feat_s1pie_supported()) {
1570 		write_ctx_reg(ctx, CTX_PIRE0_EL1, read_pire0_el1());
1571 		write_ctx_reg(ctx, CTX_PIR_EL1, read_pir_el1());
1572 	}
1573 #endif
1574 
1575 #if ENABLE_FEAT_S1POE
1576 	if (is_feat_s1poe_supported()) {
1577 		write_ctx_reg(ctx, CTX_POR_EL1, read_por_el1());
1578 	}
1579 #endif
1580 
1581 #if ENABLE_FEAT_S2POE
1582 	if (is_feat_s2poe_supported()) {
1583 		write_ctx_reg(ctx, CTX_S2POR_EL1, read_s2por_el1());
1584 	}
1585 #endif
1586 
1587 #if ENABLE_FEAT_TCR2
1588 	if (is_feat_tcr2_supported()) {
1589 		write_ctx_reg(ctx, CTX_TCR2_EL1, read_tcr2_el1());
1590 	}
1591 #endif
1592 
1593 #if ENABLE_TRF_FOR_NS
1594 	if (is_feat_trf_supported()) {
1595 		write_ctx_reg(ctx, CTX_TRFCR_EL1, read_trfcr_el1());
1596 	}
1597 #endif
1598 
1599 #if ENABLE_FEAT_CSV2_2
1600 	if (is_feat_csv2_2_supported()) {
1601 		write_ctx_reg(ctx, CTX_SCXTNUM_EL0, read_scxtnum_el0());
1602 		write_ctx_reg(ctx, CTX_SCXTNUM_EL1, read_scxtnum_el1());
1603 	}
1604 #endif
1605 
1606 #if ENABLE_FEAT_GCS
1607 	if (is_feat_gcs_supported()) {
1608 		write_ctx_reg(ctx, CTX_GCSCR_EL1, read_gcscr_el1());
1609 		write_ctx_reg(ctx, CTX_GCSCRE0_EL1, read_gcscre0_el1());
1610 		write_ctx_reg(ctx, CTX_GCSPR_EL1, read_gcspr_el1());
1611 		write_ctx_reg(ctx, CTX_GCSPR_EL0, read_gcspr_el0());
1612 	}
1613 #endif
1614 }
1615 
1616 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1617 {
1618 	write_spsr_el1(read_ctx_reg(ctx, CTX_SPSR_EL1));
1619 	write_elr_el1(read_ctx_reg(ctx, CTX_ELR_EL1));
1620 
1621 #if !ERRATA_SPECULATIVE_AT
1622 	write_sctlr_el1(read_ctx_reg(ctx, CTX_SCTLR_EL1));
1623 	write_tcr_el1(read_ctx_reg(ctx, CTX_TCR_EL1));
1624 #endif /* (!ERRATA_SPECULATIVE_AT) */
1625 
1626 	write_cpacr_el1(read_ctx_reg(ctx, CTX_CPACR_EL1));
1627 	write_csselr_el1(read_ctx_reg(ctx, CTX_CSSELR_EL1));
1628 	write_sp_el1(read_ctx_reg(ctx, CTX_SP_EL1));
1629 	write_esr_el1(read_ctx_reg(ctx, CTX_ESR_EL1));
1630 	write_ttbr0_el1(read_ctx_reg(ctx, CTX_TTBR0_EL1));
1631 	write_ttbr1_el1(read_ctx_reg(ctx, CTX_TTBR1_EL1));
1632 	write_mair_el1(read_ctx_reg(ctx, CTX_MAIR_EL1));
1633 	write_amair_el1(read_ctx_reg(ctx, CTX_AMAIR_EL1));
1634 	write_actlr_el1(read_ctx_reg(ctx, CTX_ACTLR_EL1));
1635 	write_tpidr_el1(read_ctx_reg(ctx, CTX_TPIDR_EL1));
1636 	write_tpidr_el0(read_ctx_reg(ctx, CTX_TPIDR_EL0));
1637 	write_tpidrro_el0(read_ctx_reg(ctx, CTX_TPIDRRO_EL0));
1638 	write_par_el1(read_ctx_reg(ctx, CTX_PAR_EL1));
1639 	write_far_el1(read_ctx_reg(ctx, CTX_FAR_EL1));
1640 	write_afsr0_el1(read_ctx_reg(ctx, CTX_AFSR0_EL1));
1641 	write_afsr1_el1(read_ctx_reg(ctx, CTX_AFSR1_EL1));
1642 	write_contextidr_el1(read_ctx_reg(ctx, CTX_CONTEXTIDR_EL1));
1643 	write_vbar_el1(read_ctx_reg(ctx, CTX_VBAR_EL1));
1644 	write_mdccint_el1(read_ctx_reg(ctx, CTX_MDCCINT_EL1));
1645 	write_mdscr_el1(read_ctx_reg(ctx, CTX_MDSCR_EL1));
1646 
1647 #if CTX_INCLUDE_AARCH32_REGS
1648 	write_spsr_abt(read_ctx_reg(ctx, CTX_SPSR_ABT));
1649 	write_spsr_und(read_ctx_reg(ctx, CTX_SPSR_UND));
1650 	write_spsr_irq(read_ctx_reg(ctx, CTX_SPSR_IRQ));
1651 	write_spsr_fiq(read_ctx_reg(ctx, CTX_SPSR_FIQ));
1652 	write_dacr32_el2(read_ctx_reg(ctx, CTX_DACR32_EL2));
1653 	write_ifsr32_el2(read_ctx_reg(ctx, CTX_IFSR32_EL2));
1654 #endif /* CTX_INCLUDE_AARCH32_REGS */
1655 
1656 #if NS_TIMER_SWITCH
1657 	write_cntp_ctl_el0(read_ctx_reg(ctx, CTX_CNTP_CTL_EL0));
1658 	write_cntp_cval_el0(read_ctx_reg(ctx, CTX_CNTP_CVAL_EL0));
1659 	write_cntv_ctl_el0(read_ctx_reg(ctx, CTX_CNTV_CTL_EL0));
1660 	write_cntv_cval_el0(read_ctx_reg(ctx, CTX_CNTV_CVAL_EL0));
1661 	write_cntkctl_el1(read_ctx_reg(ctx, CTX_CNTKCTL_EL1));
1662 #endif /* NS_TIMER_SWITCH */
1663 
1664 #if ENABLE_FEAT_MTE2
1665 	write_tfsre0_el1(read_ctx_reg(ctx, CTX_TFSRE0_EL1));
1666 	write_tfsr_el1(read_ctx_reg(ctx, CTX_TFSR_EL1));
1667 	write_rgsr_el1(read_ctx_reg(ctx, CTX_RGSR_EL1));
1668 	write_gcr_el1(read_ctx_reg(ctx, CTX_GCR_EL1));
1669 #endif /* ENABLE_FEAT_MTE2 */
1670 
1671 #if ENABLE_FEAT_RAS
1672 	if (is_feat_ras_supported()) {
1673 		write_disr_el1(read_ctx_reg(ctx, CTX_DISR_EL1));
1674 	}
1675 #endif
1676 
1677 #if ENABLE_FEAT_S1PIE
1678 	if (is_feat_s1pie_supported()) {
1679 		write_pire0_el1(read_ctx_reg(ctx, CTX_PIRE0_EL1));
1680 		write_pir_el1(read_ctx_reg(ctx, CTX_PIR_EL1));
1681 	}
1682 #endif
1683 
1684 #if ENABLE_FEAT_S1POE
1685 	if (is_feat_s1poe_supported()) {
1686 		write_por_el1(read_ctx_reg(ctx, CTX_POR_EL1));
1687 	}
1688 #endif
1689 
1690 #if ENABLE_FEAT_S2POE
1691 	if (is_feat_s2poe_supported()) {
1692 		write_s2por_el1(read_ctx_reg(ctx, CTX_S2POR_EL1));
1693 	}
1694 #endif
1695 
1696 #if ENABLE_FEAT_TCR2
1697 	if (is_feat_tcr2_supported()) {
1698 		write_tcr2_el1(read_ctx_reg(ctx, CTX_TCR2_EL1));
1699 	}
1700 #endif
1701 
1702 #if ENABLE_TRF_FOR_NS
1703 	if (is_feat_trf_supported()) {
1704 		write_trfcr_el1(read_ctx_reg(ctx, CTX_TRFCR_EL1));
1705 	}
1706 #endif
1707 
1708 #if ENABLE_FEAT_CSV2_2
1709 	if (is_feat_csv2_2_supported()) {
1710 		write_scxtnum_el0(read_ctx_reg(ctx, CTX_SCXTNUM_EL0));
1711 		write_scxtnum_el1(read_ctx_reg(ctx, CTX_SCXTNUM_EL1));
1712 	}
1713 #endif
1714 
1715 #if ENABLE_FEAT_GCS
1716 	if (is_feat_gcs_supported()) {
1717 		write_gcscr_el1(read_ctx_reg(ctx, CTX_GCSCR_EL1));
1718 		write_gcscre0_el1(read_ctx_reg(ctx, CTX_GCSCRE0_EL1));
1719 		write_gcspr_el1(read_ctx_reg(ctx, CTX_GCSPR_EL1));
1720 		write_gcspr_el0(read_ctx_reg(ctx, CTX_GCSPR_EL0));
1721 	}
1722 #endif
1723 }
1724 
1725 /*******************************************************************************
1726  * The next four functions are used by runtime services to save and restore
1727  * EL1 context on the 'cpu_context' structure for the specified security
1728  * state.
1729  ******************************************************************************/
1730 void cm_el1_sysregs_context_save(uint32_t security_state)
1731 {
1732 	cpu_context_t *ctx;
1733 
1734 	ctx = cm_get_context(security_state);
1735 	assert(ctx != NULL);
1736 
1737 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1738 
1739 #if IMAGE_BL31
1740 	if (security_state == SECURE)
1741 		PUBLISH_EVENT(cm_exited_secure_world);
1742 	else
1743 		PUBLISH_EVENT(cm_exited_normal_world);
1744 #endif
1745 }
1746 
1747 void cm_el1_sysregs_context_restore(uint32_t security_state)
1748 {
1749 	cpu_context_t *ctx;
1750 
1751 	ctx = cm_get_context(security_state);
1752 	assert(ctx != NULL);
1753 
1754 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1755 
1756 #if IMAGE_BL31
1757 	if (security_state == SECURE)
1758 		PUBLISH_EVENT(cm_entering_secure_world);
1759 	else
1760 		PUBLISH_EVENT(cm_entering_normal_world);
1761 #endif
1762 }
1763 
1764 /*******************************************************************************
1765  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1766  * given security state with the given entrypoint
1767  ******************************************************************************/
1768 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
1769 {
1770 	cpu_context_t *ctx;
1771 	el3_state_t *state;
1772 
1773 	ctx = cm_get_context(security_state);
1774 	assert(ctx != NULL);
1775 
1776 	/* Populate EL3 state so that ERET jumps to the correct entry */
1777 	state = get_el3state_ctx(ctx);
1778 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1779 }
1780 
1781 /*******************************************************************************
1782  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
1783  * pertaining to the given security state
1784  ******************************************************************************/
1785 void cm_set_elr_spsr_el3(uint32_t security_state,
1786 			uintptr_t entrypoint, uint32_t spsr)
1787 {
1788 	cpu_context_t *ctx;
1789 	el3_state_t *state;
1790 
1791 	ctx = cm_get_context(security_state);
1792 	assert(ctx != NULL);
1793 
1794 	/* Populate EL3 state so that ERET jumps to the correct entry */
1795 	state = get_el3state_ctx(ctx);
1796 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
1797 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
1798 }
1799 
1800 /*******************************************************************************
1801  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
1802  * pertaining to the given security state using the value and bit position
1803  * specified in the parameters. It preserves all other bits.
1804  ******************************************************************************/
1805 void cm_write_scr_el3_bit(uint32_t security_state,
1806 			  uint32_t bit_pos,
1807 			  uint32_t value)
1808 {
1809 	cpu_context_t *ctx;
1810 	el3_state_t *state;
1811 	u_register_t scr_el3;
1812 
1813 	ctx = cm_get_context(security_state);
1814 	assert(ctx != NULL);
1815 
1816 	/* Ensure that the bit position is a valid one */
1817 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
1818 
1819 	/* Ensure that the 'value' is only a bit wide */
1820 	assert(value <= 1U);
1821 
1822 	/*
1823 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
1824 	 * and set it to its new value.
1825 	 */
1826 	state = get_el3state_ctx(ctx);
1827 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
1828 	scr_el3 &= ~(1UL << bit_pos);
1829 	scr_el3 |= (u_register_t)value << bit_pos;
1830 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
1831 }
1832 
1833 /*******************************************************************************
1834  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
1835  * given security state.
1836  ******************************************************************************/
1837 u_register_t cm_get_scr_el3(uint32_t security_state)
1838 {
1839 	cpu_context_t *ctx;
1840 	el3_state_t *state;
1841 
1842 	ctx = cm_get_context(security_state);
1843 	assert(ctx != NULL);
1844 
1845 	/* Populate EL3 state so that ERET jumps to the correct entry */
1846 	state = get_el3state_ctx(ctx);
1847 	return read_ctx_reg(state, CTX_SCR_EL3);
1848 }
1849 
1850 /*******************************************************************************
1851  * This function is used to program the context that's used for exception
1852  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
1853  * the required security state
1854  ******************************************************************************/
1855 void cm_set_next_eret_context(uint32_t security_state)
1856 {
1857 	cpu_context_t *ctx;
1858 
1859 	ctx = cm_get_context(security_state);
1860 	assert(ctx != NULL);
1861 
1862 	cm_set_next_context(ctx);
1863 }
1864