xref: /rk3399_ARM-atf/lib/el3_runtime/aarch64/context_mgmt.c (revision 3840242b45d9c7a06bd7c46bbd06f35e47a28904)
1 /*
2  * Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
3  * Copyright (c) 2022, NVIDIA Corporation. All rights reserved.
4  *
5  * SPDX-License-Identifier: BSD-3-Clause
6  */
7 
8 #include <assert.h>
9 #include <stdbool.h>
10 #include <string.h>
11 
12 #include <platform_def.h>
13 
14 #include <arch.h>
15 #include <arch_helpers.h>
16 #include <arch_features.h>
17 #include <bl31/interrupt_mgmt.h>
18 #include <common/bl_common.h>
19 #include <common/debug.h>
20 #include <context.h>
21 #include <drivers/arm/gicv3.h>
22 #include <lib/cpus/cpu_ops.h>
23 #include <lib/cpus/errata.h>
24 #include <lib/el3_runtime/context_mgmt.h>
25 #include <lib/el3_runtime/cpu_data.h>
26 #include <lib/el3_runtime/pubsub_events.h>
27 #include <lib/extensions/amu.h>
28 #include <lib/extensions/brbe.h>
29 #include <lib/extensions/cpa2.h>
30 #include <lib/extensions/debug_v8p9.h>
31 #include <lib/extensions/fgt2.h>
32 #include <lib/extensions/idte3.h>
33 #include <lib/extensions/mpam.h>
34 #include <lib/extensions/pauth.h>
35 #include <lib/extensions/pmuv3.h>
36 #include <lib/extensions/sme.h>
37 #include <lib/extensions/spe.h>
38 #include <lib/extensions/sve.h>
39 #include <lib/extensions/sysreg128.h>
40 #include <lib/extensions/sys_reg_trace.h>
41 #include <lib/extensions/tcr2.h>
42 #include <lib/extensions/trbe.h>
43 #include <lib/extensions/trf.h>
44 #include <lib/utils.h>
45 
46 #if ENABLE_FEAT_TWED
47 /* Make sure delay value fits within the range(0-15) */
48 CASSERT(((TWED_DELAY & ~SCR_TWEDEL_MASK) == 0U), assert_twed_delay_value_check);
49 #endif /* ENABLE_FEAT_TWED */
50 
51 per_world_context_t per_world_context[CPU_CONTEXT_NUM];
52 
53 static void manage_extensions_nonsecure(cpu_context_t *ctx);
54 static void manage_extensions_secure(cpu_context_t *ctx);
55 
56 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
57 static void setup_el1_context(cpu_context_t *ctx, const struct entry_point_info *ep)
58 {
59 	u_register_t sctlr_elx, actlr_elx;
60 
61 	/*
62 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
63 	 * execution state setting all fields rather than relying on the hw.
64 	 * Some fields have architecturally UNKNOWN reset values and these are
65 	 * set to zero.
66 	 *
67 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
68 	 *
69 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
70 	 * required by PSCI specification)
71 	 */
72 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0UL;
73 	if (GET_RW(ep->spsr) == MODE_RW_64) {
74 		sctlr_elx |= SCTLR_EL1_RES1;
75 	} else {
76 		/*
77 		 * If the target execution state is AArch32 then the following
78 		 * fields need to be set.
79 		 *
80 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
81 		 *  instructions are not trapped to EL1.
82 		 *
83 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
84 		 *  instructions are not trapped to EL1.
85 		 *
86 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
87 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
88 		 */
89 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
90 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
91 	}
92 
93 	/*
94 	 * If workaround of errata 764081 for Cortex-A75 is used then set
95 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
96 	 */
97 	if (errata_a75_764081_applies()) {
98 		sctlr_elx |= SCTLR_IESB_BIT;
99 	}
100 
101 	/* Store the initialised SCTLR_EL1 value in the cpu_context */
102 	write_ctx_sctlr_el1_reg_errata(ctx, sctlr_elx);
103 
104 	/*
105 	 * Base the context ACTLR_EL1 on the current value, as it is
106 	 * implementation defined. The context restore process will write
107 	 * the value from the context to the actual register and can cause
108 	 * problems for processor cores that don't expect certain bits to
109 	 * be zero.
110 	 */
111 	actlr_elx = read_actlr_el1();
112 	write_el1_ctx_common(get_el1_sysregs_ctx(ctx), actlr_el1, actlr_elx);
113 }
114 #endif /* (IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)) */
115 
116 /******************************************************************************
117  * This function performs initializations that are specific to SECURE state
118  * and updates the cpu context specified by 'ctx'.
119  *****************************************************************************/
120 static void setup_secure_context(cpu_context_t *ctx, const struct entry_point_info *ep)
121 {
122 	u_register_t scr_el3;
123 	el3_state_t *state;
124 
125 	state = get_el3state_ctx(ctx);
126 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
127 
128 #if defined(IMAGE_BL31) && !defined(SPD_spmd)
129 	/*
130 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
131 	 * indicated by the interrupt routing model for BL31.
132 	 */
133 	scr_el3 |= get_scr_el3_from_routing_model(SECURE);
134 #endif
135 
136 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
137 	if (is_feat_mte2_supported()) {
138 		scr_el3 |= SCR_ATA_BIT;
139 	}
140 
141 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
142 
143 	/*
144 	 * Initialize EL1 context registers unless SPMC is running
145 	 * at S-EL2.
146 	 */
147 #if !CTX_INCLUDE_EL2_REGS || IMAGE_BL1
148 	setup_el1_context(ctx, ep);
149 #endif
150 
151 	manage_extensions_secure(ctx);
152 }
153 
154 #if ENABLE_RME && IMAGE_BL31
155 /******************************************************************************
156  * This function performs initializations that are specific to REALM state
157  * and updates the cpu context specified by 'ctx'.
158  *
159  * NOTE: any changes to this function must be verified by an RMMD maintainer.
160  *****************************************************************************/
161 static void setup_realm_context(cpu_context_t *ctx, const struct entry_point_info *ep)
162 {
163 	u_register_t scr_el3;
164 	el3_state_t *state;
165 	el2_sysregs_t *el2_ctx;
166 
167 	state = get_el3state_ctx(ctx);
168 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
169 	el2_ctx = get_el2_sysregs_ctx(ctx);
170 
171 	scr_el3 |= SCR_NS_BIT | SCR_NSE_BIT;
172 
173 	write_el2_ctx_common(el2_ctx, spsr_el2, SPSR_EL2_REALM);
174 
175 	/* CSV2 version 2 and above */
176 	if (is_feat_csv2_2_supported()) {
177 		/* Enable access to the SCXTNUM_ELx registers. */
178 		scr_el3 |= SCR_EnSCXT_BIT;
179 	}
180 
181 	if (is_feat_sctlr2_supported()) {
182 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
183 		 * SCTLR2_ELx registers.
184 		 */
185 		scr_el3 |= SCR_SCTLR2En_BIT;
186 	}
187 
188 	if (is_feat_d128_supported()) {
189 		/*
190 		 * Set the D128En bit in SCR_EL3 to enable access to 128-bit
191 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
192 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
193 		 */
194 		scr_el3 |= SCR_D128En_BIT;
195 	}
196 
197 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
198 
199 	if (is_feat_fgt2_supported()) {
200 		fgt2_enable(ctx);
201 	}
202 
203 	if (is_feat_debugv8p9_supported()) {
204 		debugv8p9_extended_bp_wp_enable(ctx);
205 	}
206 
207 	if (is_feat_brbe_supported()) {
208 		brbe_enable(ctx);
209 	}
210 
211 	/*
212 	 * Enable access to TPIDR2_EL0 if SME/SME2 is enabled for Non Secure world.
213 	 */
214 	if (is_feat_sme_supported()) {
215 		sme_enable(ctx);
216 	}
217 
218 	if (is_feat_spe_supported()) {
219 		spe_disable_realm(ctx);
220 	}
221 
222 	if (is_feat_trbe_supported()) {
223 		trbe_disable_realm(ctx);
224 	}
225 }
226 #endif /* ENABLE_RME && IMAGE_BL31 */
227 
228 /******************************************************************************
229  * This function performs initializations that are specific to NON-SECURE state
230  * and updates the cpu context specified by 'ctx'.
231  *****************************************************************************/
232 static void setup_ns_context(cpu_context_t *ctx, const struct entry_point_info *ep)
233 {
234 	u_register_t scr_el3;
235 	el3_state_t *state;
236 
237 	state = get_el3state_ctx(ctx);
238 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
239 
240 	/* SCR_NS: Set the NS bit */
241 	scr_el3 |= SCR_NS_BIT;
242 
243 	/* Allow access to Allocation Tags when FEAT_MTE2 is implemented and enabled. */
244 	if (is_feat_mte2_supported()) {
245 		scr_el3 |= SCR_ATA_BIT;
246 	}
247 
248 	/*
249 	 * Pointer Authentication feature, if present, is always enabled by
250 	 * default for Non secure lower exception levels. We do not have an
251 	 * explicit flag to set it. To prevent the leakage between the worlds
252 	 * during world switch, we enable it only for the non-secure world.
253 	 *
254 	 * CTX_INCLUDE_PAUTH_REGS flag, is explicitly used to enable for lower
255 	 * exception levels of secure and realm worlds.
256 	 *
257 	 * If the Secure/realm world wants to use pointer authentication,
258 	 * CTX_INCLUDE_PAUTH_REGS must be explicitly set to 1, in which case
259 	 * it will be enabled globally for all the contexts.
260 	 *
261 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
262 	 *  other than EL3
263 	 *
264 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
265 	 *  than EL3
266 	 */
267 	if (!is_ctx_pauth_supported()) {
268 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
269 	}
270 
271 #if HANDLE_EA_EL3_FIRST_NS
272 	/* SCR_EL3.EA: Route External Abort and SError Interrupt to EL3. */
273 	scr_el3 |= SCR_EA_BIT;
274 #endif
275 
276 #if RAS_TRAP_NS_ERR_REC_ACCESS
277 	/*
278 	 * SCR_EL3.TERR: Trap Error record accesses. Accesses to the RAS ERR
279 	 * and RAS ERX registers from EL1 and EL2(from any security state)
280 	 * are trapped to EL3.
281 	 * Set here to trap only for NS EL1/EL2
282 	 */
283 	scr_el3 |= SCR_TERR_BIT;
284 #endif
285 
286 	/* CSV2 version 2 and above */
287 	if (is_feat_csv2_2_supported()) {
288 		/* Enable access to the SCXTNUM_ELx registers. */
289 		scr_el3 |= SCR_EnSCXT_BIT;
290 	}
291 
292 #ifdef IMAGE_BL31
293 	/*
294 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
295 	 *  indicated by the interrupt routing model for BL31.
296 	 */
297 	scr_el3 |= get_scr_el3_from_routing_model(NON_SECURE);
298 #endif
299 
300 	if (is_feat_the_supported()) {
301 		/* Set the RCWMASKEn bit in SCR_EL3 to enable access to
302 		 * RCWMASK_EL1 and RCWSMASK_EL1 registers.
303 		 */
304 		scr_el3 |= SCR_RCWMASKEn_BIT;
305 	}
306 
307 	if (is_feat_sctlr2_supported()) {
308 		/* Set the SCTLR2En bit in SCR_EL3 to enable access to
309 		 * SCTLR2_ELx registers.
310 		 */
311 		scr_el3 |= SCR_SCTLR2En_BIT;
312 	}
313 
314 	if (is_feat_d128_supported()) {
315 		/* Set the D128En bit in SCR_EL3 to enable access to 128-bit
316 		 * versions of TTBR0_EL1, TTBR1_EL1, RCWMASK_EL1, RCWSMASK_EL1,
317 		 * PAR_EL1 and TTBR1_EL2, TTBR0_EL2 and VTTBR_EL2 registers.
318 		 */
319 		scr_el3 |= SCR_D128En_BIT;
320 	}
321 
322 	if (is_feat_fpmr_supported()) {
323 		/* Set the EnFPM bit in SCR_EL3 to enable access to FPMR
324 		 * register.
325 		 */
326 		scr_el3 |= SCR_EnFPM_BIT;
327 	}
328 
329 	if (is_feat_aie_supported()) {
330 		/* Set the AIEn bit in SCR_EL3 to enable access to (A)MAIR2
331 		 * system registers from NS world.
332 		 */
333 		scr_el3 |= SCR_AIEn_BIT;
334 	}
335 
336 	if (is_feat_pfar_supported()) {
337 		/* Set the PFAREn bit in SCR_EL3 to enable access to the PFAR
338 		 * system registers from NS world.
339 		 */
340 		scr_el3 |= SCR_PFAREn_BIT;
341 	}
342 
343 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
344 
345 	/* Initialize EL2 context registers */
346 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
347 	if (is_feat_hcx_supported()) {
348 		/*
349 		 * Initialize register HCRX_EL2 with its init value.
350 		 * As the value of HCRX_EL2 is UNKNOWN on reset, there is a
351 		 * chance that this can lead to unexpected behavior in lower
352 		 * ELs that have not been updated since the introduction of
353 		 * this feature if not properly initialized, especially when
354 		 * it comes to those bits that enable/disable traps.
355 		 */
356 		write_el2_ctx_hcx(get_el2_sysregs_ctx(ctx), hcrx_el2,
357 			HCRX_EL2_INIT_VAL);
358 	}
359 
360 	if (is_feat_fgt_supported()) {
361 		/*
362 		 * Initialize HFG*_EL2 registers with a default value so legacy
363 		 * systems unaware of FEAT_FGT do not get trapped due to their lack
364 		 * of initialization for this feature.
365 		 */
366 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgitr_el2,
367 			HFGITR_EL2_INIT_VAL);
368 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgrtr_el2,
369 			HFGRTR_EL2_INIT_VAL);
370 		write_el2_ctx_fgt(get_el2_sysregs_ctx(ctx), hfgwtr_el2,
371 			HFGWTR_EL2_INIT_VAL);
372 	}
373 #else
374 	/* Initialize EL1 context registers */
375 	setup_el1_context(ctx, ep);
376 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
377 
378 	manage_extensions_nonsecure(ctx);
379 }
380 
381 /*******************************************************************************
382  * The following function performs initialization of the cpu_context 'ctx'
383  * for first use that is common to all security states, and sets the
384  * initial entrypoint state as specified by the entry_point_info structure.
385  *
386  * The EE and ST attributes are used to configure the endianness and secure
387  * timer availability for the new execution context.
388  ******************************************************************************/
389 static void setup_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
390 {
391 	u_register_t scr_el3;
392 	u_register_t mdcr_el3;
393 	el3_state_t *state;
394 	gp_regs_t *gp_regs;
395 
396 	state = get_el3state_ctx(ctx);
397 
398 	/* Clear any residual register values from the context */
399 	zeromem(ctx, sizeof(*ctx));
400 
401 	/*
402 	 * The lower-EL context is zeroed so that no stale values leak to a world.
403 	 * It is assumed that an all-zero lower-EL context is good enough for it
404 	 * to boot correctly. However, there are very few registers where this
405 	 * is not true and some values need to be recreated.
406 	 */
407 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
408 	el2_sysregs_t *el2_ctx = get_el2_sysregs_ctx(ctx);
409 
410 	/*
411 	 * These bits are set in the gicv3 driver. Losing them (especially the
412 	 * SRE bit) is problematic for all worlds. Henceforth recreate them.
413 	 */
414 	u_register_t icc_sre_el2_val = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT |
415 				   ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT;
416 	write_el2_ctx_common(el2_ctx, icc_sre_el2, icc_sre_el2_val);
417 
418 	/*
419 	 * The actlr_el2 register can be initialized in platform's reset handler
420 	 * and it may contain access control bits (e.g. CLUSTERPMUEN bit).
421 	 */
422 	write_el2_ctx_common(el2_ctx, actlr_el2, read_actlr_el2());
423 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
424 
425 	/* Start with a clean SCR_EL3 copy as all relevant values are set */
426 	scr_el3 = SCR_RESET_VAL;
427 
428 	/*
429 	 * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at
430 	 *  EL2, EL1 and EL0 are not trapped to EL3.
431 	 *
432 	 * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at
433 	 *  EL2, EL1 and EL0 are not trapped to EL3.
434 	 *
435 	 * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from
436 	 *  both Security states and both Execution states.
437 	 *
438 	 * SCR_EL3.SIF: Set to one to disable secure instruction execution from
439 	 *  Non-secure memory.
440 	 */
441 	scr_el3 &= ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT);
442 
443 	scr_el3 |= SCR_SIF_BIT;
444 
445 	/*
446 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
447 	 *  Exception level as specified by SPSR.
448 	 */
449 	if (GET_RW(ep->spsr) == MODE_RW_64) {
450 		scr_el3 |= SCR_RW_BIT;
451 	}
452 
453 	/*
454 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
455 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
456 	 * next mode is Hyp.
457 	 */
458 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
459 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
460 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
461 		scr_el3 |= SCR_HCE_BIT;
462 	}
463 
464 	/*
465 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
466 	 * Secure timer registers to EL3, from AArch64 state only, if specified
467 	 * by the entrypoint attributes. If SEL2 is present and enabled, the ST
468 	 * bit always behaves as 1 (i.e. secure physical timer register access
469 	 * is not trapped)
470 	 */
471 	if (EP_GET_ST(ep->h.attr) != 0U) {
472 		scr_el3 |= SCR_ST_BIT;
473 	}
474 
475 	/*
476 	 * If FEAT_HCX is enabled, enable access to HCRX_EL2 by setting
477 	 * SCR_EL3.HXEn.
478 	 */
479 	if (is_feat_hcx_supported()) {
480 		scr_el3 |= SCR_HXEn_BIT;
481 	}
482 
483 	/*
484 	 * If FEAT_LS64_ACCDATA is enabled, enable access to ACCDATA_EL1 by
485 	 * setting SCR_EL3.ADEn and allow the ST64BV0 instruction by setting
486 	 * SCR_EL3.EnAS0.
487 	 */
488 	if (is_feat_ls64_accdata_supported()) {
489 		scr_el3 |= SCR_ADEn_BIT | SCR_EnAS0_BIT;
490 	}
491 
492 	/*
493 	 * If FEAT_RNG_TRAP is enabled, all reads of the RNDR and RNDRRS
494 	 * registers are trapped to EL3.
495 	 */
496 	if (is_feat_rng_trap_supported()) {
497 		scr_el3 |= SCR_TRNDR_BIT;
498 	}
499 
500 #if FAULT_INJECTION_SUPPORT
501 	/* Enable fault injection from lower ELs */
502 	scr_el3 |= SCR_FIEN_BIT;
503 #endif
504 
505 	/*
506 	 * Enable Pointer Authentication globally for all the worlds.
507 	 *
508 	 * SCR_EL3.API: Set to one to not trap any PAuth instructions at ELs
509 	 *  other than EL3
510 	 *
511 	 * SCR_EL3.APK: Set to one to not trap any PAuth key values at ELs other
512 	 *  than EL3
513 	 */
514 	if (is_ctx_pauth_supported()) {
515 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
516 	}
517 
518 	/*
519 	 * SCR_EL3.PIEN: Enable permission indirection and overlay
520 	 * registers for AArch64 if present.
521 	 */
522 	if (is_feat_sxpie_supported() || is_feat_sxpoe_supported()) {
523 		scr_el3 |= SCR_PIEN_BIT;
524 	}
525 
526 	/* SCR_EL3.GCSEn: Enable GCS registers. */
527 	if (is_feat_gcs_supported()) {
528 		scr_el3 |= SCR_GCSEn_BIT;
529 	}
530 
531 	/* SCR_EL3.FGTEn: Enable Fine Grained Virtualization Traps */
532 	if (is_feat_fgt_supported()) {
533 		scr_el3 |= SCR_FGTEN_BIT;
534 	}
535 
536 	/* SCR_EL3.ECVEn: Do not trap the CNTPOFF_EL2 register */
537 	if (is_feat_ecv_supported()) {
538 		scr_el3 |= SCR_ECVEN_BIT;
539 	}
540 
541 	/* Enable WFE trap delay in SCR_EL3 if supported and configured */
542 	if (is_feat_twed_supported()) {
543 		/* Set delay in SCR_EL3 */
544 		scr_el3 &= ~(SCR_TWEDEL_MASK << SCR_TWEDEL_SHIFT);
545 		scr_el3 |= ((TWED_DELAY & SCR_TWEDEL_MASK)
546 				<< SCR_TWEDEL_SHIFT);
547 
548 		/* Enable WFE delay */
549 		scr_el3 |= SCR_TWEDEn_BIT;
550 	}
551 
552 #if IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2
553 	/* Enable S-EL2 if FEAT_SEL2 is implemented for all the contexts. */
554 	if (is_feat_sel2_supported()) {
555 		scr_el3 |= SCR_EEL2_BIT;
556 	}
557 #endif /* (IMAGE_BL31 && defined(SPD_spmd) && SPMD_SPM_AT_SEL2) */
558 
559 	if (is_feat_mec_supported()) {
560 		scr_el3 |= SCR_MECEn_BIT;
561 	}
562 
563 	/*
564 	 * Populate EL3 state so that we've the right context
565 	 * before doing ERET
566 	 */
567 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
568 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
569 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
570 
571 	/* Start with a clean MDCR_EL3 copy as all relevant values are set */
572 	mdcr_el3 = MDCR_EL3_RESET_VAL;
573 
574 	/* ---------------------------------------------------------------------
575 	 * Initialise MDCR_EL3, setting all fields rather than relying on hw.
576 	 * Some fields are architecturally UNKNOWN on reset.
577 	 *
578 	 * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug.
579 	 *  Debug exceptions, other than Breakpoint Instruction exceptions, are
580 	 *  disabled from all ELs in Secure state.
581 	 *
582 	 * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted
583 	 *  privileged debug from S-EL1.
584 	 *
585 	 * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register
586 	 *  access to the powerdown debug registers do not trap to EL3.
587 	 *
588 	 * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the
589 	 *  debug registers, other than those registers that are controlled by
590 	 *  MDCR_EL3.TDOSA.
591 	 */
592 	mdcr_el3 |= ((MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE))
593 			& ~(MDCR_TDA_BIT | MDCR_TDOSA_BIT)) ;
594 	write_ctx_reg(state, CTX_MDCR_EL3, mdcr_el3);
595 
596 #if IMAGE_BL31
597 	/* Enable FEAT_TRF for Non-Secure and prohibit for Secure state. */
598 	if (is_feat_trf_supported()) {
599 		trf_enable(ctx);
600 	}
601 
602 	if (is_feat_tcr2_supported()) {
603 		tcr2_enable(ctx);
604 	}
605 
606 	pmuv3_enable(ctx);
607 
608 	if (is_feat_idte3_supported()) {
609 		idte3_enable(ctx);
610 	}
611 
612 #if CTX_INCLUDE_EL2_REGS && IMAGE_BL31
613 	/*
614 	 * Initialize SCTLR_EL2 context register with reset value.
615 	 */
616 	write_el2_ctx_common(get_el2_sysregs_ctx(ctx), sctlr_el2, SCTLR_EL2_RES1);
617 #endif /* CTX_INCLUDE_EL2_REGS */
618 #endif /* IMAGE_BL31 */
619 
620 	/*
621 	 * Store the X0-X7 value from the entrypoint into the context
622 	 * Use memcpy as we are in control of the layout of the structures
623 	 */
624 	gp_regs = get_gpregs_ctx(ctx);
625 	memcpy((void *)gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
626 }
627 
628 /*******************************************************************************
629  * Context management library initialization routine. This library is used by
630  * runtime services to share pointers to 'cpu_context' structures for secure
631  * non-secure and realm states. Management of the structures and their associated
632  * memory is not done by the context management library e.g. the PSCI service
633  * manages the cpu context used for entry from and exit to the non-secure state.
634  * The Secure payload dispatcher service manages the context(s) corresponding to
635  * the secure state. It also uses this library to get access to the non-secure
636  * state cpu context pointers.
637  * Lastly, this library provides the API to make SP_EL3 point to the cpu context
638  * which will be used for programming an entry into a lower EL. The same context
639  * will be used to save state upon exception entry from that EL.
640  ******************************************************************************/
641 void __init cm_init(void)
642 {
643 	/*
644 	 * The context management library has only global data to initialize, but
645 	 * that will be done when the BSS is zeroed out.
646 	 */
647 }
648 
649 /*******************************************************************************
650  * This is the high-level function used to initialize the cpu_context 'ctx' for
651  * first use. It performs initializations that are common to all security states
652  * and initializations specific to the security state specified in 'ep'
653  ******************************************************************************/
654 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
655 {
656 	size_t security_state;
657 
658 	assert(ctx != NULL);
659 
660 	/*
661 	 * Perform initializations that are common
662 	 * to all security states
663 	 */
664 	setup_context_common(ctx, ep);
665 
666 	security_state = GET_SECURITY_STATE(ep->h.attr);
667 
668 	/* Perform security state specific initializations */
669 	switch (security_state) {
670 	case SECURE:
671 		setup_secure_context(ctx, ep);
672 		break;
673 #if ENABLE_RME && IMAGE_BL31
674 	case REALM:
675 		setup_realm_context(ctx, ep);
676 		break;
677 #endif
678 	case NON_SECURE:
679 		setup_ns_context(ctx, ep);
680 		break;
681 	default:
682 		ERROR("Invalid security state\n");
683 		panic();
684 		break;
685 	}
686 }
687 
688 /*******************************************************************************
689  * Enable architecture extensions for EL3 execution. This function only updates
690  * registers in-place which are expected to either never change or be
691  * overwritten by el3_exit. Expects the core_pos of the current core as argument.
692  ******************************************************************************/
693 void __no_pauth cm_manage_extensions_el3(unsigned int my_idx)
694 {
695 	if (is_feat_pauth_supported()) {
696 		pauth_init_enable_el3();
697 	}
698 
699 #if IMAGE_BL31
700 	if (is_feat_sve_supported()) {
701 		sve_init_el3();
702 	}
703 
704 	if (is_feat_amu_supported()) {
705 		amu_init_el3(my_idx);
706 	}
707 
708 	if (is_feat_sme_supported()) {
709 		sme_init_el3();
710 	}
711 
712 	if (is_feat_mpam_supported()) {
713 		mpam_init_el3();
714 	}
715 
716 	if (is_feat_cpa2_supported()) {
717 		cpa2_enable_el3();
718 	}
719 
720 	pmuv3_init_el3();
721 
722 	/* NOTE: must be done last, makes the configuration immutable */
723 	if (is_feat_fgwte3_supported()) {
724 		write_fgwte3_el3(FGWTE3_EL3_EARLY_INIT_VAL);
725 	}
726 #endif /* IMAGE_BL31 */
727 }
728 
729 /******************************************************************************
730  * Function to initialise the registers with the RESET values in the context
731  * memory, which are maintained per world.
732  ******************************************************************************/
733 static void cm_el3_arch_init_per_world(per_world_context_t *per_world_ctx)
734 {
735 	per_world_ctx->ctx_cptr_el3 = CPTR_EL3_RESET_VAL;
736 	per_world_ctx->ctx_mpam3_el3 = MPAM3_EL3_RESET_VAL;
737 }
738 
739 /*******************************************************************************
740  * Initialise per_world_context for Non-Secure world.
741  * This function enables the architecture extensions, which have same value
742  * across the cores for the non-secure world.
743  ******************************************************************************/
744 static void manage_extensions_nonsecure_per_world(void)
745 {
746 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_NS]);
747 
748 #if IMAGE_BL31
749 	if (is_feat_sme_supported()) {
750 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
751 	}
752 
753 	if (is_feat_sve_supported()) {
754 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
755 	}
756 
757 	if (is_feat_amu_supported()) {
758 		amu_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
759 	}
760 
761 	if (is_feat_sys_reg_trace_supported()) {
762 		sys_reg_trace_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
763 	}
764 
765 	if (is_feat_mpam_supported()) {
766 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_NS]);
767 	}
768 
769 	if (is_feat_idte3_supported()) {
770 		idte3_init_cached_idregs_per_world(CPU_CONTEXT_NS);
771 	}
772 #endif /* IMAGE_BL31 */
773 }
774 
775 /*******************************************************************************
776  * Initialise per_world_context for Secure world.
777  * This function enables the architecture extensions, which have same value
778  * across the cores for the secure world.
779  ******************************************************************************/
780 static void manage_extensions_secure_per_world(void)
781 {
782 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
783 
784 #if IMAGE_BL31
785 	if (is_feat_sme_supported()) {
786 
787 		if (ENABLE_SME_FOR_SWD) {
788 		/*
789 		 * Enable SME, SVE, FPU/SIMD in secure context, SPM must ensure
790 		 * SME, SVE, and FPU/SIMD context properly managed.
791 		 */
792 			sme_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
793 		} else {
794 		/*
795 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
796 		 * world can safely use the associated registers.
797 		 */
798 			sme_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
799 		}
800 	}
801 	if (is_feat_sve_supported()) {
802 		if (ENABLE_SVE_FOR_SWD) {
803 		/*
804 		 * Enable SVE and FPU in secure context, SPM must ensure
805 		 * that the SVE and FPU register contexts are properly managed.
806 		 */
807 			sve_enable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
808 		} else {
809 		/*
810 		 * Disable SVE and FPU in secure context so non-secure world
811 		 * can safely use them.
812 		 */
813 			sve_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
814 		}
815 	}
816 
817 	/* NS can access this but Secure shouldn't */
818 	if (is_feat_sys_reg_trace_supported()) {
819 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_SECURE]);
820 	}
821 
822 	if (is_feat_idte3_supported()) {
823 		idte3_init_cached_idregs_per_world(CPU_CONTEXT_SECURE);
824 	}
825 #endif /* IMAGE_BL31 */
826 }
827 
828 static void manage_extensions_realm_per_world(void)
829 {
830 #if ENABLE_RME && IMAGE_BL31
831 	cm_el3_arch_init_per_world(&per_world_context[CPU_CONTEXT_REALM]);
832 
833 	if (is_feat_sve_supported()) {
834 	/*
835 	 * Enable SVE and FPU in realm context when it is enabled for NS.
836 	 * Realm manager must ensure that the SVE and FPU register
837 	 * contexts are properly managed.
838 	 */
839 		sve_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
840 	}
841 
842 	/* NS can access this but Realm shouldn't */
843 	if (is_feat_sys_reg_trace_supported()) {
844 		sys_reg_trace_disable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
845 	}
846 
847 	/*
848 	 * If SME/SME2 is supported and enabled for NS world, then disable trapping
849 	 * of SME instructions for Realm world. RMM will save/restore required
850 	 * registers that are shared with SVE/FPU so that Realm can use FPU or SVE.
851 	 */
852 	if (is_feat_sme_supported()) {
853 		sme_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
854 	}
855 
856 	/*
857 	 * If FEAT_MPAM is supported and enabled, then disable trapping access
858 	 * to the MPAM registers for Realm world. Instead, RMM will configure
859 	 * the access to be trapped by itself so it can inject undefined aborts
860 	 * back to the Realm.
861 	 */
862 	if (is_feat_mpam_supported()) {
863 		mpam_enable_per_world(&per_world_context[CPU_CONTEXT_REALM]);
864 	}
865 
866 	if (is_feat_idte3_supported()) {
867 		idte3_init_cached_idregs_per_world(CPU_CONTEXT_REALM);
868 	}
869 #endif /* ENABLE_RME && IMAGE_BL31 */
870 }
871 
872 void cm_manage_extensions_per_world(void)
873 {
874 	manage_extensions_nonsecure_per_world();
875 	manage_extensions_secure_per_world();
876 	manage_extensions_realm_per_world();
877 }
878 
879 void cm_init_percpu_once_regs(void)
880 {
881 #if IMAGE_BL31
882 	if (is_feat_idte3_supported()) {
883 		idte3_init_percpu_once_regs(CPU_CONTEXT_NS);
884 		idte3_init_percpu_once_regs(CPU_CONTEXT_SECURE);
885 #if ENABLE_RME
886 		idte3_init_percpu_once_regs(CPU_CONTEXT_REALM);
887 #endif /* ENABLE_RME */
888 	}
889 #endif /* IMAGE_BL31 */
890 }
891 
892 /*******************************************************************************
893  * Enable architecture extensions on first entry to Non-secure world.
894  ******************************************************************************/
895 static void manage_extensions_nonsecure(cpu_context_t *ctx)
896 {
897 #if IMAGE_BL31
898 	/* NOTE: registers are not context switched */
899 	if (is_feat_amu_supported()) {
900 		amu_enable(ctx);
901 	}
902 
903 	if (is_feat_sme_supported()) {
904 		sme_enable(ctx);
905 	}
906 
907 	if (is_feat_fgt2_supported()) {
908 		fgt2_enable(ctx);
909 	}
910 
911 	if (is_feat_debugv8p9_supported()) {
912 		debugv8p9_extended_bp_wp_enable(ctx);
913 	}
914 
915 	if (is_feat_spe_supported()) {
916 		spe_enable_ns(ctx);
917 	}
918 
919 	if (is_feat_trbe_supported()) {
920 		if (check_if_trbe_disable_affected_core()) {
921 			trbe_disable_ns(ctx);
922 		} else {
923 			trbe_enable_ns(ctx);
924 		}
925 	}
926 
927 	if (is_feat_brbe_supported()) {
928 		brbe_enable(ctx);
929 	}
930 #endif /* IMAGE_BL31 */
931 }
932 
933 #if INIT_UNUSED_NS_EL2
934 /*******************************************************************************
935  * Enable architecture extensions in-place at EL2 on first entry to Non-secure
936  * world when EL2 is empty and unused.
937  ******************************************************************************/
938 static void manage_extensions_nonsecure_el2_unused(void)
939 {
940 #if IMAGE_BL31
941 	if (is_feat_spe_supported()) {
942 		spe_init_el2_unused();
943 	}
944 
945 	if (is_feat_amu_supported()) {
946 		amu_init_el2_unused();
947 	}
948 
949 	if (is_feat_mpam_supported()) {
950 		mpam_init_el2_unused();
951 	}
952 
953 	if (is_feat_trbe_supported()) {
954 		trbe_init_el2_unused();
955 	}
956 
957 	if (is_feat_sys_reg_trace_supported()) {
958 		sys_reg_trace_init_el2_unused();
959 	}
960 
961 	if (is_feat_trf_supported()) {
962 		trf_init_el2_unused();
963 	}
964 
965 	pmuv3_init_el2_unused();
966 
967 	if (is_feat_sve_supported()) {
968 		sve_init_el2_unused();
969 	}
970 
971 	if (is_feat_sme_supported()) {
972 		sme_init_el2_unused();
973 	}
974 
975 	if (is_feat_mops_supported() && is_feat_hcx_supported()) {
976 		write_hcrx_el2(read_hcrx_el2() | HCRX_EL2_MSCEn_BIT);
977 	}
978 
979 	if (is_feat_pauth_supported()) {
980 		pauth_enable_el2();
981 	}
982 #endif /* IMAGE_BL31 */
983 }
984 #endif /* INIT_UNUSED_NS_EL2 */
985 
986 /*******************************************************************************
987  * Enable architecture extensions on first entry to Secure world.
988  ******************************************************************************/
989 static void manage_extensions_secure(cpu_context_t *ctx)
990 {
991 #if IMAGE_BL31
992 	if (is_feat_sme_supported()) {
993 		if (ENABLE_SME_FOR_SWD) {
994 		/*
995 		 * Enable SME, SVE, FPU/SIMD in secure context, secure manager
996 		 * must ensure SME, SVE, and FPU/SIMD context properly managed.
997 		 */
998 			sme_init_el3();
999 			sme_enable(ctx);
1000 		} else {
1001 		/*
1002 		 * Disable SME, SVE, FPU/SIMD in secure context so non-secure
1003 		 * world can safely use the associated registers.
1004 		 */
1005 			sme_disable(ctx);
1006 		}
1007 	}
1008 
1009 	if (is_feat_spe_supported()) {
1010 		spe_disable_secure(ctx);
1011 	}
1012 
1013 	if (is_feat_trbe_supported()) {
1014 		trbe_disable_secure(ctx);
1015 	}
1016 #endif /* IMAGE_BL31 */
1017 }
1018 
1019 /*******************************************************************************
1020  * The following function initializes the cpu_context for the current CPU
1021  * for first use, and sets the initial entrypoint state as specified by the
1022  * entry_point_info structure.
1023  ******************************************************************************/
1024 void cm_init_my_context(const entry_point_info_t *ep)
1025 {
1026 	cpu_context_t *ctx;
1027 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
1028 	cm_setup_context(ctx, ep);
1029 }
1030 
1031 /* EL2 present but unused, need to disable safely. SCTLR_EL2 can be ignored */
1032 static void init_nonsecure_el2_unused(cpu_context_t *ctx)
1033 {
1034 #if INIT_UNUSED_NS_EL2
1035 	u_register_t hcr_el2 = HCR_RESET_VAL;
1036 	u_register_t mdcr_el2;
1037 	u_register_t scr_el3;
1038 
1039 	scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1040 
1041 	/* Set EL2 register width: Set HCR_EL2.RW to match SCR_EL3.RW */
1042 	if ((scr_el3 & SCR_RW_BIT) != 0U) {
1043 		hcr_el2 |= HCR_RW_BIT;
1044 	}
1045 
1046 	write_hcr_el2(hcr_el2);
1047 
1048 	/*
1049 	 * Initialise CPTR_EL2 setting all fields rather than relying on the hw.
1050 	 * All fields have architecturally UNKNOWN reset values.
1051 	 */
1052 	write_cptr_el2(CPTR_EL2_RESET_VAL);
1053 
1054 	/*
1055 	 * Initialise CNTHCTL_EL2. All fields are architecturally UNKNOWN on
1056 	 * reset and are set to zero except for field(s) listed below.
1057 	 *
1058 	 * CNTHCTL_EL2.EL1PTEN: Set to one to disable traps to Hyp mode of
1059 	 * Non-secure EL0 and EL1 accesses to the physical timer registers.
1060 	 *
1061 	 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to Hyp mode of
1062 	 * Non-secure EL0 and EL1 accesses to the physical counter registers.
1063 	 */
1064 	write_cnthctl_el2(CNTHCTL_RESET_VAL | EL1PCEN_BIT | EL1PCTEN_BIT);
1065 
1066 	/*
1067 	 * Initialise CNTVOFF_EL2 to zero as it resets to an architecturally
1068 	 * UNKNOWN value.
1069 	 */
1070 	write_cntvoff_el2(0);
1071 
1072 	/*
1073 	 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and MPIDR_EL1
1074 	 * respectively.
1075 	 */
1076 	write_vpidr_el2(read_midr_el1());
1077 	write_vmpidr_el2(read_mpidr_el1());
1078 
1079 	/*
1080 	 * Initialise VTTBR_EL2. All fields are architecturally UNKNOWN on reset.
1081 	 *
1082 	 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage 2 address
1083 	 * translation is disabled, cache maintenance operations depend on the
1084 	 * VMID.
1085 	 *
1086 	 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address translation is
1087 	 * disabled.
1088 	 */
1089 	write_vttbr_el2(VTTBR_RESET_VAL &
1090 		     ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT) |
1091 		       (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
1092 
1093 	/*
1094 	 * Initialise MDCR_EL2, setting all fields rather than relying on hw.
1095 	 * Some fields are architecturally UNKNOWN on reset.
1096 	 *
1097 	 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and EL1 System
1098 	 * register accesses to the Debug ROM registers are not trapped to EL2.
1099 	 *
1100 	 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1 System register
1101 	 * accesses to the powerdown debug registers are not trapped to EL2.
1102 	 *
1103 	 * MDCR_EL2.TDA: Set to zero so that System register accesses to the
1104 	 * debug registers do not trap to EL2.
1105 	 *
1106 	 * MDCR_EL2.TDE: Set to zero so that debug exceptions are not routed to
1107 	 * EL2.
1108 	 */
1109 	mdcr_el2 = MDCR_EL2_RESET_VAL &
1110 		 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT | MDCR_EL2_TDA_BIT |
1111 		   MDCR_EL2_TDE_BIT);
1112 
1113 	write_mdcr_el2(mdcr_el2);
1114 
1115 	/*
1116 	 * Initialise HSTR_EL2. All fields are architecturally UNKNOWN on reset.
1117 	 *
1118 	 * HSTR_EL2.T<n>: Set all these fields to zero so that Non-secure EL0 or
1119 	 * EL1 accesses to System registers do not trap to EL2.
1120 	 */
1121 	write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
1122 
1123 	/*
1124 	 * Initialise CNTHP_CTL_EL2. All fields are architecturally UNKNOWN on
1125 	 * reset.
1126 	 *
1127 	 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2 physical timer
1128 	 * and prevent timer interrupts.
1129 	 */
1130 	write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL & ~(CNTHP_CTL_ENABLE_BIT));
1131 
1132 	manage_extensions_nonsecure_el2_unused();
1133 #endif /* INIT_UNUSED_NS_EL2 */
1134 }
1135 
1136 /*******************************************************************************
1137  * Prepare the CPU system registers for first entry into realm, secure, or
1138  * normal world.
1139  *
1140  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
1141  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
1142  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
1143  * For all entries, the EL1 registers are initialized from the cpu_context
1144  ******************************************************************************/
1145 void cm_prepare_el3_exit(size_t security_state)
1146 {
1147 	u_register_t sctlr_el2, scr_el3;
1148 	cpu_context_t *ctx = cm_get_context(security_state);
1149 
1150 	assert(ctx != NULL);
1151 
1152 	if (security_state == NON_SECURE) {
1153 		uint64_t el2_implemented = el_implemented(2);
1154 
1155 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
1156 						 CTX_SCR_EL3);
1157 
1158 		if (el2_implemented != EL_IMPL_NONE) {
1159 
1160 			/*
1161 			 * If context is not being used for EL2, initialize
1162 			 * HCRX_EL2 with its init value here.
1163 			 */
1164 			if (is_feat_hcx_supported()) {
1165 				write_hcrx_el2(HCRX_EL2_INIT_VAL);
1166 			}
1167 
1168 			/*
1169 			 * Initialize Fine-grained trap registers introduced
1170 			 * by FEAT_FGT so all traps are initially disabled when
1171 			 * switching to EL2 or a lower EL, preventing undesired
1172 			 * behavior.
1173 			 */
1174 			if (is_feat_fgt_supported()) {
1175 				/*
1176 				 * Initialize HFG*_EL2 registers with a default
1177 				 * value so legacy systems unaware of FEAT_FGT
1178 				 * do not get trapped due to their lack of
1179 				 * initialization for this feature.
1180 				 */
1181 				write_hfgitr_el2(HFGITR_EL2_INIT_VAL);
1182 				write_hfgrtr_el2(HFGRTR_EL2_INIT_VAL);
1183 				write_hfgwtr_el2(HFGWTR_EL2_INIT_VAL);
1184 			}
1185 
1186 			/* Condition to ensure EL2 is being used. */
1187 			if ((scr_el3 & SCR_HCE_BIT) != 0U) {
1188 				/* Initialize SCTLR_EL2 register with reset value. */
1189 				sctlr_el2 = SCTLR_EL2_RES1;
1190 
1191 				/*
1192 				 * If workaround of errata 764081 for Cortex-A75
1193 				 * is used then set SCTLR_EL2.IESB to enable
1194 				 * Implicit Error Synchronization Barrier.
1195 				 */
1196 				if (errata_a75_764081_applies()) {
1197 					sctlr_el2 |= SCTLR_IESB_BIT;
1198 				}
1199 
1200 				write_sctlr_el2(sctlr_el2);
1201 			} else {
1202 				/*
1203 				 * (scr_el3 & SCR_HCE_BIT==0)
1204 				 * EL2 implemented but unused.
1205 				 */
1206 				init_nonsecure_el2_unused(ctx);
1207 			}
1208 		}
1209 
1210 		if (is_feat_fgwte3_supported()) {
1211 			/*
1212 			 * TCR_EL3 and ACTLR_EL3 could be overwritten
1213 			 * by platforms and hence is locked a bit late.
1214 			 */
1215 			write_fgwte3_el3(FGWTE3_EL3_LATE_INIT_VAL);
1216 		}
1217 	}
1218 #if !CTX_INCLUDE_EL2_REGS || IMAGE_BL1
1219 	/* Restore EL1 system registers, only when CTX_INCLUDE_EL2_REGS=0 */
1220 	cm_el1_sysregs_context_restore(security_state);
1221 #endif
1222 	cm_set_next_eret_context(security_state);
1223 }
1224 
1225 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1226 
1227 static void el2_sysregs_context_save_fgt(el2_sysregs_t *ctx)
1228 {
1229 	write_el2_ctx_fgt(ctx, hdfgrtr_el2, read_hdfgrtr_el2());
1230 	if (is_feat_amu_supported()) {
1231 		write_el2_ctx_fgt(ctx, hafgrtr_el2, read_hafgrtr_el2());
1232 	}
1233 	write_el2_ctx_fgt(ctx, hdfgwtr_el2, read_hdfgwtr_el2());
1234 	write_el2_ctx_fgt(ctx, hfgitr_el2, read_hfgitr_el2());
1235 	write_el2_ctx_fgt(ctx, hfgrtr_el2, read_hfgrtr_el2());
1236 	write_el2_ctx_fgt(ctx, hfgwtr_el2, read_hfgwtr_el2());
1237 }
1238 
1239 static void el2_sysregs_context_restore_fgt(el2_sysregs_t *ctx)
1240 {
1241 	write_hdfgrtr_el2(read_el2_ctx_fgt(ctx, hdfgrtr_el2));
1242 	if (is_feat_amu_supported()) {
1243 		write_hafgrtr_el2(read_el2_ctx_fgt(ctx, hafgrtr_el2));
1244 	}
1245 	write_hdfgwtr_el2(read_el2_ctx_fgt(ctx, hdfgwtr_el2));
1246 	write_hfgitr_el2(read_el2_ctx_fgt(ctx, hfgitr_el2));
1247 	write_hfgrtr_el2(read_el2_ctx_fgt(ctx, hfgrtr_el2));
1248 	write_hfgwtr_el2(read_el2_ctx_fgt(ctx, hfgwtr_el2));
1249 }
1250 
1251 static void el2_sysregs_context_save_fgt2(el2_sysregs_t *ctx)
1252 {
1253 	write_el2_ctx_fgt2(ctx, hdfgrtr2_el2, read_hdfgrtr2_el2());
1254 	write_el2_ctx_fgt2(ctx, hdfgwtr2_el2, read_hdfgwtr2_el2());
1255 	write_el2_ctx_fgt2(ctx, hfgitr2_el2, read_hfgitr2_el2());
1256 	write_el2_ctx_fgt2(ctx, hfgrtr2_el2, read_hfgrtr2_el2());
1257 	write_el2_ctx_fgt2(ctx, hfgwtr2_el2, read_hfgwtr2_el2());
1258 }
1259 
1260 static void el2_sysregs_context_restore_fgt2(el2_sysregs_t *ctx)
1261 {
1262 	write_hdfgrtr2_el2(read_el2_ctx_fgt2(ctx, hdfgrtr2_el2));
1263 	write_hdfgwtr2_el2(read_el2_ctx_fgt2(ctx, hdfgwtr2_el2));
1264 	write_hfgitr2_el2(read_el2_ctx_fgt2(ctx, hfgitr2_el2));
1265 	write_hfgrtr2_el2(read_el2_ctx_fgt2(ctx, hfgrtr2_el2));
1266 	write_hfgwtr2_el2(read_el2_ctx_fgt2(ctx, hfgwtr2_el2));
1267 }
1268 
1269 static void el2_sysregs_context_save_mpam(el2_sysregs_t *ctx)
1270 {
1271 	u_register_t mpam_idr = read_mpamidr_el1();
1272 
1273 	write_el2_ctx_mpam(ctx, mpam2_el2, read_mpam2_el2());
1274 
1275 	/*
1276 	 * The context registers that we intend to save would be part of the
1277 	 * PE's system register frame only if MPAMIDR_EL1.HAS_HCR == 1.
1278 	 */
1279 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1280 		return;
1281 	}
1282 
1283 	/*
1284 	 * MPAMHCR_EL2, MPAMVPMV_EL2 and MPAMVPM0_EL2 are always present if
1285 	 * MPAMIDR_HAS_HCR_BIT == 1.
1286 	 */
1287 	write_el2_ctx_mpam(ctx, mpamhcr_el2, read_mpamhcr_el2());
1288 	write_el2_ctx_mpam(ctx, mpamvpm0_el2, read_mpamvpm0_el2());
1289 	write_el2_ctx_mpam(ctx, mpamvpmv_el2, read_mpamvpmv_el2());
1290 
1291 	/*
1292 	 * The number of MPAMVPM registers is implementation defined, their
1293 	 * number is stored in the MPAMIDR_EL1 register.
1294 	 */
1295 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1296 	case 7:
1297 		write_el2_ctx_mpam(ctx, mpamvpm7_el2, read_mpamvpm7_el2());
1298 		__fallthrough;
1299 	case 6:
1300 		write_el2_ctx_mpam(ctx, mpamvpm6_el2, read_mpamvpm6_el2());
1301 		__fallthrough;
1302 	case 5:
1303 		write_el2_ctx_mpam(ctx, mpamvpm5_el2, read_mpamvpm5_el2());
1304 		__fallthrough;
1305 	case 4:
1306 		write_el2_ctx_mpam(ctx, mpamvpm4_el2, read_mpamvpm4_el2());
1307 		__fallthrough;
1308 	case 3:
1309 		write_el2_ctx_mpam(ctx, mpamvpm3_el2, read_mpamvpm3_el2());
1310 		__fallthrough;
1311 	case 2:
1312 		write_el2_ctx_mpam(ctx, mpamvpm2_el2, read_mpamvpm2_el2());
1313 		__fallthrough;
1314 	case 1:
1315 		write_el2_ctx_mpam(ctx, mpamvpm1_el2, read_mpamvpm1_el2());
1316 		break;
1317 	}
1318 }
1319 
1320 static void el2_sysregs_context_restore_mpam(el2_sysregs_t *ctx)
1321 {
1322 	u_register_t mpam_idr = read_mpamidr_el1();
1323 
1324 	write_mpam2_el2(read_el2_ctx_mpam(ctx, mpam2_el2));
1325 
1326 	if ((mpam_idr & MPAMIDR_HAS_HCR_BIT) == 0U) {
1327 		return;
1328 	}
1329 
1330 	write_mpamhcr_el2(read_el2_ctx_mpam(ctx, mpamhcr_el2));
1331 	write_mpamvpm0_el2(read_el2_ctx_mpam(ctx, mpamvpm0_el2));
1332 	write_mpamvpmv_el2(read_el2_ctx_mpam(ctx, mpamvpmv_el2));
1333 
1334 	switch ((mpam_idr >> MPAMIDR_EL1_VPMR_MAX_SHIFT) & MPAMIDR_EL1_VPMR_MAX_MASK) {
1335 	case 7:
1336 		write_mpamvpm7_el2(read_el2_ctx_mpam(ctx, mpamvpm7_el2));
1337 		__fallthrough;
1338 	case 6:
1339 		write_mpamvpm6_el2(read_el2_ctx_mpam(ctx, mpamvpm6_el2));
1340 		__fallthrough;
1341 	case 5:
1342 		write_mpamvpm5_el2(read_el2_ctx_mpam(ctx, mpamvpm5_el2));
1343 		__fallthrough;
1344 	case 4:
1345 		write_mpamvpm4_el2(read_el2_ctx_mpam(ctx, mpamvpm4_el2));
1346 		__fallthrough;
1347 	case 3:
1348 		write_mpamvpm3_el2(read_el2_ctx_mpam(ctx, mpamvpm3_el2));
1349 		__fallthrough;
1350 	case 2:
1351 		write_mpamvpm2_el2(read_el2_ctx_mpam(ctx, mpamvpm2_el2));
1352 		__fallthrough;
1353 	case 1:
1354 		write_mpamvpm1_el2(read_el2_ctx_mpam(ctx, mpamvpm1_el2));
1355 		break;
1356 	}
1357 }
1358 
1359 /* ---------------------------------------------------------------------------
1360  * The following registers are not added:
1361  * ICH_AP0R<n>_EL2
1362  * ICH_AP1R<n>_EL2
1363  * ICH_LR<n>_EL2
1364  *
1365  * NOTE: For a system with S-EL2 present but not enabled, accessing
1366  * ICC_SRE_EL2 is undefined from EL3. To workaround this change the
1367  * SCR_EL3.NS = 1 before accessing this register.
1368  * ---------------------------------------------------------------------------
1369  */
1370 static void el2_sysregs_context_save_gic(el2_sysregs_t *ctx, uint32_t security_state)
1371 {
1372 	u_register_t scr_el3 = read_scr_el3();
1373 
1374 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1375 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1376 #else
1377 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1378 	isb();
1379 
1380 	write_el2_ctx_common(ctx, icc_sre_el2, read_icc_sre_el2());
1381 
1382 	write_scr_el3(scr_el3);
1383 	isb();
1384 #endif
1385 	write_el2_ctx_common(ctx, ich_hcr_el2, read_ich_hcr_el2());
1386 
1387 	if (errata_ich_vmcr_el2_applies()) {
1388 		if (security_state == SECURE) {
1389 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1390 		} else {
1391 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1392 		}
1393 		isb();
1394 	}
1395 
1396 	write_el2_ctx_common(ctx, ich_vmcr_el2, read_ich_vmcr_el2());
1397 
1398 	if (errata_ich_vmcr_el2_applies()) {
1399 		write_scr_el3(scr_el3);
1400 		isb();
1401 	}
1402 }
1403 
1404 static void el2_sysregs_context_restore_gic(el2_sysregs_t *ctx, uint32_t security_state)
1405 {
1406 	u_register_t scr_el3 = read_scr_el3();
1407 
1408 #if defined(SPD_spmd) && SPMD_SPM_AT_SEL2
1409 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1410 #else
1411 	write_scr_el3(scr_el3 | SCR_NS_BIT);
1412 	isb();
1413 
1414 	write_icc_sre_el2(read_el2_ctx_common(ctx, icc_sre_el2));
1415 
1416 	write_scr_el3(scr_el3);
1417 	isb();
1418 #endif
1419 	write_ich_hcr_el2(read_el2_ctx_common(ctx, ich_hcr_el2));
1420 
1421 	if (errata_ich_vmcr_el2_applies()) {
1422 		if (security_state == SECURE) {
1423 			write_scr_el3(scr_el3 & ~SCR_NS_BIT);
1424 		} else {
1425 			write_scr_el3(scr_el3 | SCR_NS_BIT);
1426 		}
1427 		isb();
1428 	}
1429 
1430 	write_ich_vmcr_el2(read_el2_ctx_common(ctx, ich_vmcr_el2));
1431 
1432 	if (errata_ich_vmcr_el2_applies()) {
1433 		write_scr_el3(scr_el3);
1434 		isb();
1435 	}
1436 }
1437 
1438 /* -----------------------------------------------------
1439  * The following registers are not added:
1440  * AMEVCNTVOFF0<n>_EL2
1441  * AMEVCNTVOFF1<n>_EL2
1442  * -----------------------------------------------------
1443  */
1444 static void el2_sysregs_context_save_common(el2_sysregs_t *ctx)
1445 {
1446 	write_el2_ctx_common(ctx, actlr_el2, read_actlr_el2());
1447 	write_el2_ctx_common(ctx, afsr0_el2, read_afsr0_el2());
1448 	write_el2_ctx_common(ctx, afsr1_el2, read_afsr1_el2());
1449 	write_el2_ctx_common(ctx, amair_el2, read_amair_el2());
1450 	write_el2_ctx_common(ctx, cnthctl_el2, read_cnthctl_el2());
1451 	write_el2_ctx_common(ctx, cntvoff_el2, read_cntvoff_el2());
1452 	write_el2_ctx_common(ctx, cptr_el2, read_cptr_el2());
1453 	if (CTX_INCLUDE_AARCH32_REGS) {
1454 		write_el2_ctx_common(ctx, dbgvcr32_el2, read_dbgvcr32_el2());
1455 	}
1456 	write_el2_ctx_common(ctx, elr_el2, read_elr_el2());
1457 	write_el2_ctx_common(ctx, esr_el2, read_esr_el2());
1458 	write_el2_ctx_common(ctx, far_el2, read_far_el2());
1459 	write_el2_ctx_common(ctx, hacr_el2, read_hacr_el2());
1460 	write_el2_ctx_common(ctx, hcr_el2, read_hcr_el2());
1461 	write_el2_ctx_common(ctx, hpfar_el2, read_hpfar_el2());
1462 	write_el2_ctx_common(ctx, hstr_el2, read_hstr_el2());
1463 	write_el2_ctx_common(ctx, mair_el2, read_mair_el2());
1464 	write_el2_ctx_common(ctx, mdcr_el2, read_mdcr_el2());
1465 	write_el2_ctx_common(ctx, sctlr_el2, read_sctlr_el2());
1466 	write_el2_ctx_common(ctx, spsr_el2, read_spsr_el2());
1467 	write_el2_ctx_common(ctx, sp_el2, read_sp_el2());
1468 	write_el2_ctx_common(ctx, tcr_el2, read_tcr_el2());
1469 	write_el2_ctx_common(ctx, tpidr_el2, read_tpidr_el2());
1470 	write_el2_ctx_common(ctx, vbar_el2, read_vbar_el2());
1471 	write_el2_ctx_common(ctx, vmpidr_el2, read_vmpidr_el2());
1472 	write_el2_ctx_common(ctx, vpidr_el2, read_vpidr_el2());
1473 	write_el2_ctx_common(ctx, vtcr_el2, read_vtcr_el2());
1474 
1475 	write_el2_ctx_common_sysreg128(ctx, ttbr0_el2, read_ttbr0_el2());
1476 	write_el2_ctx_common_sysreg128(ctx, vttbr_el2, read_vttbr_el2());
1477 }
1478 
1479 static void el2_sysregs_context_restore_common(el2_sysregs_t *ctx)
1480 {
1481 	write_actlr_el2(read_el2_ctx_common(ctx, actlr_el2));
1482 	write_afsr0_el2(read_el2_ctx_common(ctx, afsr0_el2));
1483 	write_afsr1_el2(read_el2_ctx_common(ctx, afsr1_el2));
1484 	write_amair_el2(read_el2_ctx_common(ctx, amair_el2));
1485 	write_cnthctl_el2(read_el2_ctx_common(ctx, cnthctl_el2));
1486 	write_cntvoff_el2(read_el2_ctx_common(ctx, cntvoff_el2));
1487 	write_cptr_el2(read_el2_ctx_common(ctx, cptr_el2));
1488 	if (CTX_INCLUDE_AARCH32_REGS) {
1489 		write_dbgvcr32_el2(read_el2_ctx_common(ctx, dbgvcr32_el2));
1490 	}
1491 	write_elr_el2(read_el2_ctx_common(ctx, elr_el2));
1492 	write_esr_el2(read_el2_ctx_common(ctx, esr_el2));
1493 	write_far_el2(read_el2_ctx_common(ctx, far_el2));
1494 	write_hacr_el2(read_el2_ctx_common(ctx, hacr_el2));
1495 	write_hcr_el2(read_el2_ctx_common(ctx, hcr_el2));
1496 	write_hpfar_el2(read_el2_ctx_common(ctx, hpfar_el2));
1497 	write_hstr_el2(read_el2_ctx_common(ctx, hstr_el2));
1498 	write_mair_el2(read_el2_ctx_common(ctx, mair_el2));
1499 	write_mdcr_el2(read_el2_ctx_common(ctx, mdcr_el2));
1500 	write_sctlr_el2(read_el2_ctx_common(ctx, sctlr_el2));
1501 	write_spsr_el2(read_el2_ctx_common(ctx, spsr_el2));
1502 	write_sp_el2(read_el2_ctx_common(ctx, sp_el2));
1503 	write_tcr_el2(read_el2_ctx_common(ctx, tcr_el2));
1504 	write_tpidr_el2(read_el2_ctx_common(ctx, tpidr_el2));
1505 	write_ttbr0_el2(read_el2_ctx_common(ctx, ttbr0_el2));
1506 	write_vbar_el2(read_el2_ctx_common(ctx, vbar_el2));
1507 	write_vmpidr_el2(read_el2_ctx_common(ctx, vmpidr_el2));
1508 	write_vpidr_el2(read_el2_ctx_common(ctx, vpidr_el2));
1509 	write_vtcr_el2(read_el2_ctx_common(ctx, vtcr_el2));
1510 	write_vttbr_el2(read_el2_ctx_common(ctx, vttbr_el2));
1511 }
1512 
1513 /*******************************************************************************
1514  * Save EL2 sysreg context
1515  ******************************************************************************/
1516 void cm_el2_sysregs_context_save(uint32_t security_state)
1517 {
1518 	cpu_context_t *ctx;
1519 	el2_sysregs_t *el2_sysregs_ctx;
1520 
1521 	ctx = cm_get_context(security_state);
1522 	assert(ctx != NULL);
1523 
1524 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1525 
1526 	el2_sysregs_context_save_common(el2_sysregs_ctx);
1527 	el2_sysregs_context_save_gic(el2_sysregs_ctx, security_state);
1528 
1529 	if (is_feat_mte2_supported()) {
1530 		write_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2, read_tfsr_el2());
1531 	}
1532 
1533 	if (is_feat_mpam_supported()) {
1534 		el2_sysregs_context_save_mpam(el2_sysregs_ctx);
1535 	}
1536 
1537 	if (is_feat_fgt_supported()) {
1538 		el2_sysregs_context_save_fgt(el2_sysregs_ctx);
1539 	}
1540 
1541 	if (is_feat_fgt2_supported()) {
1542 		el2_sysregs_context_save_fgt2(el2_sysregs_ctx);
1543 	}
1544 
1545 	if (is_feat_ecv_v2_supported()) {
1546 		write_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2, read_cntpoff_el2());
1547 	}
1548 
1549 	if (is_feat_vhe_supported()) {
1550 		write_el2_ctx_vhe(el2_sysregs_ctx, contextidr_el2,
1551 					read_contextidr_el2());
1552 		write_el2_ctx_vhe_sysreg128(el2_sysregs_ctx, ttbr1_el2, read_ttbr1_el2());
1553 	}
1554 
1555 	if (is_feat_ras_supported()) {
1556 		write_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2, read_vdisr_el2());
1557 		write_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2, read_vsesr_el2());
1558 	}
1559 
1560 	if (is_feat_nv2_supported()) {
1561 		write_el2_ctx_neve(el2_sysregs_ctx, vncr_el2, read_vncr_el2());
1562 	}
1563 
1564 	if (is_feat_trf_supported()) {
1565 		write_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2, read_trfcr_el2());
1566 	}
1567 
1568 	if (is_feat_csv2_2_supported()) {
1569 		write_el2_ctx_csv2_2(el2_sysregs_ctx, scxtnum_el2,
1570 					read_scxtnum_el2());
1571 	}
1572 
1573 	if (is_feat_hcx_supported()) {
1574 		write_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2, read_hcrx_el2());
1575 	}
1576 
1577 	if (is_feat_tcr2_supported()) {
1578 		write_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2, read_tcr2_el2());
1579 	}
1580 
1581 	if (is_feat_s1pie_supported()) {
1582 		write_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2, read_pire0_el2());
1583 		write_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2, read_pir_el2());
1584 	}
1585 
1586 	if (is_feat_s1poe_supported()) {
1587 		write_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2, read_por_el2());
1588 	}
1589 
1590 	if (is_feat_brbe_supported()) {
1591 		write_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2, read_brbcr_el2());
1592 	}
1593 
1594 	if (is_feat_s2pie_supported()) {
1595 		write_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2, read_s2pir_el2());
1596 	}
1597 
1598 	if (is_feat_gcs_supported()) {
1599 		write_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2, read_gcscr_el2());
1600 		write_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2, read_gcspr_el2());
1601 	}
1602 
1603 	if (is_feat_sctlr2_supported()) {
1604 		write_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2, read_sctlr2_el2());
1605 	}
1606 }
1607 
1608 /*******************************************************************************
1609  * Restore EL2 sysreg context
1610  ******************************************************************************/
1611 void cm_el2_sysregs_context_restore(uint32_t security_state)
1612 {
1613 	cpu_context_t *ctx;
1614 	el2_sysregs_t *el2_sysregs_ctx;
1615 
1616 	ctx = cm_get_context(security_state);
1617 	assert(ctx != NULL);
1618 
1619 	el2_sysregs_ctx = get_el2_sysregs_ctx(ctx);
1620 
1621 	el2_sysregs_context_restore_common(el2_sysregs_ctx);
1622 	el2_sysregs_context_restore_gic(el2_sysregs_ctx, security_state);
1623 
1624 	if (is_feat_mte2_supported()) {
1625 		write_tfsr_el2(read_el2_ctx_mte2(el2_sysregs_ctx, tfsr_el2));
1626 	}
1627 
1628 	if (is_feat_mpam_supported()) {
1629 		el2_sysregs_context_restore_mpam(el2_sysregs_ctx);
1630 	}
1631 
1632 	if (is_feat_fgt_supported()) {
1633 		el2_sysregs_context_restore_fgt(el2_sysregs_ctx);
1634 	}
1635 
1636 	if (is_feat_fgt2_supported()) {
1637 		el2_sysregs_context_restore_fgt2(el2_sysregs_ctx);
1638 	}
1639 
1640 	if (is_feat_ecv_v2_supported()) {
1641 		write_cntpoff_el2(read_el2_ctx_ecv(el2_sysregs_ctx, cntpoff_el2));
1642 	}
1643 
1644 	if (is_feat_vhe_supported()) {
1645 		write_contextidr_el2(read_el2_ctx_vhe(el2_sysregs_ctx,
1646 					contextidr_el2));
1647 		write_ttbr1_el2(read_el2_ctx_vhe(el2_sysregs_ctx, ttbr1_el2));
1648 	}
1649 
1650 	if (is_feat_ras_supported()) {
1651 		write_vdisr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vdisr_el2));
1652 		write_vsesr_el2(read_el2_ctx_ras(el2_sysregs_ctx, vsesr_el2));
1653 	}
1654 
1655 	if (is_feat_nv2_supported()) {
1656 		write_vncr_el2(read_el2_ctx_neve(el2_sysregs_ctx, vncr_el2));
1657 	}
1658 
1659 	if (is_feat_trf_supported()) {
1660 		write_trfcr_el2(read_el2_ctx_trf(el2_sysregs_ctx, trfcr_el2));
1661 	}
1662 
1663 	if (is_feat_csv2_2_supported()) {
1664 		write_scxtnum_el2(read_el2_ctx_csv2_2(el2_sysregs_ctx,
1665 					scxtnum_el2));
1666 	}
1667 
1668 	if (is_feat_hcx_supported()) {
1669 		write_hcrx_el2(read_el2_ctx_hcx(el2_sysregs_ctx, hcrx_el2));
1670 	}
1671 
1672 	if (is_feat_tcr2_supported()) {
1673 		write_tcr2_el2(read_el2_ctx_tcr2(el2_sysregs_ctx, tcr2_el2));
1674 	}
1675 
1676 	if (is_feat_s1pie_supported()) {
1677 		write_pire0_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pire0_el2));
1678 		write_pir_el2(read_el2_ctx_sxpie(el2_sysregs_ctx, pir_el2));
1679 	}
1680 
1681 	if (is_feat_s1poe_supported()) {
1682 		write_por_el2(read_el2_ctx_sxpoe(el2_sysregs_ctx, por_el2));
1683 	}
1684 
1685 	if (is_feat_s2pie_supported()) {
1686 		write_s2pir_el2(read_el2_ctx_s2pie(el2_sysregs_ctx, s2pir_el2));
1687 	}
1688 
1689 	if (is_feat_gcs_supported()) {
1690 		write_gcscr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcscr_el2));
1691 		write_gcspr_el2(read_el2_ctx_gcs(el2_sysregs_ctx, gcspr_el2));
1692 	}
1693 
1694 	if (is_feat_sctlr2_supported()) {
1695 		write_sctlr2_el2(read_el2_ctx_sctlr2(el2_sysregs_ctx, sctlr2_el2));
1696 	}
1697 
1698 	if (is_feat_brbe_supported()) {
1699 		write_brbcr_el2(read_el2_ctx_brbe(el2_sysregs_ctx, brbcr_el2));
1700 	}
1701 }
1702 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1703 
1704 /*******************************************************************************
1705  * This function is used to exit to Non-secure world. If CTX_INCLUDE_EL2_REGS
1706  * is enabled, it restores EL1 and EL2 sysreg contexts instead of directly
1707  * updating EL1 and EL2 registers. Otherwise, it calls the generic
1708  * cm_prepare_el3_exit function.
1709  ******************************************************************************/
1710 void cm_prepare_el3_exit_ns(void)
1711 {
1712 #if (CTX_INCLUDE_EL2_REGS && IMAGE_BL31)
1713 #if ENABLE_ASSERTIONS
1714 	cpu_context_t *ctx = cm_get_context(NON_SECURE);
1715 	assert(ctx != NULL);
1716 
1717 	/* Assert that EL2 is used. */
1718 	u_register_t scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
1719 	assert(((scr_el3 & SCR_HCE_BIT) != 0UL) &&
1720 			(el_implemented(2U) != EL_IMPL_NONE));
1721 #endif /* ENABLE_ASSERTIONS */
1722 
1723 	/* Restore EL2 sysreg contexts */
1724 	cm_el2_sysregs_context_restore(NON_SECURE);
1725 	cm_set_next_eret_context(NON_SECURE);
1726 #else
1727 	cm_prepare_el3_exit(NON_SECURE);
1728 #endif /* (CTX_INCLUDE_EL2_REGS && IMAGE_BL31) */
1729 }
1730 
1731 #if ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS)))
1732 /*******************************************************************************
1733  * The next set of six functions are used by runtime services to save and restore
1734  * EL1 context on the 'cpu_context' structure for the specified security state.
1735  ******************************************************************************/
1736 static void el1_sysregs_context_save(el1_sysregs_t *ctx)
1737 {
1738 	write_el1_ctx_common(ctx, spsr_el1, read_spsr_el1());
1739 	write_el1_ctx_common(ctx, elr_el1, read_elr_el1());
1740 
1741 #if (!ERRATA_SPECULATIVE_AT)
1742 	write_el1_ctx_common(ctx, sctlr_el1, read_sctlr_el1());
1743 	write_el1_ctx_common(ctx, tcr_el1, read_tcr_el1());
1744 #endif /* (!ERRATA_SPECULATIVE_AT) */
1745 
1746 	write_el1_ctx_common(ctx, cpacr_el1, read_cpacr_el1());
1747 	write_el1_ctx_common(ctx, csselr_el1, read_csselr_el1());
1748 	write_el1_ctx_common(ctx, sp_el1, read_sp_el1());
1749 	write_el1_ctx_common(ctx, esr_el1, read_esr_el1());
1750 	write_el1_ctx_common(ctx, mair_el1, read_mair_el1());
1751 	write_el1_ctx_common(ctx, amair_el1, read_amair_el1());
1752 	write_el1_ctx_common(ctx, actlr_el1, read_actlr_el1());
1753 	write_el1_ctx_common(ctx, tpidr_el1, read_tpidr_el1());
1754 	write_el1_ctx_common(ctx, tpidr_el0, read_tpidr_el0());
1755 	write_el1_ctx_common(ctx, tpidrro_el0, read_tpidrro_el0());
1756 	write_el1_ctx_common(ctx, far_el1, read_far_el1());
1757 	write_el1_ctx_common(ctx, afsr0_el1, read_afsr0_el1());
1758 	write_el1_ctx_common(ctx, afsr1_el1, read_afsr1_el1());
1759 	write_el1_ctx_common(ctx, contextidr_el1, read_contextidr_el1());
1760 	write_el1_ctx_common(ctx, vbar_el1, read_vbar_el1());
1761 	write_el1_ctx_common(ctx, mdccint_el1, read_mdccint_el1());
1762 	write_el1_ctx_common(ctx, mdscr_el1, read_mdscr_el1());
1763 
1764 	write_el1_ctx_common_sysreg128(ctx, par_el1, read_par_el1());
1765 	write_el1_ctx_common_sysreg128(ctx, ttbr0_el1, read_ttbr0_el1());
1766 	write_el1_ctx_common_sysreg128(ctx, ttbr1_el1, read_ttbr1_el1());
1767 
1768 	if (CTX_INCLUDE_AARCH32_REGS) {
1769 		/* Save Aarch32 registers */
1770 		write_el1_ctx_aarch32(ctx, spsr_abt, read_spsr_abt());
1771 		write_el1_ctx_aarch32(ctx, spsr_und, read_spsr_und());
1772 		write_el1_ctx_aarch32(ctx, spsr_irq, read_spsr_irq());
1773 		write_el1_ctx_aarch32(ctx, spsr_fiq, read_spsr_fiq());
1774 		write_el1_ctx_aarch32(ctx, dacr32_el2, read_dacr32_el2());
1775 		write_el1_ctx_aarch32(ctx, ifsr32_el2, read_ifsr32_el2());
1776 	}
1777 
1778 	/* Save counter-timer kernel control register */
1779 	write_el1_ctx_arch_timer(ctx, cntkctl_el1, read_cntkctl_el1());
1780 #if NS_TIMER_SWITCH
1781 	/* Save NS Timer registers */
1782 	write_el1_ctx_arch_timer(ctx, cntp_ctl_el0, read_cntp_ctl_el0());
1783 	write_el1_ctx_arch_timer(ctx, cntp_cval_el0, read_cntp_cval_el0());
1784 	write_el1_ctx_arch_timer(ctx, cntv_ctl_el0, read_cntv_ctl_el0());
1785 	write_el1_ctx_arch_timer(ctx, cntv_cval_el0, read_cntv_cval_el0());
1786 #endif
1787 
1788 	if (is_feat_mte2_supported()) {
1789 		write_el1_ctx_mte2(ctx, tfsre0_el1, read_tfsre0_el1());
1790 		write_el1_ctx_mte2(ctx, tfsr_el1, read_tfsr_el1());
1791 		write_el1_ctx_mte2(ctx, rgsr_el1, read_rgsr_el1());
1792 		write_el1_ctx_mte2(ctx, gcr_el1, read_gcr_el1());
1793 	}
1794 
1795 	if (is_feat_ras_supported()) {
1796 		write_el1_ctx_ras(ctx, disr_el1, read_disr_el1());
1797 	}
1798 
1799 	if (is_feat_s1pie_supported()) {
1800 		write_el1_ctx_s1pie(ctx, pire0_el1, read_pire0_el1());
1801 		write_el1_ctx_s1pie(ctx, pir_el1, read_pir_el1());
1802 	}
1803 
1804 	if (is_feat_s1poe_supported()) {
1805 		write_el1_ctx_s1poe(ctx, por_el1, read_por_el1());
1806 	}
1807 
1808 	if (is_feat_s2poe_supported()) {
1809 		write_el1_ctx_s2poe(ctx, s2por_el1, read_s2por_el1());
1810 	}
1811 
1812 	if (is_feat_tcr2_supported()) {
1813 		write_el1_ctx_tcr2(ctx, tcr2_el1, read_tcr2_el1());
1814 	}
1815 
1816 	if (is_feat_trf_supported()) {
1817 		write_el1_ctx_trf(ctx, trfcr_el1, read_trfcr_el1());
1818 	}
1819 
1820 	if (is_feat_csv2_2_supported()) {
1821 		write_el1_ctx_csv2_2(ctx, scxtnum_el0, read_scxtnum_el0());
1822 		write_el1_ctx_csv2_2(ctx, scxtnum_el1, read_scxtnum_el1());
1823 	}
1824 
1825 	if (is_feat_gcs_supported()) {
1826 		write_el1_ctx_gcs(ctx, gcscr_el1, read_gcscr_el1());
1827 		write_el1_ctx_gcs(ctx, gcscre0_el1, read_gcscre0_el1());
1828 		write_el1_ctx_gcs(ctx, gcspr_el1, read_gcspr_el1());
1829 		write_el1_ctx_gcs(ctx, gcspr_el0, read_gcspr_el0());
1830 	}
1831 
1832 	if (is_feat_the_supported()) {
1833 		write_el1_ctx_the_sysreg128(ctx, rcwmask_el1, read_rcwmask_el1());
1834 		write_el1_ctx_the_sysreg128(ctx, rcwsmask_el1, read_rcwsmask_el1());
1835 	}
1836 
1837 	if (is_feat_sctlr2_supported()) {
1838 		write_el1_ctx_sctlr2(ctx, sctlr2_el1, read_sctlr2_el1());
1839 	}
1840 
1841 	if (is_feat_ls64_accdata_supported()) {
1842 		write_el1_ctx_ls64(ctx, accdata_el1, read_accdata_el1());
1843 	}
1844 }
1845 
1846 static void el1_sysregs_context_restore(el1_sysregs_t *ctx)
1847 {
1848 	write_spsr_el1(read_el1_ctx_common(ctx, spsr_el1));
1849 	write_elr_el1(read_el1_ctx_common(ctx, elr_el1));
1850 
1851 #if (!ERRATA_SPECULATIVE_AT)
1852 	write_sctlr_el1(read_el1_ctx_common(ctx, sctlr_el1));
1853 	write_tcr_el1(read_el1_ctx_common(ctx, tcr_el1));
1854 #endif /* (!ERRATA_SPECULATIVE_AT) */
1855 
1856 	write_cpacr_el1(read_el1_ctx_common(ctx, cpacr_el1));
1857 	write_csselr_el1(read_el1_ctx_common(ctx, csselr_el1));
1858 	write_sp_el1(read_el1_ctx_common(ctx, sp_el1));
1859 	write_esr_el1(read_el1_ctx_common(ctx, esr_el1));
1860 	write_ttbr0_el1(read_el1_ctx_common(ctx, ttbr0_el1));
1861 	write_ttbr1_el1(read_el1_ctx_common(ctx, ttbr1_el1));
1862 	write_mair_el1(read_el1_ctx_common(ctx, mair_el1));
1863 	write_amair_el1(read_el1_ctx_common(ctx, amair_el1));
1864 	write_actlr_el1(read_el1_ctx_common(ctx, actlr_el1));
1865 	write_tpidr_el1(read_el1_ctx_common(ctx, tpidr_el1));
1866 	write_tpidr_el0(read_el1_ctx_common(ctx, tpidr_el0));
1867 	write_tpidrro_el0(read_el1_ctx_common(ctx, tpidrro_el0));
1868 	write_par_el1(read_el1_ctx_common(ctx, par_el1));
1869 	write_far_el1(read_el1_ctx_common(ctx, far_el1));
1870 	write_afsr0_el1(read_el1_ctx_common(ctx, afsr0_el1));
1871 	write_afsr1_el1(read_el1_ctx_common(ctx, afsr1_el1));
1872 	write_contextidr_el1(read_el1_ctx_common(ctx, contextidr_el1));
1873 	write_vbar_el1(read_el1_ctx_common(ctx, vbar_el1));
1874 	write_mdccint_el1(read_el1_ctx_common(ctx, mdccint_el1));
1875 	write_mdscr_el1(read_el1_ctx_common(ctx, mdscr_el1));
1876 
1877 	if (CTX_INCLUDE_AARCH32_REGS) {
1878 		/* Restore Aarch32 registers */
1879 		write_spsr_abt(read_el1_ctx_aarch32(ctx, spsr_abt));
1880 		write_spsr_und(read_el1_ctx_aarch32(ctx, spsr_und));
1881 		write_spsr_irq(read_el1_ctx_aarch32(ctx, spsr_irq));
1882 		write_spsr_fiq(read_el1_ctx_aarch32(ctx, spsr_fiq));
1883 		write_dacr32_el2(read_el1_ctx_aarch32(ctx, dacr32_el2));
1884 		write_ifsr32_el2(read_el1_ctx_aarch32(ctx, ifsr32_el2));
1885 	}
1886 
1887 	/* Restore counter-timer kernel control register */
1888 	write_cntkctl_el1(read_el1_ctx_arch_timer(ctx, cntkctl_el1));
1889 #if NS_TIMER_SWITCH
1890 	/* Restore NS Timer registers */
1891 	write_cntp_ctl_el0(read_el1_ctx_arch_timer(ctx, cntp_ctl_el0));
1892 	write_cntp_cval_el0(read_el1_ctx_arch_timer(ctx, cntp_cval_el0));
1893 	write_cntv_ctl_el0(read_el1_ctx_arch_timer(ctx, cntv_ctl_el0));
1894 	write_cntv_cval_el0(read_el1_ctx_arch_timer(ctx, cntv_cval_el0));
1895 #endif
1896 
1897 	if (is_feat_mte2_supported()) {
1898 		write_tfsre0_el1(read_el1_ctx_mte2(ctx, tfsre0_el1));
1899 		write_tfsr_el1(read_el1_ctx_mte2(ctx, tfsr_el1));
1900 		write_rgsr_el1(read_el1_ctx_mte2(ctx, rgsr_el1));
1901 		write_gcr_el1(read_el1_ctx_mte2(ctx, gcr_el1));
1902 	}
1903 
1904 	if (is_feat_ras_supported()) {
1905 		write_disr_el1(read_el1_ctx_ras(ctx, disr_el1));
1906 	}
1907 
1908 	if (is_feat_s1pie_supported()) {
1909 		write_pire0_el1(read_el1_ctx_s1pie(ctx, pire0_el1));
1910 		write_pir_el1(read_el1_ctx_s1pie(ctx, pir_el1));
1911 	}
1912 
1913 	if (is_feat_s1poe_supported()) {
1914 		write_por_el1(read_el1_ctx_s1poe(ctx, por_el1));
1915 	}
1916 
1917 	if (is_feat_s2poe_supported()) {
1918 		write_s2por_el1(read_el1_ctx_s2poe(ctx, s2por_el1));
1919 	}
1920 
1921 	if (is_feat_tcr2_supported()) {
1922 		write_tcr2_el1(read_el1_ctx_tcr2(ctx, tcr2_el1));
1923 	}
1924 
1925 	if (is_feat_trf_supported()) {
1926 		write_trfcr_el1(read_el1_ctx_trf(ctx, trfcr_el1));
1927 	}
1928 
1929 	if (is_feat_csv2_2_supported()) {
1930 		write_scxtnum_el0(read_el1_ctx_csv2_2(ctx, scxtnum_el0));
1931 		write_scxtnum_el1(read_el1_ctx_csv2_2(ctx, scxtnum_el1));
1932 	}
1933 
1934 	if (is_feat_gcs_supported()) {
1935 		write_gcscr_el1(read_el1_ctx_gcs(ctx, gcscr_el1));
1936 		write_gcscre0_el1(read_el1_ctx_gcs(ctx, gcscre0_el1));
1937 		write_gcspr_el1(read_el1_ctx_gcs(ctx, gcspr_el1));
1938 		write_gcspr_el0(read_el1_ctx_gcs(ctx, gcspr_el0));
1939 	}
1940 
1941 	if (is_feat_the_supported()) {
1942 		write_rcwmask_el1(read_el1_ctx_the(ctx, rcwmask_el1));
1943 		write_rcwsmask_el1(read_el1_ctx_the(ctx, rcwsmask_el1));
1944 	}
1945 
1946 	if (is_feat_sctlr2_supported()) {
1947 		write_sctlr2_el1(read_el1_ctx_sctlr2(ctx, sctlr2_el1));
1948 	}
1949 
1950 	if (is_feat_ls64_accdata_supported()) {
1951 		write_accdata_el1(read_el1_ctx_ls64(ctx, accdata_el1));
1952 	}
1953 }
1954 
1955 /*******************************************************************************
1956  * The next couple of functions are used by runtime services to save and restore
1957  * EL1 context on the 'cpu_context' structure for the specified security state.
1958  ******************************************************************************/
1959 void cm_el1_sysregs_context_save(uint32_t security_state)
1960 {
1961 	cpu_context_t *ctx;
1962 
1963 	ctx = cm_get_context(security_state);
1964 	assert(ctx != NULL);
1965 
1966 	el1_sysregs_context_save(get_el1_sysregs_ctx(ctx));
1967 
1968 #if IMAGE_BL31
1969 	if (security_state == SECURE) {
1970 		PUBLISH_EVENT(cm_exited_secure_world);
1971 	} else {
1972 		PUBLISH_EVENT(cm_exited_normal_world);
1973 	}
1974 #endif
1975 }
1976 
1977 void cm_el1_sysregs_context_restore(uint32_t security_state)
1978 {
1979 	cpu_context_t *ctx;
1980 
1981 	ctx = cm_get_context(security_state);
1982 	assert(ctx != NULL);
1983 
1984 	el1_sysregs_context_restore(get_el1_sysregs_ctx(ctx));
1985 
1986 #if IMAGE_BL31
1987 	if (security_state == SECURE) {
1988 		PUBLISH_EVENT(cm_entering_secure_world);
1989 	} else {
1990 		PUBLISH_EVENT(cm_entering_normal_world);
1991 	}
1992 #endif
1993 }
1994 
1995 #endif /* ((IMAGE_BL1) || (IMAGE_BL31 && (!CTX_INCLUDE_EL2_REGS))) */
1996 
1997 /*******************************************************************************
1998  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
1999  * given security state with the given entrypoint
2000  ******************************************************************************/
2001 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
2002 {
2003 	cpu_context_t *ctx;
2004 	el3_state_t *state;
2005 
2006 	ctx = cm_get_context(security_state);
2007 	assert(ctx != NULL);
2008 
2009 	/* Populate EL3 state so that ERET jumps to the correct entry */
2010 	state = get_el3state_ctx(ctx);
2011 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
2012 }
2013 
2014 /*******************************************************************************
2015  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
2016  * pertaining to the given security state
2017  ******************************************************************************/
2018 void cm_set_elr_spsr_el3(uint32_t security_state,
2019 			uintptr_t entrypoint, uint32_t spsr)
2020 {
2021 	cpu_context_t *ctx;
2022 	el3_state_t *state;
2023 
2024 	ctx = cm_get_context(security_state);
2025 	assert(ctx != NULL);
2026 
2027 	/* Populate EL3 state so that ERET jumps to the correct entry */
2028 	state = get_el3state_ctx(ctx);
2029 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
2030 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
2031 }
2032 
2033 /*******************************************************************************
2034  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
2035  * pertaining to the given security state using the value and bit position
2036  * specified in the parameters. It preserves all other bits.
2037  ******************************************************************************/
2038 void cm_write_scr_el3_bit(uint32_t security_state,
2039 			  uint32_t bit_pos,
2040 			  uint32_t value)
2041 {
2042 	cpu_context_t *ctx;
2043 	el3_state_t *state;
2044 	u_register_t scr_el3;
2045 
2046 	ctx = cm_get_context(security_state);
2047 	assert(ctx != NULL);
2048 
2049 	/* Ensure that the bit position is a valid one */
2050 	assert(((1UL << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
2051 
2052 	/* Ensure that the 'value' is only a bit wide */
2053 	assert(value <= 1U);
2054 
2055 	/*
2056 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
2057 	 * and set it to its new value.
2058 	 */
2059 	state = get_el3state_ctx(ctx);
2060 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
2061 	scr_el3 &= ~(1UL << bit_pos);
2062 	scr_el3 |= (u_register_t)value << bit_pos;
2063 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
2064 }
2065 
2066 /*******************************************************************************
2067  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
2068  * given security state.
2069  ******************************************************************************/
2070 u_register_t cm_get_scr_el3(uint32_t security_state)
2071 {
2072 	const cpu_context_t *ctx;
2073 	const el3_state_t *state;
2074 
2075 	ctx = cm_get_context(security_state);
2076 	assert(ctx != NULL);
2077 
2078 	/* Populate EL3 state so that ERET jumps to the correct entry */
2079 	state = get_el3state_ctx(ctx);
2080 	return read_ctx_reg(state, CTX_SCR_EL3);
2081 }
2082 
2083 /*******************************************************************************
2084  * This function is used to program the context that's used for exception
2085  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
2086  * the required security state
2087  ******************************************************************************/
2088 void cm_set_next_eret_context(uint32_t security_state)
2089 {
2090 	cpu_context_t *ctx;
2091 
2092 	ctx = cm_get_context(security_state);
2093 	assert(ctx != NULL);
2094 
2095 	cm_set_next_context(ctx);
2096 }
2097